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Abstract. The objective of this paper is to study the improvement in the seismic behavior
of concrete gravity dams by optimization of concrete mechanical properties. The criteria to
measure the improvement have been: 1) reduction in the extent of cracks and 2) increase
in the amount of time dams are able to tolerate earthquakes before failure. The mechanical
properties considered have included the density and modulus of elasticity of concrete.
The Pine Flat Dam has been selected for this numerical study. During a high intensity
earthquake, dams enter a nonlinear phase, where the cracks open and close repeatedly.
A smeared crack model has been used for simulation of nonlinearity. For the purpose
of optimization, the dam has been divided into horizontal layers, where the concrete is
assumed to have the same properties at every point within each layer. The results of this
study have shown that by using lower density concrete in upper layers and in the region
of the crest of the Pine Flat Dam, it is possible to both reduce the extent of the induced
cracks and increase the time to failure of the dam. The same methodology can be applied
to other concrete gravity dams.

c
 2014 Sharif University of Technology. All rights reserved.

1. Introdouction

Concrete gravity dams experience cracks even at low
service conditions, due to the low tensile strength of
concrete. Small surface cracks do not pose a threat to
the dam, but when the cracks propagate into the depth
of the dam and connect to form a network, the cracks
become detrimental and can cause problems. Also,
during a severe earthquake, a concrete gravity dam
might experience structural cracks, which repeatedly
open and close. This opening and closing of cracks
makes the response of the dam nonlinear.

Modeling nonlinear behavior of concrete gravity
dams has been investigated by many authors in the
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past, including [1-25]. Because of their importance,
including their social, economical, political and envi-
ronmental e�ects, the failure of concrete gravity dams
has been investigated from every angle, including their
dynamic response to earthquakes [3,18,26-30].

The Koyna Dam, in India, su�ered from a 6.5
Richter magnitude earthquake on December 11th,1967,
which caused severe cracks in the dam, especially at
its crest. Since then, the dam has become a subject
of study by researchers in civil engineering, including
dam engineering [1,18,26,31,32].

The Se�d-rud Dam in Iran was severely damaged
during the 7.3 Richter Manjil earthquake on June 20th,
1990, which caused many cracks to appear in the body
and crest of the dam. The most severe crack occurred
right below the dam crest, propagated, and detached
the crest from the rest of the dam body [17-28].
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The above cases show the importance of designing
a better concrete for the dams, to possibly reduce the
level of damage.

Also, the Pine Flat Dam in the US has been a
focus for researchers in dam engineering, though the
dam has not experienced a noticeable crack during its
lifetime. Many papers and reports have been published
on its earthquake behavior and even tests on small scale
models of the dam have been conducted [3,8,17,27,33-
35]. Since there is a large amount of data available on
this dam, it has been chosen as the sample case in this
paper too.

Obviously, by enhancement of the properties of
concrete, especially its tensile and 
exural strength,
it is possible to build concrete gravity dams with
more desirable seismic response. Even with ordinary
concrete, with which most dams have already been
built (and are still being built), it might be possible to
optimize its properties to improve the seismic behavior
of concrete gravity dams.

In this paper, we wished to study the optimization
of concrete properties for dam safety in more detail.
Concrete strength directly depends on its density. On
the other hand, although by increasing the density,
it is expected to obtain a better performance from
concrete, the mass of the dam increases, which is not
desirable from the viewpoint of its seismic behavior.
This numerical study and optimization of the dam
is expected to provide more insight into the use of
concrete in building concrete gravity dams with more
desirable seismic performance.

In this paper, the authors have studied the Pine
Flat Dam as an example and have provided details
about the optimization algorithm and results.

In the following sections, �rst, the smeared crack
model has been explained. Next, brief explanations
about the Pine Flat Dam have been given, includ-
ing its geometry, properties of the concrete used in
construction, and the �nite element mesh used in
nonlinear dynamic analysis. The algorithm proposed
for the optimization has been explained, followed by
presentation of the results obtained from application
of the algorithm to the Pine Flat Dam, and, �nally,
the conclusions.

