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ABSTRACT 

This paper presents a review of recent advances made in vibration-based Structural Health 

Monitoring (SHM) using responses of the structure to an excitation. The review is divided into 

parameter and feature estimation based on linear structural behavior, SHM taking into account 

the nonlinear structural behavior, sensor layout and data collection strategies, integration of SHM 

with vibration control of structures, wireless monitoring, and application of LIDAR.  
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1. INTRODUCTION 

Although a structure is designed to resist against all possible loadings during its life span, 

there still remains many events that are unaccounted for during the design process. Monitoring 

the integrity and health of a structure remains a subject of great interest to both practitioners and 

researchers. The process ranges from a simple visual inspection of the structure by a trained 

engineer to advanced testing and monitoring methods with the goal of detecting any damage 
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early and taking the necessary remedial actions to prevent potential failure or collapse of the 

structure and avoid human and economic losses. Damage in civil structures may be due to a 

variety of causes such as excessive movements and loadings, corrosion, crack growth, high 

temperature changes, and collision by a foreign object.  

Sirca and Adeli [1] present a review of representative research in journal articles on 

structural system identification published in journals during 1995-2012 in the following 

categories: conventional model-based, biologically-inspired, signal processing-based, chaos 

theory, and multi-paradigm approaches. This paper presents a review of recent advances in 

vibration-based Structural Health Monitoring (SHM) using responses of the structure to an 

excitation. The main concepts and approaches are described briefly. Unlike non-destructive 

testing (NDT) methods such as those based on acoustic waves or image processing techniques 

[2-3], vibration based approaches are suitable for global health monitoring of structures even 

without any a priori knowledge of and accessibility to the damage location.  

An SHM system includes three main components: 1) sensor type and layout selection and 

instrumentation, 2) data collection and cleansing, and 3) data analysis, feature extraction, and 

damage detection. In general algorithms in the last component are divided in two groups, 

supervised algorithms using damaged structure information and unsupervised algorithms with no 

need for damaged state information and based on healthy state data only.  

The key component of vibration-based SHM technology is system identification which 

can be divided into parametric and nonparametric methods. In the parametric methods, changes 

in structural parameters such as natural frequencies, mode shapes, stiffnesses, or dampings are 

calculated and used to estimate damage existence, location, or severity while in nonparametric 

methods damage is estimated without the use of these parameters. These parameters are often 
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defined for a linear model of the structure and related eigenvalues. Consequently parametric 

methods are mostly linear algorithms while nonparametric methods include nonlinear 

algorithms.  

SHM can be implemented at four different levels: 1) identification/detection of damage 

existence, 2) level one plus finding damage location, 3) level two plus determining damage 

severity, 4) level three plus prediction of remaining service life of the structure. In general the 

first two levels of SHM are possible through both supervised and unsupervised methods while 

the last two levels require information about damaged structure, and an updated finite element 

(FE) model of the structure is required for level 4 (Figure 1). Approaches used to various SHM 

levels are reviewed in the paper. Also the types of application, such as a lab experiment, a 

benchmark problem, or a real life structure are noted for reviewed articles.  

2. PARAMETER AND FEATURE ESTIMATION BASED ON LINEAR STRUCTURAL 

BEHAVIOR 

Linear parametric structural health monitoring consists of monitoring the changes of the 

structural parameters based on the physical characteristics of the structures assuming a linear and 

time-invariant system. Linear parameter estimation models are based on the assumption of linear 

structural behavior. The most commonly-used parameters for structural damage identification are 

structural dynamic properties such as natural frequencies or eigenvalues, masses, viscous 

damping, mode shapes or eigenvectors, dynamic flexibility, followed by frequency response 

functions, mode shape-related parameters such as modal assurance criterion (MAC), auto modal 

assurance criterion (AutoMAC), and mode shape derivatives defined on the basis of linear 

structural behavior. The process includes a system identification to determine the characteristics 

of different states of the structure as healthy or damaged. For a robust SHM system, extracted 

parameters must have high sensitivity towards damage but low sensitivity to noise. Figure 2 
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shows the unsupervised versus supervised system identification process based on input and 

output data. 

