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Abstract. Prediction of accident frequency based on tra�c and roadway characteristics
has been a very signi�cant tool in the �eld of tra�c management. The accident frequencies
on 185 roadway segments of the city of Mashhad, Iran, for the year 2007, were used to
develop accident prediction models. Negative Binomial Regression, Zero In
ated Negative
Binomial Regression, Support Vector Machine and Back-Propagation Neural Network
models were used to �t the accident data. Both �tting and predicting abilities of the
models were evaluated through computing error values.

Results show that the NBR model is the most e�ective model for predicting the
number of accidents because of its low prediction and �tting error values. Although the
BPNN model has high �tting capability, it does not have the prediction ability of the
NBR model. Furthermore, the NBR is easily able to develop and interpret the role of
e�ective variables, in comparison with machine learning models which have a black-box
form. Marginal e�ect values for the NBR and ZINBR models, and sensitivity analysis
of the SVM and BPNN models, reveal that Volume to Capacity ratio (V=C), Vehicle-
Kilometers Travelled (VKT) and roadway width are the most signi�cant variables. An
increase in V=C and roadway width will decrease the number of accidents, however, an
increase in VKT and permission to park on the right lane of the roadway can increase the
crash frequency.
c
 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Rapid population growth and urbanization result in
a signi�cant increase in the number of vehicles and,
thus, tra�c accidents. The issue of accident prediction
methods has recently received considerable attention
in the �eld of tra�c management. The importance
of accident prediction lies in its e�ect on reducing
accidents, injuries, �nancial losses and delays, as di-
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rect costs. In addition, energy waste, missing work
days, and economic and psychological consequences,
are some of the indirect costs associated with tra�c
accidents. Iran's reported number of tra�c deaths
in 2009 was 22,918, and the death rate per 100,000
persons was 35.8, consequently ranking Iran as the
11th most unsafe country in the world [1]. Therefore,
evaluation of accident prediction modeling approaches
can be bene�cial in advancing tra�c safety.

Tra�c accidents take place due to a number
of factors, such as the road, the environment, the
driver and the vehicle, and their interrelationship.
Therefore, it is important to develop tra�c accident
prediction models using these parameters to study
their e�ect on tra�c safety. The most common
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crash indicators used are the number of crashes per
year (i.e. crash frequency) [2,3], and the number
of crashes per million vehicle-kilometers or per mile
(i.e. crash rate) [4,5]. Most researchers have focused
on determining the relationship between crashes and
highway tra�c volume, either at the aggregated levels
using Annual Average Daily Tra�c (AADT) or disag-
gregated levels by Hourly Volumes (HV) [6,7]. Other
studies have further examined the safety of freeway
segments as a function of tra�c congestion using
Volume to Capacity ratio (V=C) or the Congestion
Index as independent variables [8]. Crash frequency
and aggregate tra�c 
ow characteristics are considered
dependent and independent variables in this research,
respectively.

The objective of this study is to evaluate the
relationship between the number of accidents and
independent variables such as V=C, average speed
of tra�c 
ow, Vehicle-Kilometers Travelled (VKT),
whether parking is permitted on the right lane of the
roadway, presence or lack of median, and the width
of the roadway. This evaluation is implemented by
developing two types of model; Count Regression and
Machine Learning, to predict the number of crashes.
Negative Binomial Regression (NBR) and Zero In
ated
Negative Binomial Regression (ZINBR) models are
the most common types of count regression to model
accident frequency. Moreover, the Support Vector
Machine (SVM) and the Back-Propagation Neural
Network (BPNN) are the most well-known machine
learning paradigms. In this research, the dataset is
divided into two parts (i.e. training set and testing
set). The, models are generated based on the training
set of samples and tested for the remaining obser-
vations. Both �tting and predicting abilities of the
models are assessed through comparison of their error
values.

2. Literature review

2.1. Count regression models
Count regression models (i.e. generalized linear mod-
els) such as Poisson Regression (PR) and NBR are
the most common methods for predicting accident
frequency. Persaud and Dzbik [9] evaluated the rela-
tionships between crash frequency with Average Daily
Tra�c (ADT) and HV using generalized linear models.
They proved that HV data is a more appropriate
measure to predict crashes compared to ADT, since it
represents the real-time tra�c 
ow condition. Khattak
et al. [10] also applied NBR, as well as PR and zero-
in
ated Poisson regression models, for spatial analysis
and the modeling of tra�c incidents for strategic plan-
ning. Sawalha and Sayed [11] studied the statistical
issues of NBR and PR models in tra�c safety modeling.
They mentioned that avoiding the over-�tting and

analysis of outliers are two most important issues when
dealing with count regressions. They also proposed a
procedure to develop NBR for accident databases as a

owchart.