2. Smeared crack model for nonlinear behavior
of concrete gravity dams

Smeared crack is one of the concrete models widely
used in the numerical simulation of concrete gravity
dams. This model has also been used in this study
to model the Pine Flat Dam. In this model, the
main criterion for identi�cation of the �rst crack is
the damage energy denoted by Gf [12-15]. The �rst
step in the application of nonlinear damage mechanism
models in the dynamic analysis of dams is to de�ne

the loading-unloading backbone curve. The model
should be capable of modeling hysteretic behavior,
which takes place during the dynamic response of the
dam subjected to earthquakes.

Figure 1 shows, schematically, how this model can
be used in the nonlinear analysis of concrete gravity
dams [14,36]. Figure 1(a) shows the Pine Flat Dam and
the 2-dimensional �nite element mesh designed for its
nonlinear analysis under earthquake loading. Smeared
cracks have occurred at the heel and neck of the crest
of the dam. Figure 1(b) shows the backbone curve for
loading, followed by unloading. More details of loading,
unloading and reloading cycles, and how the material
eventually experiences fracture, have been provided in
Figure 1(b). The hysteretic behavior of the material
resulting from changing the load during an earthquake
follows the stress-strain curve in this �gure. Figure 1(c)
shows the deformed shape of the dam at the instance of
its failure. This �gure is, in fact, similar to Figure 1(a),
both of which show the dam at the instance of failure;
however, Figure 1(c) shows the magni�ed deformed
shape [14,15,36]. In Figure 1(d), Gf has been used
to denote the area under the loading-unloading curve.

Figure 1(e) represents a 2-dimensional 4-node
element in the �nite element mesh for the Pine Flat
Dam [14,15].

Bazant and Gambarova [5] developed a nonlin-
ear stress-strain model to explain the process of the
opening and closing of cracks during the nonlinear
response of the dams. Their model is schematically
explained in Figure 2(a). Also, de Borst and Nauta [6]
proposed a simple model, which is schematically shown
in Figure 2(b). In a model proposed by Gambarova and
Valente [9], tensile stresses are released and the stress-
strain curve enters the compression phase (Figure 2(c)).
Based on these studies, Dahlblom and Ottosen [10]
proposed the following equation to explain the model,
where Figure 2(b) and (c) visualizes the equation:

" = [�+ (1� �)
�

�max
]"max 0 < � < 1 (1)

where �= ratio of residual stress within the closed
crack to the maximum strain which has taken place
in the open crack, as in Figure 2(d). � = 0 and 1
correspond to the models represented in Figure 2(b)
and (c), respectively [37].

In this paper the stress-strain relationship shown
in Figure 2(b), which corresponds to �=0, has been
used to model the hysteretic behavior of the damaged
concrete in nonlinear dynamic analysis of the dams
[6,12-15,37].

3. Pine Flat Dam

The dam was built in 1954 over the Kings River, 30
miles from Fresno in the USA, and its construction
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Figure 1. Smeared crack model: (a) Smeared crack in pine 
at concrete gravity dam after it has been subjected to an
earthquake (drawn based on Bhattacharjee and L�eger 1994); (b) hysteretic loading and unloading and resulting
stress-strain curve (drawn based on L�eger 2007); (c) deformed shape of dam at instance of its failure; (d) concept of
fracture energy which is the area under load-unloading curve (drawn based on L�eger 2007); and (e) 4-node isoparametric
element in smeared crack model (drawn based on L�eger 2007).

Figure 2. Stress-strain relationship proposed for the
concrete to use in nonlinear dynamic analysis of concrete
gravity dams (drawn based on Bhattacharjee 1993): (a)
Bazant and Gambarova model; (b) de Borst and Nauta
model; (c) Gambarova and Valente model; and (d) the �.

took 5 years. Figure 3 schematically shows the charac-
teristics of the dam. The dam is made of 37 monoliths
of 15.2 m width, and the length of its crest is 560 m.
In this study, the tallest monolith has been simulated,
which has a height of 122 m. According to a study

Figure 3. Characteristics of Pine Flat according to
Donlon and Hall (1991), Ghaemian and Ghobarah (1999).

of geological properties at the site of the dam, some
slippage has occurred in the metamorphic rock. Table 1
contains basic information about the geometry of the
dam [17,27,38].

Also, Table 2 contains information about proper-
ties of the concrete used in the numerical analysis of the
dam, including its density, elastic modulus, Poisson's
ratio, tensile strength and fracture energy. A tensile
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Table 1. Geometry of Pine Flat Dam according to
Donlon and Hall [27], and Ghaemian and Ghobarah [17].