Gul and Catbas [4] use the autoregressive exogeneous (ARX) time series analysis to 

detect and localize damage in a simple one-story steel frame structure in the lab and in a 

benchmark problem created for a three-span prestressed concrete overpass bridge in Bern, 

Switzerland. Ambient vibration was recorded and analyzed using the Random Decrement (RD) 

method.  

Researchers have proposed new parameters for more consistent and effective detection of 

damage in structures besides widely-used structural parameters such as natural frequency or 

mode shape. Noting sensitivity to noise and dependence on numerical differentiation as factors 

for the poor performance of curvature-dependent method based on displacement mode shapes 

Adewuyi and Wu [5] propose damage detection indices based on normalized Modal MacroStrain 

(MMS) and apply it to a simple beam structure. Li et al. [6] use the Katz’s Fractal Dimension 

(FD) from the chaos theory [7-9] to measure displacement mode shapes, propose an FD-based 

damage localization index, and test it to detect single or multiple damages in a simply supported 

prismatic steel beam.  Seyedpoor [10] propose a Modal Strain Energy Based Index (MSEBI) to 

locate damage in a cantilever beam and 2-D truss structure using simulated data and Particle 

Swarm Optimization (PSO) [11-15]. 

Omrani et al. [16] use a time domain eigensystem realization algorithm (ERA) and the 

subspace state-space system identification method to identify linear story torsional and lateral 

stiffness matrices of the ASCE (American Society of Civil Engineers) - IASC (International 

Association for Structural Control) benchmark problem, a quarter scaled 4-story and two by two-

bay braced steel model, under both external (hammer strike) and ambient excitations. The 
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method takes advantage of the banded form of stiffness matrices observed in shear and torsional 

buildings and decomposing the problem into a number of smaller sub-problems.  

Yan and Ren’s [17] propose Power Spectral Density Transmissibility calculated from 

PSDs of system outputs to extract natural frequencies and mode shapes and compared it with the 

peak-picking (PP) and stochastic subspace identification (SSI) method on a five-story shear 

building and a concrete-filled steel tubular half-through arch bridge in China under ambient 

vibrations. Qiao et al. [18] use a frequency domain signal processing technique,  the fast Fourier 

transform (FFT) and a time-frequency domain signal processing method, the continuous wavelet 

transform (CWT) [19], and three pattern-matching algorithms to identify damage features in 

recorded signals obtained from a small scaled model of a three-story steel building. Jiang et al. 

[20] use the complex CWT of the slope of the mode shape for crack detection in simply 

supported and multi-span beams.  

Fragility curves are empirically or analytically developed graphs to show the 

vulnerability or damage level of a structure subjected to a specific hazard. Empirical curves are 

based on post event damage data but analytical ones are based on numerical modeling analysis 

results. Torbol et al. [21] use design information in addition to real life data collected from 

instrumented bridge structures to create updated fragility (the probability of exceeding a given 

damage state given an intensity measure) curves for three concrete box girder bridges in 

Southern California. To extract sensitivities of the structures accurately, they update parameters 

such as stiffnesses of deck, columns, abutment in the finite element model by a generalized 

pattern search algorithm. 

Zhou et al. [22] used the radial basis function based RS models [23] to estimate 

parameters of a scaled experimental test and an FE model of a cable-stayed bridge. Among 
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parameters to be estimated, they select modulus of elasticity of connection elements to account 

for changes in materials, dimensions, and boundary conditions at connections. The RS model is 

created in order to relate some input variables to some output variable using enough sample sets, 

similar to a neural network [24].  

