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Abstract. Discrete Least Squares Meshless (DLSM) method has been used for the
solution of di�erent problems ranging from solid to uid mechanics problems. In DLSM
method the locations of discretization points are random. Therefore, the error of the initial
solution is rather high. In this paper, an adaptive node moving re�nement in DLSM
method is presented using the Charged System Search (CSS) for optimum analysis of
elasticity problems. The CSS algorithm is e�ectively utilized to obtain suitable locations
of the nodes. The CSS is a multi-agent optimization technique based on some principles
of physics and mechanics. Each agent, called a Charged Particle (CP), is a sphere with
uniform charge density that can attract other CPs by considering the �tness of the CP.
To demonstrate the e�ectiveness of the proposed method, some benchmark examples with
available analytical solutions are used. The results show an excellent performance of the
CSS for adaptive re�nement in meshless method.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Finite element method has been successfully used for
the simulation of a large variety of practical engineering
problems in the last decades. The method, however,
involves some di�culties for certain processes such
as creak propagation, extremely large deformation
or implementation of adaptivity due to the need for
mesh moving or remeshing of the domain. In the
last decade several methods referred to as meshless
method have been proposed and used to overcome
these problems. Recently, a new meshless method
which utilizes strong formulation of the governing
di�erential equations, named Discrete Least Squares
Meshless (DLSM) method [1], was proposed and used
for the solution of Poisson equation. The advantages
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of this method over other numerical methods are no
need for integration, simplicity of use and symmetric
matrix of coe�cients. The method has been used for
the seepage problems [2], solution of solid mechanics
problems [3] and many other cases, and its e�ectiveness
has been proven. In all numerical methods such as
�nite element and meshless methods, adaptive re�ne-
ment has become a standard procedure to achieve the
desired accuracy by using a minimum number of nodes.
An ideal computational algorithm with the re-meshing
ability and pointing should be in such way that the
density of nodes or new mesh increases in locations
with higher computational errors. Formerly methods
for an error estimation and adaptive re�nement for
hyperbolic problems in one-dimensional case [4], node
enrichment adaptive method [5] in which more nodes
are added in the regions with higher errors, and
node moving strategy based on spring analogy [6] in
DLSM method have been developed. These methods,
however, have high computational costs due to the new
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added nodes or �nding new locations of the previous
nodes.

To resolve these shortcomings, meta-heuristic al-
gorithms can be used. Meta-heuristic algorithms are
more suitable than traditional methods of optimiza-
tions and adaptivity due to their capability of exploring
and �nding promising regions in the search space
in an a�ordable time and less computational costs.
One of the best searching algorithms and more e�-
cient than other optimizing algorithms is the Charged
System Search (CSS). The algorithm that is based
on electrostatics and Newtonian mechanics has been
proposed by Kaveh and Talatahari [7]. The CSS has
been used for a large variety of optimization problems
such as optimal design of frame structures, optimum
grillage system design, truss optimization and design
optimization of reinforced concrete 3D structures [8-
11]. The CSS for minimax and minisum facility layout
problem [12] is one of the new researches which shows
the applicability and robustness of the CSS for the
problem of �nding suitable locations. In this paper a
node moving adaptive re�nement strategy with the use
of the CSS algorithm is presented for solving problems
in solid mechanics. The process is very e�ective and
because of the resolving the limitations of meshing
and remeshing in meshless methods, the process is
much more exible and e�cient than other adaptive
re�nement methods in FEM and meshless methods.
Sections 2 and 3 present the fundamental concepts of
DLSM method and CSS algorithm, respectively. In
Section 4, error estimation and an adaptive re�nement
is exhibited. Section 5 illustrates the capabilities of the
proposed method through some benchmark examples,
where the results are compared with the available
analytical solutions. Finally, some concluding remarks
are addressed in Section 6.