Length of crest (m) 560
Number of monoliths 37
Tallest monolith (m) 122
Crest width (m) 9.8
Bottom width (m) 96.8
The upstream slope 1:0.05
The downstream slope 1:0.78

Table 2. Properties of concrete according to Donlon and
Hall [27].

Density of concrete (�) 23520 N/m3

Modulus of elasticity (E) 27580 MPa
Poisson's ratio (v) 0.2
Tensile failure stress (ft) 2.7 MPa
Compressive ultimate stress (f 0c) 27 MPa
Fracture energy (Gf ) 150 N/m

strength equal to 10% compressive strength has been
assumed [27].

4. Loading

The loadings considered in this study, for which the
dam has been analyzed, have included: the weight
of the dam, hydrostatic pressure, earthquake and
hydrodynamic loading.

In order to consider hydrostatic pressure, the
height of water in the reservoir of the dam has been
assumed to be 116.8 m. For earthquake loading, the
horizontal component of El Centro (May 18, 1940),
Park Field (Jun 28, 1966), San Fernando (February
9, 1971), Northridge (January 15, 1998), and White
Noise have been used. Table 3 contains the basic
information about the earthquakes. Figure 4(a)-(e)
show the time history of ground acceleration for the
horizontal components of the above earthquakes, where
ground acceleration has been plotted versus time.
Also, Figure 5(a)-(e) shows the frequency content of
each earthquake, where ground acceleration has been
plotted versus frequency.

Table 3. Characteristics of earthquakes used in this
study.

Name of
earthquake

Year Magnitude PGA (g)

El Centro 1940 7.1 0.34
Park Field 1966 6.2 0.50
San Fernando 1971 6.6 0.67
Northridge 1998 6.9 0.41
White Noise � � 0.42

Figure 4. Time history of earthquakes: (a) El Centro;
(b) Park Field; (c) San Fernando; (d) Northridge; and (e)
White Noise.

As seen in Figure 5, the selected earthquakes had
di�erent frequency content, so that the dam could be
designed to withstand earthquakes of di�erent charac-
teristics. However, such designing of the dam seems
too demanding and unnecessary. It seems su�cient to
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Figure 5. Fourier spectrum of earthquakes: (a) El Centro; (b) Park Field; (c) San Fernando; (d) Northridge; and (e)
White Noise.

only consider design earthquakes for the region where
the dam is located.

5. Finite element model of the dam

For nonlinear dynamic analysis of the dam, a mesh with
1984 isoparametric 4-node elements has been used.
Figure 6 shows the mesh. The meshing has been done,
so that smaller elements can be placed at the dam
crest and in its vicinity for more precision, since stress
concentration and signi�cant cracks are expected to
occur at this point of the dam monolith. Similarly, a
�ner mesh has been used at the heel of the dam where
cracks are induced [14-17-37]. A solid foundation has
been assumed for analysis of the dam.

6. Layers of concrete

It is expected that higher stresses will be induced at
the location of changes in the slope and curvature of

Figure 6. Finite-element mesh used for nonlinear
dynamic analysis of Pine Flat Dam.
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the dam's upstream and downstream faces. Such high
stresses might result in structural cracks.

There is a change in the slope of the dam at
the 102.1 m level upstream and two changes in the
curvature at 113.8 m and 98.05 m levels downstream.
Also, detrimental cracks are expected to occur at the
neck of the crest, which is located at about 95 m to
115 m level. Hence, it has been decided to optimize
concrete properties in regions where cracks might
occur. To this end, the region between the 80 m level
and the top of the dam at 122 m, with a total height
of 122 m - 80 m=42 m, has been considered as the
region to be optimized. 8 layers of concrete have been
considered. The top layer, between levels 122 m to
115 m, is 7 m high, followed by 7 layers, each 5 m high.
The remaining bottom part of the dam is thick enough
and detrimental cracks are not expected to develop
there. The cracks which appear at the heel of the dam
are not serious enough to cause failure. However, one
may decide to introduce more layers for optimization
and/or to change the number or height of the layers.

Figure 7 shows the tallest monolith of the dam,
which has been selected for optimization. The 8 layers
of the dam are also shown in Figure 7.