Health monitoring and system identification can also be used for ancient and historical 

structures where often hardly any blue prints exist. Cimellaro et al. [25] use three system 

identification methods, frequency domain decomposition, RD technique combined with the ERA 

method, and the natural excitation technique (NExT) combined with the ERA, to extract 

dynamic properties of L'aquila City Hall after the 2009 L’Aquila (Italy) earthquake. L'aquila 

City Hall includes a three-story masonry building and a stone Civic Tower. A network of 15 

velocity sensors was placed in three different layouts to estimate the lateral and longitudinal 

modes. The results were used to update an FE model and evaluate the integrity of the building 

after the incident. Foti et al. [26] use frequency domain decomposition and the Stochastic 

Subspace Identification (SSI) algorithms to extract dynamic properties of the Engineering 

Faculty building, an irregular four-story reinforced concrete (RC) frame structure heavily 

damaged in the same 2009 L’Aquila (Italy) earthquake from 13 accelerometers. The resulting 

estimated FE model was used to design retrofitting measures. 

Lozano-Galant et al. [27] apply the observability techniques to identification of structural 

properties such as stiffnesses of a13-story 4-bay frame. Bursi et al. [28] apply the SSI algorithm 

for ambient vibration and the ERA method for impulse vibration to extract and confirm dynamic 

properties of the Ponte del Mare curved deck steel footbridge in Pescara, Italy. They tested 

different sensor placement layouts and chose the best layout based on the AutoMAC value.  
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Fuggini et al. [29] present identification of a masonry structure retrofitted with Composite 

Seismic Wallpaper through combination of a finite element updating approach and a GA [30]. 

The wallpaper is a polymeric textile used to improve seismic behavior of masonry structures. 

They tested the approach on a damaged two story stone building using ambient vibration 

response. 

3. SHM TAKING INTO ACCOUNT THE NONLINEAR STRUCTURAL 

BEHAVIOR 

SHM methods that take into account nonlinear structural behavior are usually based on 

nonparametric system identification techniques which deal directly with system’s input and 

output and exploit changes in the measured time histories or their corresponding spectra through 

proper signal processing methods. Unlike parametric SI methods, these features do not estimate 

any explicit physical-dynamic parameters. Nonlinear damage feature estimation methods make 

no assumption on linear behavior of the structure.  They include a wide range of methods such as 

nonlinear ARX (NARX), nonlinear Auto Regression Moving Average exogeneous (NARMAX), 

neural networks [31-34], fuzzy neural networks [35-38], fuzzy wavelet neural network [39], and 

signal processing methods that can handle nonlinear and nonstationary signals as wavelets [40] 

and Hilbert-Huang transform [41]. In general, they are more powerful than parametric methods 

because they incorporate the nonlinear behavior of the structure implicitly. This is significant 

because damage is often associated with nonlinear behavior. Compared with parametric methods 

these methods are more effective for large-scale structures with complicated nonlinear behavior 

and incomplete and noise-contaminated measurements of structural response under extreme 

loadings [42].  
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Adeli and Jiang [43] present a novel dynamic time-delay fuzzy wavelet neural network 

(WNN) model for nonparametric identification of structures with nonlinear behavior using the 

nonlinear autoregressive moving average with exogenous inputs through adroit integration of 

dynamic time delay neural networks, wavelets, fuzzy logic [44-47], and the chaos theory [42].  

Jiang and Adeli [48] present an adaptive Levenberg-Marquardt-least squares algorithm for 

training of the dynamic fuzzy WNN model. The model is applied to highrise moment-resisting 

building structures taking into account their geometric nonlinearities. Jiang and Adeli [49] 

present a nonparametric system identification-based model for damage detection of irregular 

highrise building structures subjected to seismic excitations using the dynamic fuzzy WNN 

model with an adaptive learning algorithm. A multiple signal classification (MUSIC) method is 

developed to compute the pseudospectrum from the structural response time series. The 

methodology is validated using the data obtained from a 38-story concrete test model.  Osornio-

Rios et al. [50] combined the aforementioned MUSIC algorithm introduced by Jiang and Adeli 

[49] with neural networks [51-53] to identify, locate, and quantify the severity of corrosion and 

crack damage in  a structure using data obtained experimentally on a five-bay truss-type structure 

with 5 accelerometers.  