The NBR model is commonly used in safety
analysis, due to the fact that crash data frequently
exhibit over-dispersion [12]. Naderan and Shahi [3,13]
used NBR to introduce the concept of crash generation
using trip generation data and modeled the accident
frequency, which can �t the over-dispersed data better
than PR. Park and Lord [14] proposed a �nite mixture
regression model which can �t the nature of over-
dispersion in the crash data perfectly and is useful
for capturing heterogeneity in crash prediction models.
Di�erent types of NBR are applied to di�erent research
to �t datasets with di�erent characteristics. Usman et
al. [15] calibrated NBR, generalized NBR and ZINBR
to model accident frequency considering road surface
conditions during snow storms. They concluded that
the generalized NBR is more appropriate for cap-
turing heterogeneity in data. However, Sharma and
Landge [16] have mentioned that ZINBR is the most
appropriate method for modeling the crash frequency
of heavy vehicles.

2.2. Machine learning models
In recent years, the Arti�cial Neural Network (ANN)
has been proven to be an e�cient and e�ective method
for modeling tra�c accidents. There is much re-
search using ANN methods for modeling the classi-
�cation of injury severities as a discrete dependent
variable [17,18], and also to estimate the number of
accidents as a countable dependent variable [19]. The
ANN method has two main advantages: It is a reliable
method for future crash prediction, and there is no
need to assume a pre-de�ned underlying distribution
for response variables [20,21]. The main disadvantages
of the ANN method are that these models have a black-
box form without an analytical basis, and it requires
time consuming computational e�ort to minimize the
over-�tting issue, especially when the sample size is
small [20]. Chang [21] compared NBR and ANN
methods and concluded that ANN models are more
e�cient in predicting accident frequency. Since there
are di�erent types of ANN model with di�erent ranges
of characteristics (e.g. di�erent functions, number
of layers and number of neurons), there is a need
to �nd out the best type of ANNs for future stud-
ies [21].

Recently, application of the SVM model in trans-
portation engineering has been growing. Li et al. [22]
developed SVM and NBR models to predict accident
frequency. They proved that the SVM model has a
higher prediction ability compared to NBR, and it does
not over-�t the data. They also mentioned that SVM
has an almost similar performance to the BPNN model.
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Table 1. Summery descriptions and statistics of variables.

Variable Description Unit Min Mean Max Std Dev.
Y Crash frequency # 0 4 45 8.11
V=C Volume to capacity ratio ratio 0.03 0.52 2.09 0.42
Speed Average speed of tra�c 
ow km/hr 5.84 38.84 68.17 15.24

Parking 1 if parking is permitted on the right
lane of the roadway, 0 otherwise

binary 0 0.48 1 0.50

Width Width of roadway meter 3.25 14.95 27.6 5.55
Median 1 if roadway has median, 0 otherwise binary 0 0.35 1 0.48
ln(VKT) ln(vehicle-kilometer travelled) veh.km/hr 6.80 13.24 16.96 1.35

2.3. Related parameters
There are some studies about the impact of congestion
on accident frequency. Zhou and Sisiopiku [23] studied
the correlation between hourly accident rates and
average HV per capacity (i.e. V=C). They found
a U-shaped relationship between these two variables.
Lord et al. [24] considered tra�c volume, density
and V=C for rural and urban freeway segments to
study the relationship between crashes and hourly
tra�c 
ow characteristics. They concluded that the
volume should not be the only important factor in
developing crash prediction models, as there are other
important variables, such as density and V=C. Shefer
and Rietveld [25] proved that by an increase in density,
the number of cars increases. \However, when density
becomes so high that speeds are in
uenced negatively,
the number of accidents will decrease [25]". Some
researchers use the output of some planning software
packages to develop accident prediction model, as well
as this research. Hadayeghi et al. [26] used EMME/2
software package to extract tra�c 
ow data (for tra�c
assignment of the morning peak-period) to develop
macro-level accident prediction models.

3. Data description

The studied dataset for this research is based on tra�c
and accident data from 185 roadway segments of the
city of Mashhad, Iran, in the year 2007. This dataset is
obtained from the Mashhad Tra�c and Transportation
Organization of Mashhad Municipality [27]. Three
types of variables are used in this dataset including
accident frequencies, tra�c 
ow and roadway charac-
teristics. EMME/2 software is used to extract morning
peak hour tra�c information for the above dataset. In
order to validate the EMME/2 estimates, they were
compared with actual tra�c data at some random
segments.

A total of 740 accidents on 185 roadway segments
of Mashhad during the morning peak hour (i.e. 7:00-
8:00 A.M.) in the year 2007, are considered as the de-
pendent variable. Considered tra�c 
ow independent
variables are V=C, average speed of vehicles and VKT.

Whether parking is permitted on the right lane of the
roadway, the presence or lack of median as a divider,
and the width of the roadway are other independent
variables regarding roadway characteristics. Table 1
describes the studied parameters.

The results from Table 1 show that the mean and
variance of sample accident frequencies are 4 and 65.78,
respectively. This indicates that data is over-dispersed,
because the variance is signi�cantly larger than the
mean. Since one of the most important requirements
of Poisson distribution is that the mean of the count
data should be equal to its variance, PR cannot �t the
dataset properly [28]. These cases are usually modeled
by NBR [13].

