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Abstract. An Accelerated Firey Algorithm (AFA) for fast size optimization of truss
structures is proposed in this paper. Metaheuristic �rey algorithm has been recently
developed and its e�ectiveness in solving practical problems such as sizing optimization of
truss structures has not been thoroughly explored. The numerical experiments show that
although the standard Firey Algorithm (FA) is a powerful approach for truss optimization,
it su�ers from slow rate of convergence, and hence it should be modi�ed to solve real-life
problems. The proposed AFA imposes some improvements on the searching procedure
by both reduction of randomness and scaling the random term in �reies' motion. The
e�ectiveness and robustness of the algorithm are investigated by solving some benchmark
problems. The results revealed that the proposed AFA remarkably enhances the rate of
convergence and stability of standard �rey algorithm.
c 2013 Sharif University of Technology. All rights reserved.

1. Introduction

Trusses are among the most widely-used structures
in civil engineering projects. The overall cost of a
truss can be reduced by optimizing size, topology and
con�guration of the truss. Hence, optimization of truss
structures has usually been an interesting subject for
many researchers. For many years, the most popular
and sophisticated optimization method, in engineering
applications in general, and in truss optimization in
particular, has been Genetic Algorithm (GA) [1-7]. Re-
cently, other nature-inspired metaheuristic algorithms
such as Ant Colony Optimization (ACO) [8-10] and
Particle Swarm Optimization (PSO) [11-15] are gradu-
ally taking the place of traditional GA because of their
robustness and simplicity at the same time. Other well-
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known population-based optimization methods include
Harmony Search (HS) [16-18], Simulated Annealing
(SA) [19-20], and Charged System Search algorithm
(CSS) [21].

All aforementioned evolutionary optimization
methods start the search with initial solution candi-
dates. These candidates are technically called chro-
mosomes (in GA), particles (in PSO) and so on;
depending on the algorithm being used. The collection
of candidates is called population (in GA), swarm (in
PSO) and so on. Then, the algorithm tries to modify
the solution via an iterative procedure to enhance the
�tness of the objective function. Unfortunately, most
iterative optimization algorithms undergo slow rate of
convergence even in simple practical problems with
a few design variables. For real-life problems such
as planar or spatial trusses with many members, the
searching space is very extensive. Therefore, the com-
putational e�ort of �nding the optimal solution is high
and hence, the optimization algorithm may fail to �nd
the solution even after a large number of iterations. For
this reason, many researchers are tried to enhance the
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iterative optimization methods to make them suitable
to solve practical problems [12,13,17,18,22].

Firey Algorithm (FA) is one of the most re-
cently developed nature-inspired metaheuristic algo-
rithms. The algorithm was �rst developed by Yang
(2008) [22] inspired by the light attenuation over the
distance and �reies' mutual attraction. Despite of
having very attractive strategy, very few articles can
be found in the literature concerning the application
of �rey algorithm in structural optimization prob-
lems. Gandomi et al. [23] used �rey algorithm to
solve mixed continuous and discrete structural opti-
mization problems. Gomes employed FA for shape
and size optimization of structures including dynamic
constraints [24]. Kazemzadeh Azad and Kazemzadeh
Azad tried to improve the e�ciency of �rey algorithm
for optimization of trusses [25]. Gandomi et al. [26]
introduced chaos in �rey algorithm to increase its
global search mobility.

Similar to other iterative optimization techniques,
�rey algorithm undergoes slow convergence rate. In
this paper, an Accelerated Firey Algorithm (AFA) is
proposed in order to successfully overcome this intrinsic
drawback of the algorithm and to turn it into a pow-
erful tool for optimization of truss structures involving
constraints. The new algorithm modi�es the movement
of �reies by reduction of randomness as well as a
simple scaling technique which are found to be very
e�ective in reducing the number of iterations required
to �nd the optimal solution. The e�ectiveness and
robustness of the method are investigated by solving
some benchmark problems. In order to separately
investigate the e�ect of each modi�cation on the search
capability of the algorithm, all problems are solved
using standard Firey Algorithm (FA), standard �rey
algorithm with reduction of randomness (FA-R), and
the proposed Accelerated Firey Algorithm (AFA).
Standard tests including statistical studies are carried
out for each problem to thoroughly investigate the
e�ectiveness and stability of the proposed approach.
The rest of the paper is organized as follows.