7. Optimization algorithm

The complete algorithm for optimization of the con-
crete of the layers is explained in this section. Before
explaining the algorithm steps for optimization, it is
helpful to explain some de�nitions, terms and parame-
ters that have been repeatedly used in the algorithm.

Optimization earthquake: The �rst step is selection
of the earthquake to use in the optimization of the dam.

Figure 7. The tallest monolith with 8 layers of concrete
de�ned for optimization.

This earthquake has been called the \optimization
earthquake" and has been denoted by Eopt.

Test earthquakes: After its optimization, both the
original and optimized dams are subjected to other
earthquakes, to study if the optimization has helped
improve the performance of the dam generally. The
earthquakes used for the evaluation have been called
\test earthquakes", denoted by Etest. In this paper,
the Pine Flat Dam has been the dam under study
and the El Centro (1940) earthquake has arbitrarily
been selected as the optimization earthquake, though
other earthquakes could have been selected. The test
earthquakes have included: White Noise, Park Field
and San Fernando earthquakes.

Layer properties: After preparing the dam �nite
element mesh for analysis and de�ning the n layers
for the dam, the density (�) and elastic modulus (E)
in each layer have been used as the variables, so that
they could be modi�ed during the optimization. The
layers have been identi�ed by L1 to Ln, with L1 as
the top layer, where their corresponding density and
modulus of elasticity have been denoted by �i and Ei,
respectively, i = 1; 2; : : : ; n.

At the beginning of optimization, �i = �0 and
Ei = E0; i = 1; 2; : : : ; n, where �0 and E0 are the
properties of the original dam. Determination of �i
has been su�cient for the determination of Ei; i =
1; 2; : : : ; n according to the following equation [39]:

Ei = 0:043�1:5
i
p
f 0c; i = 1; 2; : : : ; n; (2)

where E, � and f 0c are modulus of elasticity (MPa),
density of concrete (kg/m3) and 28-day cylindrical
compressive strength (MPa), respectively.

Scaled optimization earthquakes: Denoting the
scale factor by �%, the optimization earthquake is
multiplied by di�erent values of 0 < � � 100, resulting
in weaker earthquakes of acceleration E�, which are
called \scaled optimization earthquakes", where:

E� = �%Eopt: (3)

The values of � can be speci�ed in di�erent ways. One
method used in this paper is to select the � values at
equal intervals. To this end, if the desired number of
intervals of change in the � values is denoted by na,
then, starting from � = 0, the na + 1 values of � are
simply calculated from:

� = 100(i� 1)=na; i = 1; 2; : : : ; na + 1; (4)

which can be expressed simply as:

� = 0; 100=na; 200=na; : : : ; 100: (5)

Failure time: Is de�ned as the time at which the dam
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Figure 8. Failure time curve and meaning of �c (%), tc
(sec) and A� (%sec) for Pine Flat Dam subjected to
scaled El Centro earthquake.

fails under a scaled earthquake, E�, and is denoted
by ta.

Failure time curve for an earthquake: Is the plot
of ta against � for the given earthquake. Figure 8 shows
the failure time curve for the example problem, which
will be discussed later in the paper.

Cutting time of failure: The designer speci�es a
cutting time of failure to stop the analysis for cases
when the scaled earthquake is not strong enough to
cause failure in the dam. This time depends on factors
such as the duration and frequency content of the
optimization earthquake, as well as the experience
and judgment of the designer. Denoted by tc, the
cutting time should be long enough to assume the dam
has remained safe during the earthquake. Nonlinear
analysis of a dam is time consuming, and de�ning
appropriate tc is necessary. The maximum value of
�, for which the dam fails at tc, has been called the
\cutting scale factor" and has been shown by �c.

ta�� Area: Area under ta�� curve, denoted by Aa.

A complete analysis: The dam is analyzed for all
the scaled optimization earthquakes.

ta corresponding to each scaled earthquake is
determined. ta is plotted against �. By increasing �,
ta reduces.

The elements which have experienced cracking are
identi�ed and their total number is determined. The
�nite element mesh, containing the crack pro�le at ta
= time of failure, is recorded and plotted for further
study. If the time to failure has been longer than the
cutting failure time, tc, the latter should be used.

Figure 8 shows the above de�nition for the exam-
ple, which will be discussed later in the paper.