4. Methodology

NBR, ZINBR, SVM and BPNN are described in this
part brie
y.

4.1. Negative binomial regression model
If the variance of the countable dependent variable is
signi�cantly greater than its mean, the data is consid-
ered as over-dispersed. The NBR model is generally
applied to �t this type of data [13,28]. The di�erence
between variance and mean is presented by [13]:

V [y] = �+ ��2; (1)

where V [y] and � are the estimated variance and
mean of crash frequency, and � is the over-dispersion
parameter [28].

Eq. (2) shows the general form of the NBR model
to predict accident frequency:
�i = exp(�Xi + "i); (2)

where exp ("i) is a gamma-distributed error with a
mean and variance of 1 and �2 respectively. The
general form of Negative Binomial distribution is [28]:

P (yi) =
�[(1=�) + yi]

�(1=�)�i

�
1=�

(1=�) + �i

�1=�

�
�i

(1=�) + �i

�yi
; (3)
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where �(:) is a gamma function. The coe�cients can
be estimated using the maximum likelihood approach.

4.2. Zero in
ated negative binomial regression
model

The reason for using zero in
ated count models for
accident frequency data is that they can �t excess zeros
of the accident data [29]. For sample i, there are two
process with a probability of 'i and 1 -'i, respectively.
The �rst process generates only zero counts, and the
second one generates count values using a NBR model.

yi �
(

0 with probability 'i
g(yijXi) with probability 1� 'i (4)

The probability of fYi = yijXig is:

P (Yi = yijXi; Zi) =(
'(
0Zi) + (1� '(
0Zi)) g(0jXi) if yi = 0
(1� '(
0Zi)) g(yijXi) if yi > 0

(5)

The probability 'i depends on the characteristics
of sample i. So 'i is written as a function of Z 0i
;
where Z 0i is the vector of zero in
ated covariates and 

is the vector of zero in
ated coe�cients to be estimated.
The function, F , that produces Z 0i
 as a scalar value
is called the zero in
ated link function. The logistic
function is considered a zero in
ated link function in
this research.

4.3. Support vector machine
This section is brie
y extracted from Basak et al. [30],
and there is more detail in their report for interested
readers. SVM, as a supervised learning method,
is useful for recognizing patterns in data. It can
produce a set of hyperplanes in a high or in�nite
dimensional space to develop classi�cation or regression
models [30]. In this study, "-SVM is utilized for
regression purpose. The training data is considered
as f(x1; y1); :::; (xl; yl)g � X �R, when X denotes the
space of input patterns, for instance, Rd. The �nal goal
of "-SVM regression, is to �nd a function, f(x), that
has most " deviation from the actual training data, yi,
which should be as 
at as possible. The linear function,
f , would be described as follows [30]:

f(x) = h!; xi+ b with ! 2 X; b 2 R; (6)

where h:; :i denotes the dot product in X Here, 
atness
means small !. Therefore, it is required to minimize
the Euclidean norm, as follows [30]:

Minimize
1
2
jj!jj2 + C�li=1(�i + ��i )

Subject to

8><>:yi � h!; xii � b � "+ �i
h!; xii+ b� yi � "+ ��i
�i; ��i � 0

(7)

where �i and ��i are slack variables, and constant C > 0
is a regularization parameter. To extend the SVM to
nonlinear functions, the dual formulation is used, as
follows [30]:

Maximize f�1
2

�i;j=1(�i � ��i )(�j � ��j )hxi; xji

� "�li=1(�i + ��i ) + �li=1yi(�i � ��i )g
Subject to �li=1(�i � ��i ) = 0 and �i; ��i 2 [0; C]

(8)

where �i and ��i are Lagrange multipliers. Finally, the
regression function has the following form [30]:

f(X) = �li=1(�i � ��i )hxi; xi+ b; (9)

and b can be computed as follows [30]:

b = yi � h!; xii � " for �i 2 (0; C);

b = yi � h!; xii � " for ��i 2 (0; C): (10)

The SVM algorithm can be changed to nonlinear form
by preprocessing the training values, xi, by a map, � :
X ! J, into some feature space, J and �nally applying
the standard SVM algorithm. The expansion of Eq. (9)
becomes [30]:

! = �li=1(�i � ��i )�(xi):

Therefore [30]:

f(x) = �li=1(�i � ��i )k(xi; x) + b: (11)

! is no longer explicitly given in the non-linear
form. The optimization problem in non-linear form
tries to �nd the 
attest function in feature space,
not in input space [30], where k(xi; x) is de�ned as
kernel function. There are several types of kernel
function, including Linear, Polynomial, Radial Basis
and Sigmoid Kernel functions. Generally, prediction
performance is performed by the Gaussian Radial Basis
Function (GRBF), which is de�ned as follows [31]:

K(xi; x) = exp(�
jjxi � xjj2); (12)

where 
 is a kernel parameter. \Optimization problem
is a convex quadratic programming problem, which
means that once the kernel function and the input
parameters, C; " are determined, there will be a unique
solution for ! and b [31]." In this research, an "-
SVM model with the GRBF kernel is utilized, thus,
parameters C; " and 
 need to be determined.
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4.4. Back-propagation neural network
This part is brie
y extracted from HayKin [32] and
Kim et al. [33], and there is more detail in their
reports for interested readers. The BPNN structure
contains an input layer, a hidden layer, an output layer
and connections between them. The BPNN modeling
process includes forward and backward phases in its
learning algorithm, based on an iterative generalized
delta rule with a gradient descent of error. The �nal
objective of this process is to minimize the total error
by modi�cation of connection weights.

Wji and Wkj are the initial values for connection
weights, and �j and �k are initial biases which must
be assumed. At �rst, in the input layer, the input
values, netpi, are activated on the neurons. Then,
training and testing values are prepared. Calculation
of the \input values of a hidden layer, j; netpj , using
the output values of an input layer, i; Opi, connection
weight, Wji, and baises, �j , between an input layer,
i, and a hidden layer, j, is the next step. Finally, the
output values of a hidden layer, j;Opj , are derived from
netpj [33]:

netpj = �iWjiOpi + �j ; (13)

Opj = fj(netpj); (14)

where f(:) is an activation function. In this study, the
hyperbolic tangent function is used as the activation
function, which has a greater range than other common
functions.

\Input values of an output layer, k; netpk, are
computed using the output values of a hidden layer,
j; Opi, connection weight, Wkj , and biases, �k, between
a hidden layer, j, and an output layer, k. Then, the
output values of an output layer, k;Opk, are derived
from netpk [33]":

netpk = �jWkjOpj + �k; (15)

Opk = fk(netpk): (16)

To modify the connection weights and biases based
on the generalized delta rule, the error at the output
neurons is propagated backward to the hidden layer,
and then to the input neurons. These steps are from
the hidden layer to the output layer's neurons [33]:

�Wkj = ��kOpj and �Bk = ��k; (17)

where �k = (Tk � Opk)f 0(netpj) and � = the learning
rate; and from input layer to hidden layer's neurons:

�Wji = ��jnetpi and �Bj = �@j ; (18)

where:

�j = Wkj�kf 0(netpj):

The error, E between the calculated value, Opk and the
desired value Tk is de�ned as [33]:

E =
1
2

�k=1(Opk � Tk)2: (19)

This procedure should be repeated until error E goes
below a target value.

5. Modeling results

The dataset is randomly divided into two categories.
Seventy percent of the roadway segments' observations
(i.e. 130 roadway segments) are utilized to calibrate
the models and evaluate the models' �tting ability (i.e.
�rst part or training set of samples). The remaining
thirty percent of roadway segments' observations (i.e.
55 roadway segments) are employed to compare the
prediction capability of the models and compute error
values (i.e. second part or testing set of samples).
This section is comprised of three parts: Development
of NBR, ZINBR, SVM and BPNN models using the
training set of samples (Model Development), evalua-
tion of the models' �tting ability based on the training
set of samples (Fitting), and evaluation of the models'
prediction ability based on the testing set of samples
(Prediction).

5.1. Model development
In this section, the models are generated using the �rst
part of the observations.

5.1.1. NBR
The NBR model is developed by NLOGIT 4 soft-
ware [34]. The coe�cients and statistical character-
istics of the model are presented in Table 2. V=C,
parking, width and ln(VKT) are signi�cant variables.
Speed and median are insigni�cant variables which
are omitted from the �nal NBR model. The model
reveals a proper quality in statistical tests (Signi�cance
Level=0.00 and Pseudo R-squared=0.37). Also, the
negligible P-value of the dispersion parameter (alpha)
in the NBR model proves that the model has a
reasonable statistical performance in comparison with
other types of count regression model, such as PR.

5.1.2. ZINBR
Since accident frequency for 50 percent of the �rst
part of our observations (i.e. training set of samples)
is zero, ZINBR may be an appropriate model to
use. The ZINBR model is developed by NLOGIT
4 software [34] for the �rst part of the observations,
presented in Table 3. According to the methodology
section, the ZINBR model has two separate parts. The
right side of the table represents a binary logit (i.e.
logistic function) to model the probability of accident
occurrence on roadway segments, and the left side of
the table represents a simple NBR. A logistic function
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Table 2. Negative binomial regression model.

Variables Coe�cient t-statistic P-value Marginal
e�ect

Constant -10.3262 -16.91 0.0000 ����
V=C -1.29288 -4.82 0.0000 -4.96

Parking 0.69727 3.93 0.0001 2.67
Width -0.06091 -3.22 0.0013 -0.23

ln(VKT) 0.93240 18.69 0.0000 3.58
Alpha* 0.83918 5.39 0.0000 ����

Goodness of �t

Number of observations 130
Log likelihood -274.69
Restricted log likelihood -440.88
Chi squared 332.38
Signi�cance level 0.0000
Pseudo R-squared 0.3769

* Dispersion parameter for the NBR model

Table 3. Zero in
ated negative binomial regression model.