In Section 2 the problem of size optimization of
truss structures is de�ned. In Section 3 an overview
on standard �rey algorithm is presented. Section
4 describes the modi�cations needed to improve FA
and presents the Accelerated Firey Algorithm (AFA).
Section 5 deals with penalty function formulation
which will be used in all �rey algorithms for constrain
handling. In Section 6 some design examples are
presented and e�ectiveness of the proposed technique
is investigated. Finally, in Section 7 summary and
conclusion are included.

2. Problem formulation

Weight optimization of pin connected structures with

axially loaded members involves optimizing cross sec-
tions Ai of the members such that the weight of the
structure W is minimized and some constraints with
respect to design criteria are satis�ed as follows:

Minimize:

W (A) =
Xng

k=1
Ak
Xmk

i=1
�iLi: (1)

Subject to:

�low � �i � �up; i = 1; 2; � � � ; nm; (2)

�bi � �i � 0; i = 1; 2; � � � ;ncm; (3)

�low � �i � �up; i = 1; 2; � � � ;nn; (4)

Alow � Ai � Aup; i = 1; 2; � � � ;ng; (5)

in which A is the vector containing the design variables
(i.e. cross sections A = fA1; A2; � � � ; Angg), W (A)
is the weight of the truss structure, �i is the density
of member i, Li is the length of member i, nm is
the number of members in the structure, ncm is the
number of compression members, nn is the number
of nodes, ng is the total number of member groups
(i.e. design variables), Ak is the cross-sectional area
of the members belonging to group k, mk is the total
number of members in group k, �i is the stress of the
ith member, �bi is the allowable buckling stress for the
ith member, �i is the displacement of the ith node, and
low and up are the lower and upper bounds for stress,
displacement and cross-sectional area.

3. An overview on �rey algorithm

The Firey Algorithm (FA) is one of the latest meta-
heuristic algorithms. Firey algorithm is a nature-
inspired algorithm, which was �rst developed by
Yang [22] inspired by the light attenuation over the
distance and �reies' mutual attraction. In the algo-
rithm, �reies try to move to a greater light source
than their own. Firey algorithm idealizes some of the
characteristics of the �rey behavior in nature. They
follow three rules:

i) All the �reies are unisex.
ii) Attractiveness is proportional to their ashing

brightness which decreases as the distance from
the other �rey increases due to the fact that the
air absorbs light. The most attractive �rey is the
brightest one which convinces neighbors to move
toward him. In case of no brighter one, it freely
moves in any direction.

iii) Brightness of every �rey determines its quality of
solution; in most of the cases, it is proportional to
the objective function.
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Firey algorithm starts with initializing a swarm
of �reies, each of which is determined by the ashing
light intensity. During the loop of pairwise comparison
of light intensities, the �rey with lower light intensity
moves toward the higher one. The moving distance
depends on the attractiveness. After moving, the
new �rey is evaluated and updated for the light
intensity. During pairwise comparison loop, the best-
so-far solution is iteratively updated. The pairwise
comparison process is repeated until termination cri-
teria are satis�ed. Finally, the best-so-far solution is
visualized.

To de�ne the most important parameters in �rey
algorithm suppose a night with absolute darkness
where the only visible light is the light produced by �re-
ies. The light intensity of each �rey is proportional
to the quality of the solution it is currently located at.
In order to improve his own solution, the �rey needs
to advance towards the �reies that have brighter light
emission than his own.

Although the theoretical background of �rey
algorithm can be found in Yang's article [22], a brief
overview is presented as follows.

In �rey algorithm it is assumed that the attrac-
tiveness � of a �rey is determined by its brightness I
which in turn is associated with the objective func-
tion. The attractiveness � varies with the distance
rij between �rey i and �rey j. Moreover, from a
physical point of view, light intensity decreases with
the distance from its source, and light is also absorbed
in the media. Hence, the light intensity I(r) can be
assumed to vary according to inverse square law [22]:

I(r) =
Is
r2 ; (6)

in which Is is the intensity at the source. For a medium
with a �xed light absorption coe�cient, , the light
intensity I varies with the distance as:

I(r) = I0 exp(�r); (7)

where I0 is the original light intensity. To avoid
singularity at r = 0 in Eq. (6), the combined e�ect
of both the inverse square law and absorption is
approximated by the following Gaussian form:

I(r) = I0 exp(�r2): (8)