Some of the common linear system identification algorithms such as state space 

modeling, transfer function modeling, or linear Auto Regression Moving Average (ARMA) 

method have also been tested for modeling nonlinear systems. Figueiredo et al. [54] (2011) 

investigate four different approaches for order approximation of Auto Regressive (AR) models in 

system identification and damage detection of a scaled three-story base-excited aluminum frame 

model. The methods include Akaike information criterion, partial autocorrelation function, root 

mean squared error, and singular value decomposition. Structural response includes nonlinear 
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behavior as a result of damage induced by an impact bump at the top floor. Results show these 

methods do not yield the same solution in terms of the optimal model order due to operational 

and environmental variability.  

Higher modes play a significant role in detection of local damage in a structure but their 

determination in frequency domain analysis is sensitive to the noise in sensors, a shortcoming of 

frequency-based SHM such as the PSD-based algorithm described earlier. Time-frequency 

domain analysis has been used for better localized damage detections. An example is the Hilbert-

Huang transform (HHT) used for nonlinear and nonstationary signals. In this transformation, first 

the signal is decomposed into intrinsic mode functions (IMF) by the empirical mode 

decomposition (EMD) followed by determination of the instantaneous frequencies of the signal 

using the Hilbert transform (HT) [41].  Chanpheng et al. [55] define a degree of nonlinearity 

based on the difference of the estimated frequency response function of the signal and its HT and 

apply it to the data obtained from a cable-stayed bridge in Japan in six earthquakes occurring 

between 2002 and 2005.  

Xiang and Liang [56] propose a two-stage crack localization and depth estimation 

method using the wavelet transform. First, wavelet transform of the modal shape is performed 

for crack localization. Then, based on the estimated locations, natural frequencies of the beam 

are estimated for various crack depths using the linear elastic fracture mechanics theory [57-58] 

while each crack is represented by a weightless rotational spring. They apply the method to a 

cantilever beam with two cracks  

Noh et al. [59] present statistical fragility functions to map wavelet-based damage state 

features (DSF) to damage states of the structure and estimate the health condition of the building. 

They use the ratio of the wavelet energy of the dominant scale to sum of energies of all scales in 
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the wavelet transform of the response acceleration vector as DSF and the story drift ratio as the 

damage index, and apply the method on simulated data of a nonlinear two-dimensional (2D) 4-

story steel moment-resisting frame.  

4. SENSOR LAYOUT AND DATA COLLECTION STRATEGIES 

A key issue in SHM is the number and layout of sensors used to collect time-series data 

effectively which affects the project cost and accuracy of damage detection. Raich and Liszkai 

[60] present a multi-objective optimization approach using a genetic algorithm [61-62] with the 

goal of minimizing the number of sensors while maximizing the sensitivity of the frequency 

response functions collected at each sensor location. They tested the method on cantilever and 

simply- supported beams and a three story 2D moment resisting frame.  

Enormous amount of time-series data are often generated in SHM systems requiring the 

application of data compression techniques. Huang et al. [63] use the idea of compressive 

sensing where data are compressed in sensors simultaneously with the sampling, and propose a 

Bayesian compressive sensing method to reconstruct signals from a compressive sensor. The 

method is tested using synthesized and actual acceleration data from a bridge SHM system. 

5. INTEGRATION OF SHM WITH VIBRATION CONTROL OF STRUCTURES  

The idea of smart structures has been advanced through integration of the concept of 

SHM with passive, semi-active [64], and active vibration control of structures [65-68].  System 

identification techniques used for SHM also find applications in vibrations control of structures 

[69-70]. Cho et al. [71] present dynamic parameter identification of secondary mass damping 

systems installed in highrise buildings based on full-scale field data using the Box-Jenkins state-

space system identification method. They apply the methodology to an actual tuned mass damper 

(TMD) system [72] installed on the top of highrise building structures in Busan, Korea, and an 
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actual tuned liquid column damper (TLCD) system installed on the top of highrise building 

structures in Incheon, Korea.  

Hazra et al. [73] use the second-order blind source identification method [74] for systems 

with closely-spaced modes or low-energy modes such as TMD-equipped structures. They also 

address the problem when the number of measurements is fewer than the number of recognized 

modes (too few sensors). They perform a structural characteristic identification on the Apron 

Control Tower near Toronto, Canada, which is equipped with a pair of TMDs on the roof.  