Zero in
ation model Negative binomial regression

Variables Coe�. t-
statistic

P-
value

Marginal
e�ect

Variables Coe�. t-
statistic

P-
value

Marginal
e�ect

Constant 0.14452 0.31 0.758 - Constant -5.95834 -8.591 0.000 -
V=C -2.30448 -1.981 0.047 -1.43 V=C -1.04252 -3.316 0.001 -1.43

- - - - - ln(VKT) 0.59052 11.220 0.000 1.92
- - - - - Alpha* 1.26817 4.342 0.000 -

Goodness of �t
Number of observations 130
Number of zero observations 65
Log likelihood -262.96
Restricted log likelihood -478.07
Signi�cance level 0.0000
Pseudo R-squared 0.4491
Vuong test of ZINBR versus NBR 1.22 (Pr>z=0.1107)
*: Dispersion parameter for the NBR model.

is applied as the splitting distribution function for the
�rst part of the ZINBR model. In the generated ZINBR
model, V=C and ln(VKT) are the most signi�cant
variables. However, the calibrated ZINBR model is
statistically signi�cant (Signi�cance Level = 0.00 and
Pseudo R-squared = 0.44), but it does not show better
statistical performance than the generated NBR model.
The value of the Vuong test is 1.22 (less than 1.96),
which demonstrates the lower �tting ability of the
ZINBR in comparison with the NBR model.

Since the ZINBR model contains two separate
parts, the selection of signi�cant variables is very
critical. Indeed, if one part of the ZINBR model cannot
be calibrated well (e.g. due to the lack of signi�cant

variables), error values for the �nal prediction of the
ZINBR model will increase. In this research, the
developed ZINBR model does not show high �tting and
prediction ability for this reason.

5.1.3. SVM
The winSVM software is applied to generate the SVM
models [35]. As mentioned before, C; " and 
 parame-
ters should be determined to develop the "-SVM model
with the radial basis kernel function. Several models
based on di�erent values of C; " and 
 are adapted
to determine the best model, which can strongly �t
the �rst part of the observations (i.e. training set of
samples). A number of these models are presented in
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Table 4. Some "-SVM models based on di�erent values of C; " and 
.

C " 
 MSE C " 
 MSE

100000 0.00001 5 30.83 10000 1 2 31.87

0.01 1 10 30.89 1000 0.1 1 35.35

0.1 0.01 10 30.89 10 0.1 0.5 38.04

0.01 0.001 10 30.89 0.01 0.1 0.2 42.94

100 0.01 10 30.89 1000 0.1 0.05 55.56

1000000 1 100 30.98 1000000 0.01 0.01 61.74

100 0.0001 100 30.98 1000 0.00001 0.001 72.24

Table 4 based on di�erent values of C; ", 
 and Mean
Squared Error (MSE).

In the SVM model development process, it was
observed that the MSE value is strongly dependent
on the value of the 
 parameter. In other words, the
model's sensitivity to variations of 
 is greater com-
pared to variations in C and " values. Consequently,
assuming C = 1 and " = 1, the SVM models with
di�erent values of 
 were developed. The MSE values
of these models in �tting the �rst part of the samples
are displayed in Figure 1.

According to this �gure, the SVM model with

 = 5 has the best �tting ability for the training set
of observations. To clarify the issue further, this study
tries to answer the following question: Does the SVM
model with the best �tting ability to the �rst part of
the samples have the best prediction for the second part
of the samples as well or not? To address this question,
the MSE values are computed in order to predict the
second part of the samples. Moreover, these values
are illustrated in Figure 1. The lowest prediction error
occurs in 
 = 0:2. Therefore, the MSE value for the
SVM model with C = 1, " = 1 and 
 = 5 in �tting the
training observations is 30.83; furthermore, the MSE is
65.41 in predicting the testing observations (i.e. total
MSE is 41.11). On the other hand, the MSE of the
SVM model with C = 1, " = 1 and 
 = 0:2 �tting to
the training observations is 50.33, and, further, is 42.94

Figure 1. MSEs for di�erent values of 
 in the SVM
model.

in predicting the second part of the observations (i.e.
total MSE is 45.12). Therefore, it can be concluded
that the SVM model with the best �tting ability for a
part of the samples may not have the best prediction
for other samples, and vice versa.