Minimum and maximum � values: Since the
properties of concrete change depending on its density,
it is necessary to de�ne the type of concrete and the

lower and upper bounds of density in each of the layers.
The lower and upper bounds are denoted by �l and �u,
respectively.

An optimization cycle: A complete updating of
density in all the n layers of the dam.

Increment of change in �: Di�erent classical and
modern optimization methods for updating the design
parameters could be used [40]. A simple practical
method, which is expected to provide a suitable answer,
is proposed here. Once the direction of change in
a design parameter is determined, i.e. increasing or
decreasing, a constant increment of change is added to
or subtracted from the current value of the parameter,
respectively. Since the design parameters are the
densities of the layers of the dam, the increment of
change is denoted by ��, which has been speci�ed by
the designer. Obviously, a smaller �� value means
more precision, but higher computation cost. In
this application, as the optimization has proceeded,
a smaller �� has been introduced to achieve more
precision at the �nal cycles of the updating of variables.

The value of �� in the 7 cycles of optimization
has been:

�� = 100; 100; 50; 50; 50; 20; 10 kg/m3: (6)

Direction of change in �: For each of the design
variables, which have been the layer densities in this
paper, a direction of change has been de�ned as Si =
1; i = 1; 2; : : : ; n: The density, �i, has been updated as
follows:

�i = �i + Si��; i = 1; 2; : : : ; n: (7)

The criterion for feasibility of change: A change
is considered as feasible if the variable remains feasible
after the change. In this paper, the criterion to evaluate
a change as feasible is:

Feasibility criterion 1: After the change the variable
remains within its feasibility upper and lower bounds.

The criteria of usability of change: A change in
a design variable is considered as usable if it results
in improvement of the conditions. In this paper, the
criteria to evaluate a change as usable are:

Usability criterion 1: �c has increased;
Usability criterion 2: Aa = area under the ta � �
curve, has increased.

Termination criteria: The algorithm is brought to
an end if at least one of the following criteria has been
satis�ed:

Termination criterion 1: Number of optimization
cycles > max-cycles;
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Termination criterion 2: Increase in �c after an
optimization cycle < min���c;
Termination criterion 3: Increase in Aa = area under
ta�� curve, after an optimization cycle< min��Aa;
Termination criteria 4: Change in �i after an opti-
mization cycle < min���; i = 1; 2; :::; n that is the
change in the density of all the layers has been less
than a minimum,

where max-cycles = maximum number of cycles al-
lowed, min��ac, min��Aa and min��� represent
the minimum acceptable improvement after one com-
plete optimization cycle in the values of �c; Aa and ��,
respectively.

7.1. Optimization steps
Based on the above de�nitions, the steps of optimiza-
tion are now explained as follows:

Step 0. Select Eopt = optimization earthquake;
Etest = test earthquakes; n = number of layers; na=
number of intervals of �; ta = cutting failure time;
�� = increment of change in density; min ��c=
minimum improvement in �c; min��Aa= minimum
improvement in Aa; and �l and �u= lower and upper
bounds on concrete density.

The �nite element mesh for nonlinear dynamic
analysis of the dam is de�ned. The levels of the n layers
are determined. At the beginning of optimization, �i =
�0 and Ei = E0; i = 1; 2; :::; n.

The directions of change are set to Si = �1; i =
1; 2; :::; n. Hence, the default direction is the reduction
in the densities.

Set k = layer number to be optimized = 0.

Step 1. If k = n, and if the termination criteria are
satis�ed, then stop the optimization, the answer has
been obtained.

k = k + 1: If k > n then k = 1:

Perform a complete analysis.

Step 2. Set � = �k and �k = �k + Sk��.
If �k is not feasible, then �k = � and Sk = �Sk. Go to
Step 4.
Perform a complete analysis.

Step 3. Compare the results from Steps 1 and 2.
Check the criteria of usability
If the usability criteria are satis�ed, then go to Step 2.
If the usability criteria are not satis�ed, set �k = � and
Sk = �Sk.

Step 4. � = �k and �k = �k + Sk��.
If �k is not feasible, then �k = �. Go to Step 1.
Perform a complete analysis.

Step 5. Compare the results from Steps 1 and 4.
Check the criteria of usability.
If the criteria are satis�ed, then go to Step 4.
If the criteria are not satis�ed, then go to Step 1.