2. Discrete Least Squares Meshless (DLSM)

2.1. Moving least squares shape functions
Among the available meshless approximation schemes,
the Moving Least Squares (MLS) method [13] is gen-
erally considered to be one of the best methods to
interpolate random data with a reasonable accuracy,
because of its completeness, robustness and continu-
ity [14,15]. With the MLS interpolation, the unknown
function �(x) is approximated by:

�(x) =
mX
i=1

Pi(x):�i(x) � PT(x):�(x): (1)

Here, P (x) is a polynomial basis in the space coor-
dinates, and m is the total number of the terms in
the basis. For a 2D problem we can specify P (x) =
[1 x y x2 xy y2] for m = 6. �(x) is the vector
of coe�cients and can be obtained by minimizing a

weighted discrete L2 norm as:

J =
nX
j=1

W (x� xj): �PT(xj):�(x)� ~uj
�2 ; (2)

where n is the number of nodes in the domain, and ~uj
is the nodal value of the function to be approximated
at point xj . The weight function W (x� xj) is usually
built in such a way that it has the following properties:

W (x� xj) > 0 within the support domain,

W (x� xj) = 0 outside the support domain,

W (x � xj) monotonically decreases from the
point of interest at x, and

W (x � xj) is su�ciently smooth, especially on
the boundary of 
j .

Here, for a better performance in meshless
method, the cubic spline weight function is employed,
given by:

W (x� xj) = W ( �d) =8><>:
2
3 � 4 �d2 + 4 �d3 for �d � 1

2
4
3 � 4 �d+ 4 �d2 � 4

3
�d3 for 1

2 < �d � 1
0 for �d > 1 (3)

where �d = (x � xj)=dw and dw is the size of inuence
domain of point xj . Minimization of Eq. (2) with
respect to the coe�cient �(x) leads to:

�(x) = PT(x)A�1(x)B(x)�h; (4)

where:

A(x) =
nX
j=1

W (x� xj)P(xj)PT(xj); (5)

and:

B(x) =
�
W (x� x1)P(x1);W (x� x2)

P(x2); :::;W (x� xn)P(xn)
�
: (6)

Eq. (4) can be written in the compact form:

�(x) =
nX
i=1

NT
i (x)�i(x) = NT(x)�h; (7)

leading to the de�nition of MLS shape function de�ned
as:

NT(x) = PT(x)A�1(x)B(x); (8)

where NT(x) contains the shape functions of nodes at
point x, which are called Moving Least Squares (MLS)
shape functions.
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2.2. Discrete least squares meshless method
Consider the following partial di�erential equation:8>>><>>>:

L(�) + f = 0 in 


B(�)� �t = 0 in �t

�� �� = 0 in �u

(9)

where L and B are partial di�erential operators, ��
and �t are vectors of prescribed displacements and
tractions on the Dirichlet and Neumann boundaries,
respectively; 
 is the considered domain; �u and �t are
the displacement and traction boundaries, respectively;
f is the vector of external force or source term on the
problem domain.

Suppose the value of the estimating function � in
a point such as xk is denoted as:

�(xk) =
mX
i=1

Ni(xk)�i: (10)

According to the discretization of the problem domain
and its boundaries, using Eq. (4), the residual of partial
di�erential equation at point xk is obtainable as:

R
(xk) = L (�(xk)) + f(xk); k = 1; :::;M: (11)

The residual of Neumann boundary condition at point
xk on the Neumann boundary can also be presented
as:

Rt(xk) = B (�(xk))� �t(xk); k = 1; :::;Mt: (12)

Finally the residual of Dirichlet boundary condition
at point xk on the Dirichlet boundary can be written
as:

Ru(xk) = �� ��(xk); k = 1; :::;Mu; (13)

where Md is the number of internal points, Mt is the
number of points on the Neumann boundary, Mu is
the number of points on the Dirichlet boundary, and
M is the total number of points. A penalty approach
can now be used to form the least squares functional
of the residuals de�ned as:

J=
1
2

"MdX
k=1

R2

(xk)+�:

MtX
k=1

R2
t (xk)+�:

MuX
k=1

R2
u(xk)

#
;
(14)

where � and � are the penalty coe�cients for the
importance of Neumann and Dirichlet boundary
conditions, respectively. Minimization of the functional
with respect to nodal parameters (�i; i = 1; 2; :::; n)
leads to the system of equations:

K� = F; (15)

where:

Kij =
MX
k=1

[L(N)]Tk [L(N)]k + �
MtX
k=1

[B(N)]Tk [B(N)]k

+ �
MuX
k=1

[N ]Tk ��k;
(16)

Fi =�
MX
k=1

[L(N)]Tk [L(N)] fk + �
MtX
k=1

[B(N)]Tk �tk

+ �
MuX
k=1

[N ]Tk ��k:
(17)

The sti�ness matrix K in Eq. (16) is square, symmetric,
and positive de�nite. Therefore the �nal system of
equations can be solved directly via e�cient solvers.

3. Charged system search

The charged system search is based on electrostatics
and Newtonian mechanics laws. The Coulomb and
Gauss laws provide the magnitude of the electric �eld
at a point inside and outside a charged insulating solid
sphere, respectively, as [16]:

Eij =

8<:keqi
a3 rij if rij < a
keqi
r2
ij

if rij � a (18)

where ke is a constant known as the Coulomb constant,
rij is the separation of the centre of sphere and the
selected point, qi is the magnitude of the charge, and a
is the radius of the charged sphere. Using the principle
of superposition, the resulting electric force due to N
charged spheres is equal to [7]:

Fj = keqj
NX
i=1

 
qi
a3 rij :i1 +

qi
r2
ij
:i2

!
ri � rj

ri � rj
;

8<:i1 = 1; i2 = 0 () rij < a

i1 = 0; i2 = 1 () rij � a
(19)

Also, according to Newtonian mechanics, we have [16]:

�r = rnew � rold; (20)

V =
rnew � rold

�t
; (21)

a =
Vnew �Vold

�t
; (22)

where rold and rnew are the initial and �nal positions of
a particle, respectively, v is the velocity of the particle,
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and a is the acceleration of the particle. Combining
the above equations and using Newton's second law,
the displacement of any object as a function of time is
obtained as:

rnew =
1
2

F
m
:�t2 + vold:�t+ rold: (23)

Inspired by the above electrostatics and Newtonian
mechanics laws, the pseudo-code of the CSS algorithm
is presented as follows [7].

Level 1: Initialization

Step 1. Initialization. Initialize the parameters of
the CSS algorithm. Initialize an array of Charged
Particles (CPs) with random positions. The initial
velocities of the CPs are taken as zero. Each CP has a
charge of magnitude de�ned considering the quality of
its solution as:

qi =
�t(i)� �tworst

�tbest� �tworst
; i = 1; 2; :::; N; (24)

where �tbest and �tworst are the best and the worst
�tness of all the particles, and �t(i) represents the
�tness of agent i. The separation distance rij between
two charged particles is de�ned as:

rij =
Xi �Xj

(Xi + Xj)=2�Xbest + "
; (25)

where Xi and Xj are the positions of the ith and
jth CPs, respectively, Xbest is the position of the best
current CP, and " is a small positive number to avoid
singularities.

Step 2. CP ranking. Evaluate the values of the �tness
function for the CPs, compare with each other and sort
them in increasing order.

Step 3. CM creation. Store the number of the �rst
CPs equal to Charged Memory Size (CMS) and their
related values of the �tness functions in the Charged
Memory (CM).

Level 2: Search

Step 1. Attracting force determination.
Determine the probability of moving each CP toward
the others considering the probability function:

pij =

8<:1 �t(i)��tbest
�t(i)��t(j) >rand _ �t(j)>�t(i)

0 else
(26)

and calculate the attracting force vector for each CP
as:

Fj=qj
NX

i;i 6=j

 
qi
a3 rij :i1+

qi
r2
ij
:i2

!
pij(Xi �Xj)

8>>><>>>:
j = 1; 2; :::; N

i1 = 1; i2 = 0 () rij < a

i1 = 0; i2 = 1 () rij � a
(27)

where Fj is the resultant force a�ecting the jth CP.