5.1.4. BPNN
The applied software for this part of the research is
entitled Neurosolutions 5 [36]. The models in this
section are trained for the �rst part of the samples and
tested for the second part. The hyperbolic tangent is
assumed to be the activation function for all neurons.
The numbers of epochs, the learning rate and the
momentum for the training process are set to 1000,
1 and 0.7, respectively. Considering that the number
of hidden layers and neurons in each hidden layer can
be a wide range of values, a number of di�erent models
with one hidden layer are trained in this section. The
number of neurons in the hidden layer of these models
is varied between 1 and 20. The objective of training
di�erent models is to identify which model has the best
�tting and prediction abilities. Figure 2 clari�es the
MSE of the BPNN models in �tting the �rst part of
the observations and predicting the second part of the
samples.

The �gure explains that MSE values do not have
an explicit correlation with the number of neurons.
In addition, it is clear that the model with the best
�tting for training observations may not predict testing

Figure 2. MSEs for di�erent number of neurons in the
BPNN model.
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observations strongly, the same as the SVM model.
The BPNN model with 17 neurons in the hidden layer
has the best �tting to the training set of samples (MSE
= 21.61. The MSE of this model is 39.98 in predicting
the testing set of samples, and its total MSE is 27.07.
The BPNN model with 18 neurons in the hidden layer
has MSE = 25.00 in �tting and MSE = 31.43 in
predicting (i.e. totally 26.91). Therefore, the BPNN
model that has the best �tting does not have the best
prediction among the trained models.

5.2. Fitting ability
In this section, the �tting ability of the generated
models is evaluated comparing their error values. Ta-
ble 5 shows the following types of errors for the NBR,
ZINBR, SVM and BPNN models.

Mean Squared Error (MSE)

=
PN

(j=1)(yj � ŷj)2

N

Normalized Mean Squared Error (NMSE)

=
MSE

Var(yj)

Mean Absolute Error (MAE)

=
PN

(j=1) jyj � ŷj j
N

Minimum Absolute Error (Min AE)

= min fjyj � ŷj j; j = 1; � � � ; Ng

Maximum Absolute Error (Max AE)

= max fjyj � ŷj j; j = 1; � � � ; Ng
Root Mean Squared Error (RMSE)

=

vuut 1
N

NX
(j=1)

(yj � ŷj)2

These values are computed based on the training set of
samples (i.e. �rst part of observations), which is only
for model development and evaluation of the models'
�tting strength.

Results prove that the BPNN models have higher
�tting capability for the training set of samples. The
SVM (
 = 5) and NBR also have acceptable perfor-
mance. As mentioned before, the ZINBR does not show
an appropriate performance in �tting the �rst part of
the observations, because it is not more statistically
signi�cant than the NBR.

5.3. Prediction ability
The ability of the generated models in predicting the
second part of the observations (i.e. thirty percent
of samples, testing set of samples) is compared based
on error values. In addition to the NBR and ZINBR
models, the SVM and BPNN models which had the
best �tting and the best prediction are presented
(NBR, ZINBR, SVM (
 = 5), SVM (
 = 0:2), BPNN
(17 neurons) and BPNN (18 neurons)). Table 6 shows
di�erent error values of the aforementioned calibrated
models in predicting the second part of the samples.

The BPNN model with 18 neurons in the hid-
den layer has the lowest prediction error values in

Table 5. Model's �tting error values.

Errors NBR ZINBR SVM
(
=5)

SVM
(
=0.2)

BPNN
(17 neuron)

BPNN
(18 neuron)

MSE 35.6019 46.3177 30.8353 42.9443 21.6111 25.0048
NMSE 0.5447 0.7087 0.4717 0.6568 0.3306 0.3826
MAE 3.4354 3.7954 1.4038 2.6136 2.9824 3.1749

Min AE 0.0137 0.0395 0.0000 0.0000 0.0011 0.0075
Max AE 33.7124 37.4552 34.5940 39.5422 20.1335 20.5133
RMSE 5.9667 6.8057 5.5523 6.5519 4.6487 5.0004

Table 6. Model's prediction error values.

Errors NBR ZINBR SVM
(
=5)

SVM
(
=0.2)

BPNN
(17 neuron)

BPNN
(18 neuron)

MSE 34.5960 54.4839 65.4110 50.3326 39.9888 31.4340
NMSE 0.5087 0.8012 0.9618 0.7401 0.5880 0.4622
MAE 3.8084 3.9275 4.1439 3.8218 4.4427 4.1528

Min AE 0.0845 0.1197 0.0015 0.0151 0.2779 0.1226
Max AE 24.4812 35.2419 39.3179 34.2979 18.7077 14.7672
RMSE 5.8818 7.3813 8.0877 7.0945 6.3236 5.6066
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comparison with other generated models (Table 6).
However, the problem is that it does not have a very
high �tting ability for the �rst part of the samples
(Table 5). In real-life accident modeling studies, there
is no information about the model's predictions, where
the value of the dependent variable for the second part
of the observations will not be available. We just know
the values of the dependent variable for the �rst part
of the observations. Therefore, the goal will be to
predict the number of accidents for the second part
of the observations using the calibrated model, based
on the �rst part of the observations. So, the model
with the highest �tting ability should be selected, not
the model with the highest prediction ability. In this
case, if we want to select the best BPNN model among
all generated BPNN models, the BPNN model with
17 neurons which has the highest �tting ability, will
de�nitely be selected. Therefore, the �nal prediction
of the best BPNN model (i.e. BPNN with 17 neurons)
will not be as accurate as the NBR model.