8. Dam optimization example: Pine Flat Dam

Pine Flat concrete gravity dam has been optimized
using the algorithm presented in the above sections.
Explanation about the geometry and material proper-
ties of the dam have been provided in the previous sec-
tions too. The parameters which should be de�ned and
speci�ed to be used with the optimization algorithm
have been as follow: optimization earthquake = Eopt =
El Centro; test earthquakes = Etest= Park Field, San
Fernando, Northridge and White Noise; number of
layers = n = 8; number of intervals of � = na = 10=;
cutting failure time = ta = 10 sec; increment of change
in density = �� = 100; 100; 50; 50; 50; 20; 10 kg/m3;
minimum improvement in �c = min���c = 2%;
minimum improvement in Aa = min��Aa = 5%, sec;
lower and upper bounds on concrete density = �l =
1400 kg/m3 and �u = 2400 kg/m3.

8.1. Analysis of dam before optimization
Figure 8 shows the ta � � curve at the beginning of
optimization where the dam has been subjected to the
scaled El Centro (1940) earthquakes. The maximum
scale factor at which the dam has remained safe after
10 seconds of vibration, has been �c = 45%. The area
under this curve has been A� = 651:38% sec.

Figure 9 shows the crack pro�les for the original
and optimized dams corresponding to di�erent values
of � = 50%; 60%; 70%; 80%; 90%; 100%, where the
�gures in each row correspond to the same value. Also
in each row, the left �gure denoted by (a) shows the
crack pro�le at tc = the time of failure of the original
dam before it has been optimized. To visualize how
the optimization has improved the crack distribution,
Figure 9(b) shows the crack pro�le for the optimized
dam but at time of failure of the original dam, and
Figure 9(c) shows the cracks at time of failure of the
optimized dam. By comparing Figure 9(a) and (b) for
each � value, it is obvious that the crack extent has
been limited after optimization.

Figure 10 shows the peak absolute value of the
dam crest displacement before the dam has failed, as
a function of � both for the original and optimized
dams. The values corresponding to the data points
in Figure 10 have also been tabulated in Table 4 for
better presentation of results. Clearly, there have
been a direct relationship between � and peak crest
displacement both before and after optimization.

However, the peak displacement has considerably
increased after the dam has been optimized. This
indicates the dam has become more ductile and 
exible
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Figure 9. Crack pro�les for di�erent � values: (a) Before optimization and at time of failure; (b) after optimization and
at time of failure of original dam; and (c) after optimization and at time of failure of optimized dam.

Table 4. Peak absolute value of dam crest displacement in original and optimized dam for di�erent a values.

Dam �
60% 70 % 80% 90% 100%

Original dam 3.3 cm 3.5 cm 4.1 cm 4.4 cm 4.42 cm
Optimized dam 9.46 cm 10.4 cm 12 cm 12.1 cm 12.9 cm

Figure 10. Peak absolute value of dam crest
displacement versus � before and after optimization.

after optimization; and though larger displacements
have occurred, the time to failure has increased as well.

Figure 11 shows the number of elements which
have experienced damage during the earthquake, as
functions of the di�erent values of �. The number of
cracked elements has reduced considerably as a result
of optimization for all values of �.

Figure 12 shows the distribution and variation of

Figure 11. Number of elements which have experienced
damage during scaled El Centro earthquake versus scale
factor, �, before and after optimization.

the weight of a 1 m wide section of the dam per unit
of its height, which has been calculated as the concrete
density before optimization � the thickness of the dam
at any given level, when the density of concrete has
been constant anywhere in the dam. Obviously the
shape of this curve is similar to the cross section of the
dam.



76 A. Joghataie and M.S. Dizaji/Scientia Iranica, Transactions A: Civil Engineering 21 (2014) 67{81

Figure 12. Distribution and variation of weight of the
dam per unit of its height (kg/m3) before optimization.

Figure 13. Monotonic increase in �c (%) and A�
(%sec) during cycles of optimization which show the
optimization has helped enhancement of dam capability to
withstand earthquakes: (a) �c; and (b) A�.

8.2. Results of optimization of Pine Flat Dam
After 7 cycles of optimization, the criteria for termina-
tion have been satis�ed. Figure 13(a) shows the change
in �c as a function of the number of optimization cycles.
The change in the value of Aa during the optimization
has been plotted in Figure 13(b). Also, Table 5 shows

Figure 14. Curves for maximum absolute value of dam
crest displacement during optimization cycles for di�erent
� values, when dam has been subjected to El Centro
earthquake.

the exact values of the points shown in Figure 13(a)
and (b).