Step 2. Solution construction. Move each CP to the
new position and �nd its velocity using the following
equations:

Xj;new =randj1:ka:
Fj
mj

:�t2

+ randj2:kv:Vj;old:�t+ Xj;old; (28)

Vj;new =
Xj;new �Xj;old

�t
; (29)

where randj1 and randj2 are two random numbers
uniformly distributed in the range (0,1), �t is the time
step, and it is set to 1. ka is the acceleration coe�cient,
kv is the velocity coe�cient to control the inuence of
the previous velocity. Here, ka and kv are taken as
0.5. Also, mj is the mass of the CPs, which is equal to
qj in this paper. The mass concept may be useful for
developing a multi-objective CSS.

Step 3. CP position correction. If each CP exits from
the allowable search space, correct its position using
the HS-based handling approach as described for the
HPSACO algorithm [17,18].

Step 4. CP ranking. Evaluate and compare the values
of the �tness function for the new CPs, and sort them
in an increasing order.

Step 5 CM updating. If some new CP vectors are
better than the worst ones in the CM, in terms of their
objective function values, include the better vectors in
the CM and exclude the worst ones from the CM.

Level 3: Controlling the terminating criterion
Repeat the search level steps until a terminating
criterion is satis�ed.

4. Error indicator and adaptive re�nement

Adaptivity is an important tool for the e�ciency and
e�ectiveness of any numerical method. Any adaptive
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procedure is formed of two main parts, error estimation
and mesh re�nement. For any successful adaptive pro-
cedure, an actual error estimator is essential. Di�erent
methods to estimate error have been introduced and
applied in the numerical methods. These methods
can be separated into two categories. Methods based
on residual of the di�erential equations governing on
the problem [19,20] and the methods based on the
restoration of the error which considered the error as
the gradient of the solution [21,22]. In this study, error
estimation based on least squares function formed from
weighted residuals is used [23], where the error for each
point is de�ned as:

ek =
r

1
2

[R2

(xk) + �:R2

t (xk) + �:R2
u(xk)]: (30)

Here, ek is the error of any point in the problem
domain or its boundaries. The advantage of this
choice is the availability of the error estimator in the
process of the main simulation. Di�erent methods
for re�nement and achieving more accurate solutions
after identifying the error distribution can be used.
There are three general methods of re�nement in �nite
element: mesh moving (r-method), mesh enrichment
(p-method) and p-re�nement whereby higher order
shape functions are used. In mesh moving methods
the number of the nodes is constant but the location
of the nodes is altering according to the achieved
errors. In FEM the connectivity of the nodes may be
disturbed and some of the elements can overlap or be
zero area. Therefore there is some limitation in FEM.
In mesh enrichment process, which is the most common
method in FEM, the initial mesh remains and some
new elements are added to the domains with higher
amount of errors, or a new mesh is created based on
the error distribution. In increasing process of the
order of shape functions, the order increases in the
domain with higher errors. This process needs the use
of hierarchical shape functions which is associated with
complications. It is clear that the most appropriate
adaptivity is mesh moving because of the constant
number of the nodes, therefore the computational cost
is less than the other methods. The use of this method
has some complexity in FEM due to the deformation
of the element after removing them. Since in meshless
methods and especially in DLSM method there is
no element scheme and the solution is not sensitive
to the distance between nodes and the method of
exposure, the use of the node moving methods is easily
possible.

5. Relationship of the CSS and adaptivity

For the CSS algorithm, each node is used as a CP
of zero radiuses and mj is employed for masses. For

each node, the error based on least squares function
is formed from weighted residuals which is available in
each analysis using Eq. (30). This error considered as
the charge of each node is normalized as:

qj =
ej � emin

emax � emin
: (31)

The distance between any two nodes, j and i, is de�ned
by LP norm, and in particular for planar problem L2
norm is used, as follows:

rij =
q

(xi � xj)2 + (yi � yj)2: (32)

Considering that the error reduction in meshless meth-
ods requires the densities of the nodes in the accumula-
tion zones of the errors, therefore only nodes with less
error are allowed to move toward the nodes with high
error:

pij =

8<:1 q1 � qj
0 else

(33)

For each node, the force vectors in two directions are
calculated with the following equations:

Fjx = keqj
NX

i=1;i6=j

 
qi
r2
ij

!
xi � xj
xi � xj pij cos(�); (34)

Fjy = keqj
NX

i=1;i 6=j

 
qi
r2
ij

!
yi � yj
yi � yj pij sin(�): (35)

Here, � is the angle between horizontal direction and
the line connecting the two nodes. According to the
formulation of the CSS, new positions of the nodes in
two-dimensional case are obtained similarly.