Furthermore, Table 6 clari�es that both SVM
models do not have high prediction ability in compari-
son with the NBR and BPNNs. In addition, it is clear
that the ZINBR is not more accurate than the NBR in
prediction, too.

6. Analysis of parameters

In this section, the signi�cance of the studied variables,
as well as their e�ect on the number of accidents, is
analyzed. Furthermore, considering the interpretation
of the role of factors on accident frequency, the models
are compared.

6.1. NBR and ZINBR
NBR and ZINBR models' variables analysis is de-
scribed considering the coe�cient values, signs of
estimated coe�cients, signi�cance level of parameters
and marginal e�ect values. The marginal e�ect values
are reported in Tables 2 and 3. For this purpose, partial
derivatives of the expected values, with respect to the
vector of characteristics, are computed, when e�ects
are averaged over all observations. The impact of each
variable on the accident frequency variable is brie
y
described as follows:

- V=C: This variable is signi�cant in the NBR and
both parts of the ZINBR models. By increasing
this variable, the number of tra�c accidents will
decrease, because the V=C has negative coe�cients
in the models. This means that when tra�c
congestion increases, the number of accidents will
decrease. Since the V=C has a negative coe�cient
in the �rst part of the ZINBR model, it is concluded
that by increasing this parameter, the probability of
observing no accidents on the roadway will increase.
The marginal e�ect of this variable shows that the

V=C is one of the most e�ective factors to predict
accident frequency in both NBR and ZINBR models.

- Speed: This variable is not signi�cant in the gen-
erated count regression models, NBR and ZINBR.
Since speed may have a dual e�ect, more studies are
required to analyze the e�ect of speed on accident
prediction using count regressions. In the next
section, the e�ect of speed on accident frequency
will be evaluated considering the generated machine
learning models, SVM and BPNN.

- Parking: Parked vehicles on the right lane of the
roadway cause a reduction of useful roadway width
and an increase in tra�c interactions when the vehi-
cles enter or exit from the parking space. Therefore,
an increase in the number of accidents will result,
according to the coe�cient of this variable, in the
NBR model. This variable is not signi�cant in the
calibrated ZINBR model.

- Width: Since it has a negative coe�cient in the
generated NBR model, the number of accidents
will decrease by increasing the useful width of the
roadway. This variable is insigni�cant in the ZINBR
model.

- Median: This variable is not signi�cant in the
generated count regression models. In the next
section, the e�ect of the median will be explained
based on the generated SVM and BPNN models.

- ln(VKT): This variable possesses signi�cant and pos-
itive coe�cients in both NBR and ZINBR models.
An increase in VKT (higher vehicle volume on the
roadway) will increase the frequency of accidents.
The marginal e�ect values show that VKT can be
one of the most e�ective factors in the prediction of
tra�c accidents.

6.2. SVM and BPNN
Since the BPNN and SVM models work as a black-
box, it can be said that they are not able to gen-
erate interpretable parameters for each explanatory
variable in an interpretable functional form. They
have no speci�c function form. To minimize this
problem, in some research, the sensitivity analysis of
parameters is suggested [22]. The sensitivity analysis
for all parameters consisted of recording the changes
in accident frequencies generated from the SVM and
BPNN models for di�erent values of V=C, speed,
parking, width, median and ln(VKT) variables, within
reasonable intervals, while keeping all other variables
constant. The sensitivity analysis is performed for
one segment, segment number 66, which is randomly
selected. Table 7 illustrates the segment characteris-
tics.

Figures 3 and 4 show the sensitivity analysis of
the SVM and BPNN models, respectively. As is evident
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Figure 3. Sensitivity analysis of the SVM model.

Figure 4. Sensitivity analysis of the BPNN model.

Table 7. Characteristics of analyzed roadway segment.

Observation # 66 V=C 0.08

Num. of accidents 1 Speed 24.36

Pred. of SVM (
=5) 1.0036 Parking 1

Pred. of SVM (
=0.2) 2.5333 Width 12.41

Pred. of BPNN (17 Neuron) 3.2377 Median 0

Pred. of BPNN (18 Neuron) 3.3673 ln(VKT) 11.8240

from the curves, the SVM and BPNN estimations are
highly similar for V=C, parking, width, median and
ln(VKT) variables. These results are consistent with
the NBR and ZINBR results as well. According to the
slopes in the �gures, V=C, ln(VKT) and width are the
most signi�cant variables. Speed and median are not
as signi�cant as other variables.

SVM assessment for a speed variable is di�erent
from other models. According to the sensitivity analy-
sis of the speed variable in the SVM model, an increase
in the average speed of tra�c 
ow will increase accident
frequency at lower speeds and, then, will decrease the

number of accidents at higher speeds. More studies
are required to evaluate the role of speed on accident
frequency.