The monotonic increases in �c and Aa show that
the optimization of the dam is an e�ective way to
increase the dynamic characteristics of the dam to
withstand earthquakes for longer duration.

Figure 14 shows the curves for the peak absolute
value of dam crest displacement during optimization
cycles for di�erent � values, where each curve belongs
to a speci�c �. This �gure also shows that the
displacement for a give � nhas increased as a result
of optimization.

Figure 8 shows the ta�� curve after optimization
has been completed, when the dam has been subjected
to scaled El Centro (1940) earthquakes. In Figure 8,
the maximum time to failure tc= 10 sec corresponds to
�c = 80%, which is about twice that for the original
dam, when �c = 45%. So, optimization has doubled
the intensity of the earthquake which can cause failure.

Figure 15 shows how the number of cracked
elements has reduced during optimization, where each
�gure belongs to a given �. Also, in the same �gure,
the time to failure of the dam during optimization has
been plotted for each � value. Without exception,
for all the � values, the time to failure has increased
and the number of cracked elements has decreased,
monotonically but gradually, during the process of
optimization. In this �gure, the number of cracked
elements has been multiplied by 0.1, so that it could
be shown together with ta on the same �gure. For
example, for � =70%, after optimization cycle 2, the
number of cracked elements = 7:9�10 = 79 at the time
of failure = 4.5 sec.

Table 5. Exact values of �c and Ac of points shown in Figure 13.

Parameters Optimization cycle
1 2 3 4 5 6 7

�c% 57 60 65 72 75 78 80
A�%sec 705.8 757.15 776.7 842.9 852.3 904.5 925.5
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Figure 15. Obtained for scaled El Centro earthquakes. Monotonic gradual decrease in number of cracked elements and
increase in duration of vibration of dam before failure, during cycles of optimization where each �gure belongs to a speci�c
� value.

Figure 16. Pro�le of weight per unit height of a 1 m wide
section of dam before and after each cycle of optimization.

The pro�le of weight per unit height of the dam
after its optimization has been plotted in Figure 16.
This �gure shows how the inertia of the dam has been
modi�ed to become optimized gradually.

Figure 17 shows how, after each cycle of opti-
mization, the cutting scale factor has increased. To
draw this �gure, after each cycle of optimization has
completed, the dam has been analyzed subject to scaled

Figure 17. For El Centro earthquake. Curves drawn
after each cycle of optimization has completed where each
curve is for a speci�c optimization cycle, showing the time
to failure as a function of �.

El Centro earthquakes. Since the �nal optimization
result has been obtained after 7 cycles, there are 7
curves in this �gure, corresponding to these 7 cycles.
After each cycle of optimization, the curve has slightly
shifted to the right and �c has increased too. At the
beginning of optimization, the cutting scale factor was
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Figure 18. Number of cracked elements during analysis of dam before and after optimization for di�erent � values.

�c = 45%, while, at the end of the 7th cycle, the cutting
scale factor increased to about �c = 80%. For example,
at � =70%, ta has increased monotonically after each
additional optimization cycle, where ta = 2:531 sec
before optimization and ta= 3, 4.5, 5.2 sec after the
�rst, second and third optimization cycles, respectively,
while, after the fourth cycle, ta =10 sec.

Figure 18(a)-(e) also shows how the time to failure
has increased and the number of cracked elements
has decreased after optimization has been completed,
where each �gure belongs to a speci�c � value. For
example, in Figure 18(a), which belongs to � = 60%,
the original dam before optimization has been analyzed
for 60% El Centro earthquake, where the time to
failure has been 5.105 sec. The number of elements
damaged during the analysis has been recorded and
plotted versus time. Then, the optimized dam was also
analyzed for 60% El Centro earthquake, where the dam
has not failed. Also, the time history of the number
of cracked elements has been recorded and plotted in
the same �gure. These �gures also show that not only
has the time to failure increased, but the number of
damaged elements has reduced considerably.

Table 6 shows how the concrete density has
changed in each layer after each optimization cycle.

Table 6. Concrete density (kg/m3) in each layer at the
end of each cycle of optimization.