5.1. Objective function
In the DLSM method, the value of residuals represents
the scope to which the numerical solution satis�es
the governing di�erential equation and its boundary
conditions. Also it is mentioned that the least-
squares functional de�ned as the squares residual can
be considered as a measure of the error of the numerical
solution. The method is especially e�cient since the
least-squares calculations are already available from the
solution procedure. Hence, the objective function to be
minimized is taken as the normalized sum of squared
residuals of all points in the domain. The search level
of the CSS is continued as long as improvement in the
reduction of the objective function is possible. The
algorithms are coded in compact visual FORTRAN and
the systems of linear equations are solved with e�cient
solver.
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5.2. Selected parameters
In the �rst examples the nodes in Arc edge and
corner nodes have been �xed. The nodes on the
horizontal boundaries can only move horizontally and
the movement of the nodes on the vertical boundary is
limited vertically. �t is set to 1. ka and kv are taken as
0.5. For all nodes, mj is selected as constant. The best
value for mj is found to be 20. The objective function
is taken as the ratio of the least squares functional of
the residuals to the total number of points which is
available in the process of the main simulation as:

Minimize ETotal
Estimate =

� MdP
k=1

R2

(xk) + �:

MtP
k=1

R2
t (xk) + �:

MuP
k=1

R2
u(xk)

M

�
:
(36)

Here, Md is the number of internal points, Mt is the
number of points on the Neumann boundary, Mu is the
number of points on the Dirichlet boundary, and M is
the total number of points. In the second example, the
corner nodes are �xed and boundary nodes can only
move on their directions. Similar to the �rst example,
�t is set to 1. ka and kv are taken as 0.5 and the
�nest value for mj , which leads to the best results in
one iteration, is taken as 52.

6. Numerical examples

In this section, two examples of planar elasticity are
presented. These examples are selected because their
analytical solutions are available. The comparison of
the initial solution and the solution after re�nement by
the CSS with analytical solution shows the e�ciency of
the presented method. The �rst example considers an
in�nite plate with a circular hole subjected to a uniaxial
traction, and the second example is a cantilever beam
under end load.

6.1. In�nite plate with a circular hole
The �rst example considers an in�nite plate with a
circular hole under a uniaxial load at in�nity, as shown
with boundary conditions in Figures 1 and 2. The exact
solutions of this problem for the stress components can
be de�ned as [24]:

�x= t
�

1�a2

r2

�
3
2

cos(2�)+cos(4�)
�
+

3a4

2r2 cos(4�)
�
;
(37)

�y=�t
�
a2

r2

�
1
2

cos(2�)+cos(4�)
�
+

3a4

2r2 cos(4�)
�
;

(38)

�xy=�t
�
a2

r2

�
1
2

cos(2�)+sin(4�)
�
� 3a4

2r2 sin(4�)
�
;
(39)

Figure 1. An in�nite plate with a circular hole under a
uniaxial load P.

Figure 2. Boundary conditions of the plate.

ur=
t

4G

�
r
�
k � 1

2
+ cos(2�)

�
+
a2

r

�
1 + (1 + k) cos(2�)

�
� a4

r3 cos(2�)
�
; (40)

u� =
t

4G

�
(1� k)

a2

r
� r � a4

r3

�
sin(2�): (41)

In the above equations, G is the shear modulus and
k = (3 � v)=(1 + v) with v representing the Poisson's
ratio. Due to symmetry, only the upper right square
quadrant of the plate is modeled (see Figure 2). The
edge length of the square is 5a, with a being the radius
of the circular hole. The Dirichlet boundary condition
is imposed on the left and bottom boundaries, and
the tractions are applied to the top and right edges.
The problem is solved under a plane stress conditions.
The process begins with the simulation of the problem
on two distributions of 95 nodes referred to as initial
and re�ned distributions shown in Figures 3 and 4,
respectively. The error distribution is estimated based
on the numerical solution obtained using Eq. (14).