7. Conclusion

The objective of this study is to model the relationship
between accident frequency and tra�c 
ow variables,
such as V=C, average speed of tra�c 
ow and VKT.
Furthermore, whether parking is permitted on the
right lane of the roadway, the presence or lack of a
roadway median, and the width of the roadway are
other studied independent variables. The dataset is
based on 185 roadway segments of the city of Mashhad,
Iran, in the year 2007, and accidents which occurred
during morning peak hour are modeled (i.e. totally
740 crashes). Two types of model are evaluated:
count regressions models, including NBR and ZINBR
models, and machine learning models, including SVM
and BPNN models. The �tting and predicting abilities
of these models are evaluated through computing error
values.
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The results of modeling steps are summarized as
follows:

- The ZINBR model has two separate parts: a binary
logit (i.e. logistic function) to model the probability
of accident occurrence on the links, and a simple
NBR to estimate the frequencies. If one of these
parts does not show reliable and signi�cant explana-
tory power, error values will increase in the �nal
prediction. In this research, the calibrated ZINBR
model did not show high �tting and prediction
ability due to the lack of signi�cant variables in
both of its parts. Furthermore, it did not show
better statistical performance than the NBR model,
because the value of the Vuong test was not in an
acceptable range.

- In developing the SVM models, it was observed that
the MSE value is strongly dependent on the value
of the 
 parameter. Among all generated SVM
models, the SVM with 
 = 5 had the best �tting
for the training set of observations (i.e. �rst part
of the samples), and the lowest error for prediction
of the testing set of observations (i.e. second part
of the samples) occurred in the SVM model with

 = 0:2. It can be concluded that the SVM model
with the best �tting to a part of the samples, may
not have the best prediction of the other part of
the samples, and vice versa. SVM models generally
showed acceptable �tting ability and low prediction
capability. Furthermore, it is time consuming to
generate di�erent types of SVM to achieve the best
performance. Also, it is di�cult to identify the role
of independent variables in the SVM because of its
black-box form, and di�culties in computing the
sensitivity analysis.

- Among di�erent generated BPNNs, the model with
17 neurons showed the best �tting to the training
set of samples, and the BPNN model with 18
neurons showed the highest prediction performance.
Again, it can be concluded that the BPNN model
with the best �tting to a part of the samples may
not have the best prediction of the other part of
the samples, and vice versa. The BPNN models
generally showed the highest �tting ability among
all types of studied models. The main problem with
the BPNN models was related to their prediction
ability. Since, in real-life modeling, we do not have
any knowledge about the models' predictions (i.e.
because there is no information about the dependent
variable), we will have to select the model with
the highest �tting ability (BPNN with 17 neurons,
in this research). Therefore, the accuracy of the
BPNN's �nal prediction will be unknown (in this
research, the prediction accuracy of the BPNN with
17 neurons was less than the prediction accuracy of
the NBR model). Furthermore, it is time consuming

to generate di�erent types of BPNN to achieve the
best performance. Also, it is di�cult to identify the
role of independent variables in the BPNN because
of its black-box form and di�culties in computing
the sensitivity analysis.

- The calibrated NBR model showed a proper quality
in statistical tests and interpretation of variables.
It had more explanatory power than the ZINBR.
The generated NBR model, in this research, had a
reasonable �tting ability (a little less than BPNNs)
and the highest prediction ability (even higher than
BPNNs). Furthermore, it is easy to develop, and it
is possible to use marginal e�ect values for variable
sensitivity analyses.

According to our �ndings, the NBR model is
suggested to model accident frequency because of its
reasonable �tting and high prediction ability. Also, it
is easy to develop and interpret the role of di�erent
signi�cant variables. Furthermore, it is concluded
that V=C and VKT are the most e�ective factors in
predicting the number of accidents; the presence of
parked vehicles on the right side of the roadway and
roadway width are other signi�cant variables.

Since the models in this research are developed
based on a one year dataset of one city in Iran, it is
suggested to develop models for di�erent places using
longer periods of time to evaluate the temporal and
spatial reliability of the models. It is also suggested to
model accident frequency in di�erent ranges of average
speed to evaluate the role of this variable on the number
of accidents.

Abbreviations

NBR Negative Binomial Regression
ZINBR Zero In
ated Negative Binomial Regression
SVM Support Vector Machine
BPNN Back-Propagation Neural Network
AADT Annual Average Daily Tra�c
HV Hourly Volume
V=C Volume to Capacity Ratio
VKT Vehicle-Kilometers Travelled
ADT Average Daily Tra�c
ANN Arti�cial Neural Network
MSE Mean Squared Error
NMSE Normalized Mean Squared Error
MAE Mean Absolute Error
Min AE Minimum Absolute Error
Max AE Maximum Absolute Error
RMSE Root Mean Squared Error
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