Layer Optimization cycle
1 2 3 4 5 6 7

1 1400 1400 1400 1400 1400 1400 1400
2 1500 1400 1400 1400 1400 1400 1400
3 1700 1600 1550 1500 1400 1400 1400
4 1700 1600 1550 1500 1450 1410 1410
5 1800 1700 1600 1600 1500 1420 1410
6 1800 1700 1650 1600 1500 1440 1420
7 1900 1800 1700 1600 1550 1470 1420
8 1900 1800 1700 1600 1550 1470 1420

The �rst column shows the layer number, from 1 at
the top of the dam to 8. Each row is for a speci�c
layer, and each column is for a speci�c optimization
cycle.

Table 7 shows the increment of density, ��, con-
sidered for optimization during the optimization cycles.

8.3. Test on other earthquakes
The original and optimized Pine Flat Dams have been
tested on other earthquakes, including arti�cial, far
and near �eld earthquakes. To this end, the following
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Table 7. �� (kg/m3) used for optimization at each
optimization cycle.

Parameter Optimization cycle

1 2 3 4 5 6 7

�� (kg/m3) 100 100 50 50 50 20 10

earthquakes have been utilized and the performance
of the dams, both before and after optimization, has
been evaluated. The earthquakes include: Park �eld,
San Fernando, Northridge and White Noise.

Figure 19(a)-(d) shows the ta � � curve for the
original and optimized dams, under di�erent earth-
quakes. The �gures complement the previous discus-
sions in the paper and provide a better understanding
of the improvements obtained in the performance of
the dam, as a result of optimization. In these �gures,
it can be seen that even for test earthquakes, for
which the dam has not been designed, the performance
of the dam has been much better that the original
dam.

Table 8 also shows the value of �c for the original
and optimized dams under test earthquakes. The
cutting scale factor almost doubled after optimization.

9. Conclusion

In this paper, improving the dynamic response of con-
crete gravity dams to earthquakes by optimizing their
material properties, including the density, modulus of
elasticity and strength of concrete, has been studied.
On the one hand, it is desirable to reduce the mass of
a dam in order to reduce the shear force induced in
the dam from ground acceleration. On the other hand,
by reducing concrete density, its modulus of elasticity
and strength also reduce, causing the cracks to widen
and distribute further in the dam, hence, making it
more vulnerable to ground shaking. Creating a balance
between a decrease in dam concrete density and its
associated undesirable e�ects has been the subject
of this paper. To this end, an algorithm has been
developed to optimize the concrete density of concrete
gravity dams. The objectives of the optimization have
been: 1) increasing the time a dam can withstand
earthquakes until it fails and 2) strengthening the dam
to withstand higher intensity earthquakes.

The general algorithm, proposed in this paper
to achieve the above goals, has been applied to the
Pine Flat Dam in the US, which has been studied

Figure 19. ta � � curve for the original and optimized Pine Flat Dam for di�erent earthquakes: (a) Park �eld; (b) San
Fernando; (c) Northridge; and (d) White Noise.

Table 8. �c% for original and optimized Pine Flat Dam umder test earthquakes.

Dam Test earthquakes
Park Field San Fenando Northridge White Noise

Original dam 30% 20% 60% 50%
Optimized dam 60% 40% 100% 100%
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extensively by other researchers in the past, regarding
its dynamic response. First, the Pine Flat Dam was
divided into 8 layers of di�erent concrete density, which
have been optimized to satisfy the optimization criteria
as much as possible. The optimization earthquake is
the El Centro (1940) earthquake, and the dam has
been tested on other earthquakes also, including Park
Field, San Fernando, Northridge and a White Noise
earthquake. The obtained results have shown that for
all the test earthquakes, including the optimization
earthquake, the intensity of the earthquakes causing
failure has doubled and the time to failure has increased
signi�cantly too.

Since concrete gravity dams exhibit a nonlinear
response against earthquakes close to failure, because
of the occurrence of cracks and their repeated opening
and closing, the simulation of the Pine Flat Dam
response has been done using nonlinear �nite element
analysis, where the smeared crack model has been uti-
lized to model the nonlinear behavior of the concrete.
The loads considered in this study have included: the
weight of the dam, water pressure on its upstream face,
hydrodynamic pressure and earthquake loading.
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