Khalid et al. [75] present nonlinear identification of a magneto-rheological (MR) fluid damper 

based on a dynamic recurrent neural network [76-77] used for semi-active vibration control of 

structures [78].  

6. WIRELESS MONITORING 

Long-term monitoring of the integrity of tall buildings and major bridges under various 

environmental loadings is of particular interest because of their size and importance. Wireless 

sensors have been proposed to reduce the installation and the long-term maintenance time and 

cost of SHM (Figure 3). Further, they can be installed in larger numbers and difficult-to-wire 

locations. They, however, may add to the initial cost of the SHM. Bocca et al. [79] introduce a 

time synchronized and configurable wireless sensor network to detect modal properties of the 

structure. The system was tested on a model wooden bridge. Results show identified natural 

frequencies have accuracies comparable with a wired SHM system.  

Hu et al. [80] designed hardware and software requirements of a wireless sensor data 

collection system for unsupervised SHM of highway bridges. It includes different types of 

sensors such as accelerometers, strain gauges and temperature sensors. The authors used the 

Power Spectral Density (PSD) and the ARX methods along with the response surface (RS) 
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statistical approach to estimate the natural frequencies and mode shapes and update the FE model 

to detect and locate the damage.  The system is implemented in Zhengdian prestressed concrete 

highway bridge in Wuhan, China.  

Global Positioning system (GPS) has improved to a great extent in recent years and now 

the technology allows near real time (100 Hz) positioning with the accuracy in the order of 

millimeter to centimeter. A GPS for SHM consists of positioning units/sensors and a data 

monitoring center in addition to the satellites (Figure 4). Yi et al. [81] present a review of GPS 

applications for health monitoring of tall buildings. GPS can keep track of static and dynamic 

displacements which makes it a potentially promising technology for SHM. However, its 

accuracy has to be improved before it can be a reliable technology for SHM.  

7. SHM USING LIDAR 

Park et al. [82] introduced health monitoring of structures using terrestrial laser scanning, 

aka Light Detection and Ranging (LIDAR). They tested the model experimentally on a simply-

supported steel beam. Truong-Hong et al. [83] present a method to reconstruct building models 

from LIDAR and validate it on data obtained for three brick buildings in Dublin, Ireland. 

8. FINAL REMARKS 

Newer technologies for SHM are being explored. Park et al. [84] present a 3D 

displacement measurement model for SHM using a motion capture system. The effectiveness of 

the model was demonstrated by comparing the displacements measured in a free vibration 

experiment of a scaled 3-story structure with laser displacement sensors.  

One of the major challenges in SHM of real structures is the effect of changes in 

unaccounted parameters that are not considered in the model such as ambient temperature or 

mass of the structure for example the live load in a highrise building or vehicle loads in a bridge. 
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These parameters create additional nonlinearity or complexity in the SHM system. When these 

parameters are not considered in the model or are assumed constant the data must be collected 

and compared in the same conditions. Otherwise the data should be normalized according to 

different conditions, a subject further SHM research.  

The great majority of SHM papers assume linear structural behavior.  More research is 

needed on SHM taking into account the nonlinearity of the complex structure-environment 

system. Also, more refined modelling of large structures such as highrise buildings including the 

connection details. Such refined modelling will require significant computational resources such 

as high-performance computing. 

Amezquita-Sanchez and Adeli [41] present a review of signal processing techniques for 

vibration-based SHM. Development and application of effective signal processing techniques to 

process a vast amount of time-series data will continue to be an effective area of research. 

Uncertainty in the SHM modelling is another significant issue which has been addresses by a 

number of researchers but is beyond the scope of the current review.  
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Figure Captions 

Figure 1 Typical procedures for different damage estimation levels 

Figure 2 Unsupervised (a) versus supervised (b) system identification process 

Figure 3 Wireless health monitoring 



26 
 

Figure 4 GPS application for SHM 
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Figure 2 Unsupervised (a) versus supervised (b) system identification process 
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Figure 4 GPS application for SHM 
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