Since the attractiveness of a �rey is proportional to
the light intensity observed by neighbor �reies, the
attractiveness, �, of a �rey is de�ned as:

� = �0 exp(�r2); (9)

in which, �0, is the attractiveness in distance r = 0 and
 is light absorption coe�cient in the range [0;1). The
distance r between �rey i and j at xi and xj , is de�ned

as Cartesian distance:

r = rij = kxi � xjk =

vuut dX
k=1

(xi;k � xj;k)2; (10)

where xi;k is the kth component of the spatial coor-
dinate, xi, of the ith �rey and d is the number of
dimensions. Finally, the movement of �rey i which is
attracted by a more attractive or brighter �rey j is
given by the following equation:

xi = xi + �0 exp(�r2)(xj � xi) + �(�� 0:5); (11)

where the second term is due to the attraction. The
third term is randomization with � being the ran-
domization parameter such that � 2 [0; 1], and � is
a vector of random numbers drawn from a Gaussian
distribution or uniform distribution in the range [0; 1].
Furthermore, for most problems, one can take �0 = 1.

In the case of size optimization of trusses, the
cross-sectional areas of bars are considered as design
variables to be optimized with d being the number of
bars in the truss. The formulation of standard �rey
algorithm, i.e. Eq. (11), is denoted by FA throughout
the manuscript.

4. Accelerated Firey Algorithm (AFA)

Similar to most other metaheuristic optimization tech-
niques, the standard �rey algorithm su�ers from slow
rate of convergence. This means that for real-world
problems with many design variables, the structure
should be analyzed several times with no guaranty
to achieve the optimal solution. Our experiments on
standard �rey algorithm revealed that even for simple
truss structures a large number of iterations (about
3000 iterations) are required to obtain a solution. If
the initial population has a number o,f say, 50 �reies,
the overall 150,000 structural analyses are needed.

In this section some modi�cations on standard
�rey algorithm are proposed that can remarkably
improve the performance and the rate of convergence of
the �rey algorithm. These modi�cations include grad-
ual reduction of randomness and scaling the random
term. The aforementioned procedures are presented in
the following subsections.

4.1. Gradual randomness reduction
The �rst modi�cation of �rey algorithm is to adjust
the randomization parameter, �, in Eq. (11), so as
it gradually decreases as the solution is approached.
Consider:

� = �0�t; (12)

in which t 2 [0; tmax] is the simulation time (itera-
tion) and tmax is the maximum number of iterations.
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Moreover, �0 is the initial randomization parameter
and � 2 (0; 1] is the randomization reduction constant.
Applying Eq. (12) in Eq. (11) gives:

xi = xi + �0 exp(�r2)(xj � xi) + �0�t(�� 0:5):
(13)

The formulation of Eq. (13), which imposes reduction
of randomness in the standard �rey algorithm, is
denoted by FA-R in this paper.

The idea of decreasing randomization, as the
iteration proceeds, is actually not new and it has been
already employed [23,26].

4.2. Scaling the random term
The main new idea in improving the rate of convergence
of �rey algorithm is scaling. The random term (third
term in Eq. (13)) can be further modi�ed by de�ning
a scaling parameter � as the di�erence between lower
bound and upper bound of design variables as:

� =(Upper variable boundary

� lower variable boundary): (14)

This is a general formula proposed for � which can be
used in any optimization problem. For the problem at

hand, according to the variables boundary de�ned in
Eq. (5), the above equation can be written as:

� = Aup �Alow: (15)

Then, the random term in Eq. (13) can be further
modi�ed using � as:

xi = xi + �0 exp(�r2)(xj � xi) + ��0�t(�� 0:5):
(16)

Eq. (16) is the basic formula for the proposed Accel-
erated Firey Algorithm (AFA). The pseudo code for
accelerated �rey algorithm is given in Table 1.

5. Constraints handling

Most optimization problems contain speci�ed con-
straints which should be satis�ed. In the case of truss
structures, according to Eqs. (2) through (5), some
constraints have been de�ned. The problem-speci�ed
constraints (Eqs. (2)-(4)) usually dictate constraints
on the magnitude of stress within the bar elements
or nodal displacements. Variable constraints (Eq. (5))
usually indicate that the design variables should be
chosen within a speci�ed range due to availability
of cross-sectional areas of bars. The most popular

Table 1. The pseudo code for Accelerated Firey Algorithm (AFA).