After running the CSS algorithm with a uniform
distribution of the nodes, the adapted nodes are more
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Figure 3. The initial distribution of the nodes.

Figure 4. The re�ned distribution by the CSS.

concentrated around the curved edge where the numer-
ical errors are much higher due to stress concentration.
Comparing the horizontal displacement, ux, of the hole
and the normal stress, �x, along x = 0, with analytical
solution of the problem, a tremendous evolution can
be seen in the responsiveness of DLSM method by
the use of the CSS algorithm, as shown in Figures 5
and 6. Stress tensor for initial solution, the solution of
the re�ned distribution of the nodes by CSS and the
real stress tensor for analytical solution are shown in
Figure 7.

6.2. A cantilever beam under end load
As a second example, the problem of a cantilever beam
under a point load at the end, as shown in Figure 8,
is considered. For this problem, the exact stresses and
displacements in plane stress are given by Timoshenko
and Goodier [24] as:

�x = �P (L� x)y
I

; (42)

�y = 0; (43)

Figure 5. Normal stress �x along x = 0.

Figure 6. The horizontal displacement ux of hole.

Figure 7. Contours of the normal stress �x: (a) Initial
solution; (b) re�ned solution; and (c) exact solution.

Figure 8. A cantilever beam under a point load at the
end.
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Figure 9. Initial nodal distribution.

Figure 10. Re�ned nodal distribution by the CSS.

Figure 11. The vertical displacement uy along upper
surface of the beam.

�xy =
P
2I

[c2 � y2]; (44)

u = � Py
6EI

�
3x(2L� x) + (2 + v)(y2 � c2)

�
; (45)

v =
Py
6EI

�
x2(3L� x) + 3v(L� x)y2 + (4 + 5v)c2x

�
;

(46)

where E is the elastic modulus and v represents
Poisson's ratio. The moment of inertia I = 2c3=3 is
considered for a beam with rectangular cross-section
and unit thickness.

The problem is solved using the DLSM method
under plane stress conditions and on the initial con-
�gurations. A distribution of 125 nodes is used as
shown in Figure 9. The errors are calculated and the
nodal locations are adaptively altered using the CSS
algorithm, as shown in Figure 10. The problem is
then resolved on the re�ned nodal con�guration and
the results are compared to those obtained on the
initial con�guration and to the exact analytical results.
Figures 11 and 12 compare the vertical displacement,

Figure 12. Normal stress �x along upper surface of the
beam.

uy, along upper surface of the beam, and the normal
stress �x along upper surface of the beam obtained on
the initial and adapted distributions with the analytical
solutions. It can be seen that the result obtained on the
adapted nodal distribution is virtually exact indicating
on the e�ectiveness of the CSS algorithm in DLSM
method.

For large-scale and complex problems the use of
meta-heuristic approaches becomes time consuming;
however, for such a problem one can decompose it into
its components and after solution of each component,
the solution of the main problem can be obtained by
using the methods provided in Ref. [25].

7. Conclusion

Though the DLSM method has been developed in
recent years in order to achieve more accurate solu-
tion, re�nement is inevitable like the other numerical
methods. The process of the re�nement proposed in
this paper makes it possible to achieve more accurate
responses without increasing the number of points
and imposing computational costs. Considering the
points in the discretized domain as charged particles
in the CSS algorithm and by using the normalized
errors in DLSM process as the charges of particles, a
powerful model is created. Therefore a node moving
in the direction of optimal solution of the problem
is obtained. In lectures on adaptivity in meshless
methods, di�erent techniques are introduced such as
that [6] which uses springs between two adjacent nodes,
determining the new locations of the nodes requires
the solution of a large truss with a computational cost
almost as much as time required for solution of the
problem. However, since the CSS searches the most
suitable locations of the nodes in one or two iteration,
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its computational cost is much less than the existing
algorithms.
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