Objective function f(x), x = (x1; x2; � � � ; xd)T d = no. of design variables
Generate initial population of �reies randomly Xi, i = 1; 2; � � � ; n n = no. of �reies
Light intensity Ii at xi is determined by f(xi)
De�ne light absorption coe�cient 
De�ne randomness reduction constant �
De�ne initial randomization parameter �0

De�ne attractiveness at (r = 0), �0

Calculate scaling parameter � = (upper variable boundary� lower variable boundary)
while t maximum number of generation or convergence criteria met
Calculate � = �0�t

for i = 1 to n
for j = 1 to n

if (Ii > Ij)
Calculate the distance rij =

xi � xj
Calculate � = �0 exp(�r2

ij)
Generate random number vector "i
Update design variable xi = xi + �(xj � xi) + ��"i

end if
end for j

end for i
Rank the �reies and �nd the current global best

end while
Postprocess results and visualization
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method for handling constraints in optimization algo-
rithms is penalty function formulation. The method
has been already employed successfully to deal with
constraints [11,23-25]. The main reason of popularity
of the method is its simplicity and its direct appli-
cability regardless of the optimization method being
used. Therefore, the method can also be used in
�rey algorithm. This formulation utilizes general
information of the swarm of �reies, such as the average
of the objective function and the level of violation of
each constraint in each iteration, in order to de�ne
di�erent penalties for di�erent constraints. The basic
equation is [11]:

f 0(x) =

8<:f(x) if x is feasible

f(x) +
mP
i=1

ki�gl(x) otherwise
(17)

in which ki is penalty parameter and is calculated in
each iteration by:

ki =
�� �f(x)

�� �gi(x)Pm
j=1 [�gj(x)]2

; (18)

with f(x) being the objective function and m being
the number of constraints. Moreover, in �rey algo-
rithm gi(x) is speci�c constraint value so that violated
constraints have values greater than zero, �f(x) is the
average of objective function in current �reies and
�gi(x) is the violation of the ith constraint averaged over
the current swarm of �reies.

The illustration of Eq. (17) is that the problem
is actually solved as an unconstrained one, where in
minimization case, the objective function is designed
such that non-feasible solutions are characterized by
high function values.

6. Design examples

To study the e�ectiveness of the proposed accelerated
�rey algorithm in optimal design of truss structures,
three benchmark problems are presented and are fully
discussed in various aspects in terms of computational
e�ort, stability and optimal results. Moreover, from
a technical point of view, in order to study the e�ect
of each modi�cation on the results and to distinguish
the strategies, each problem is optimized using three
di�erent algorithms, i.e. standard �rey algorithm
(FA, Eq. (11)), �rey algorithm with the reduction
of randomness (FA-R, Eq. (13)), and the proposed
accelerated �rey algorithm (AFA, Eq. (16)). Gener-
ally, the parameters of �rey algorithm depend on the
optimization problem and appropriate values should
be found to suit the problem by a trial and error
procedure. For most problems in sizing optimization of
truss structures, we found that the values of � = 0:97,

Figure 1. A 10-bar planar truss structure.

 = 0:05, �0 = 1 and �0 = 1 are suitable to be used in
the algorithm. Furthermore, in all examples, the initial
swarm contains 100 �reies.

A �nite element code was developed to analyze
the planar and spatial trusses. The results are com-
pared with the results obtained by other researchers as
well.

6.1. 10-bar planar truss
The well-known planar 10-bar truss shown in Figure 1
has been analyzed by many researchers to test the
e�ciency and robustness of various optimization al-
gorithms [11,12,16-18,27-31]. The material density of
all members was 0.1 lb/in3 and the Young's modulus
of elasticity was 10,000 ksi. The maximum allowable
stress in all bars was �25 ksi with nodal displacement
limitations of �2:0 inches for both directions. The
minimum cross-sectional area of each bar element was
0.1 in2. The weight optimization of truss have been
studied for two cases: Case 1 with p1 = 100 kips and
p2 = 0; Case 2 with p1 = 150 kips and p2 = 50 kips.

Table 2 reports the results of optimizing the truss
using FA, FA-R and AFA and the results found by other
studies for Case 1. The cross-sectional areas found
by each algorithm are included for comparison. As
reported in Table 2 for Case 1, the weight of optimal
structure is 5060.14 lb, 5060.07 lb, and 5059.22 lb for
FA, FA-R and AFA, respectively. The results show
that the proposed AFA leads to a lighter structure
than FA and FA-R. The structure found by AFA is
the lightest structure among the structures reported in
Table 2 for Case 1. Moreover, the structural analyses
required to obtain the optimal structure is dramatically
reduced from 62675 analyses for FA to 23325 analyses
for FA-R, and only 8000 analyses for AFA. The table
also shows that although the reduction of randomness
in �rey algorithm (FA-R) can improve the rate of
convergence of FA, it is not yet competitive with AFA
from this aspect. The rates of convergence of the three
algorithms are compared in Figure 2. As the �gure
shows, the rate of convergence of FA-R is lower than
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Table 2. Comparison of optimal designs for the 10-bar planar truss structure (Case 1).

Variables

Optimal cross-sectional areas (in2)

Sedaghati
[27]

Farshi
and

Alinia-
ziazi
[28]

Lamberti
and

Pappalettere
[29]

Li et al. [12] Degertekin [17] This study

HS PSO IHS PSO PSOPC HPSO EHS SAHS FA FA-R AFA
1 A1 30.5218 30.5208 30.5222 33.469 30.569 30.704 30.208 30.394 30.968 30.374 30.301
2 A2 0.1000 0.1000 0.1000 0.110 0.100 0.100 0.100 0.100 0.100 0.100 0.100
3 A3 23.1999 23.2040 23.2005 23.177 22.974 23.167 22.698 23.098 23.215 23.766 23.203
4 A4 15.2229 15.2232 15.2232 15.475 15.148 15.183 15.275 15.491 15.043 15.050 15.207
5 A5 0.100 0.1000 0.1000 3.649 0.100 0.100 0.100 0.100 0.100 0.100 0.100
6 A6 0.5514 0.5515 0.5513 0.116 0.547 0.551 0.529 0.529 0.591 0.621 0.5366
7 A7 7.4572 7.4669 7.4572 8.328 7.493 7.460 7.558 7.488 7.453 7.390 7.441
8 A8 21.0364 21.0342 21.0368 23.340 21.159 20.978 21.559 21.189 20.866 20.742 20.984
9 A9 21.5284 21.5294 21.5288 23.014 21.556 21.508 21.491 21.342 21.461 21.652 21.739
10 A10 0.1000 0.1000 0.1000 0.190 0.100 0.100 0.100 0.100 0.100 0.100 0.100
Weight (lb) 5060.85 5061.40 5060.82 5529.50 5061.00 5060.92 5062.39 5061.42 5060.14 5060.07 5059.22
No of analyses N/A N/A N/A 150000 150000 125000 9791 7081 62675 23325 8000

Figure 2. Comparison of the convergence rates of the
three algorithms for the 10-bar planar truss structure
(Case 1) .

AFA and higher than FA. To study the robustness of
the algorithms, the statistical results of 50 independent
runs of these three algorithms for Case 1 are reported in
Table 3. Figure 3 compares the optimal weights found
by each algorithm after these 50 independent runs. As
it is clear from Table 3, AFA gives the best performance
among the aforementioned algorithms. The mean value
of the weight and number of structural analyses are
considerably decreased by employing AFA. The least
values of the standard deviation of weight and the
associated coe�cient of variations after 50 runs indicate
better stability of the proposed algorithm than FA and
FA-R. Figure 3 shows that the proposed AFA is more
stable than FA and FA-R. Table 4 reports the optimal

Table 3. Comparison of statistical results for �fty
independent runs of the three algorithms for the 10-bar
planar truss structure (Case 1).

Mean Standard
deviation

Coe�cient
of

variation
(%)

FA
Weight (lb) 5081.242 9.431 0.185

No of analyses 53196 14088.48 26.48

FA-R
Weight (lb) 5071.448 7.665 0.151

No of analyses 19483.5 4347.201 22.31

AFA
Weight (lb) 5061.791 2.955 0.058

No of analyses 8720 3028.81 34.73

Figure 3. Comparison of the stability of the three
algorithms for the 10-bar planar truss structure (Case 1).
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Table 4. Comparison of optimal designs for the 10-bar planar truss structure (Case 2).

Variables

Optimal cross-sectional areas (in2)
Lee
and

Geem
[16]

Schmit
and

Farshi
[30]

Kaveh
and

Talatahari
[18]

Rizzi
[31]

Li et al. [12] Degertekin [17] This study

HS HPSACO PSO PSOPC HPSO EHS SAHS FA FA-R AFA
1 A1 23.25 24.29 23.194 23.53 22.935 23.743 23.353 23.589 23.525 23.891 23.702 23.707
2 A2 0.102 0.100 0.100 0.100 0.113 0.101 0.100 0.100 0.100 0.100 0.100 0.100
3 A3 25.73 23.35 24.585 25.29 25.355 25.287 25.502 25.422 25.429 25.598 25.371 25.352
4 A4 14.51 13.66 14.221 14.37 14.373 14.413 14.250 14.488 14.488 14.234 14.285 14.270
5 A5 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
6 A6 1.977 1.969 1.969 1.97 1.990 1.969 1.972 1.975 1.992 1.988 1.997 1.969
7 A7 12.21 12.67 12.489 12.39 12.346 12.362 12.363 12.362 12.352 12.375 12.446 12.352
8 A8 12.61 12.54 12.925 12.83 12.923 12.694 12.894 12.682 12.698 12.773 12.843 12.691
9 A9 20.36 21.97 20.952 20.33 20.678 20.323 20.356 20.322 20.341 20.043 20.143 20.408
10 A10 0.100 0.100 0.101 0.100 0.100 0.103 0.101 0.100 0.100 0.100 0.100 0.100
Weight (lb) 4668.81 4691.84 4675.78 4676.92 4679.47 4677.70 4677.29 4679.02 4678.84 4678.64 4678.09 4677.01
No of analyses 15000 N/A 9925 N/A 150000 150000 125000 11402 7267 64800 30625 7760

Table 5. Comparison of statistical results for �fty
independent runs of the three algorithms for the 10-bar
planar truss structure (Case 2).

Mean Standard
deviation

Coe�cient of
variation

(%)

FA Weight (lb) 4738.081 83.312 1.758
No of analyses 54893.00 15437.20 28.12

FA-R Weight (lb) 4711.657 37.602 0.798
No of analyses 18754.50 5286.56 28.19

AFA Weight (lb) 4685.650 4.575766 0.097
No of analyses 7668.8 2280.29 29.73

cross-sectional areas obtained by this study and other
studies for Case 2. The weights of structures are
4678.64, 4678.09, and 4677.01 for FA, FA-R and AFA,
respectively. The results are very satisfactory and close
to those found by using other techniques. The rates of
convergence of FA, FA-R and AFA for 10-bar planar
truss are compared in Figure 4 for Case 2. As Figure 4
shows, AFA has improved the rate of convergence
of both FA and FA-R. Statistical results reported in
Table 5 for the three algorithms after 50 independent
runs also indicate better performance of AFA than FA
and FA-R for this case as well. Figure 5 compares
the weight of the structure obtained using each of the
algorithms for 50 independent runs to investigate the
stability of each algorithm. As the �gure indicates, the
stability of AFA is more than both FA-R and FA by
producing very close results after each run.

Figure 4. Comparison of the convergence rates of the
three algorithms for the 10-bar planar truss structure
(Case 2).

Figure 5. Comparison of the stability of the three
algorithms for the 10-bar planar truss structure (Case 2).
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6.2. 25-bar space truss structure
Figure 6 shows the 25-bar spatial truss in which
modulus of elasticity of the material was 10,000 ksi and
its density was 0.1 lb/in3. Table 6 reports the two load
cases examined for this example. The structure should
satisfy the problem-speci�ed constraints for both cases.
The design variables of the structure are categorized
in 8 groups, and the allowable stress values for all
groups are listed in Table 7. All nodes in all directions
are subjected to the displacement limits of �0:35 in.
Moreover, the minimum cross-sectional area for each
group of elements was 0.01 in2.

Table 8 reports optimization results obtained
for 25-bar truss by this study and by other re-

Figure 6. A 25-bar spatial truss structure .

Table 6. Load cases for the 25-bar spatial truss structure.

Node Case 1 (Kips) Case 2 (Kips)
Px Py Pz Px Py Pz

1 0.0 20.0 -5.0 1.0 10.0 -5.0
2 0.0 -20.0 -5.0 0.0 10.0 -5.0
3 0.0 0.0 0.0 0.5 0.0 0.0
6 0.0 0.0 0.0 0.5 0.0 0.0

Table 7. Member stress limits for the 25-bar spatial truss
structure.

Variables
Compressive stress

limitations
(Ksi)

Tensile stress
limitations

(Ksi)
1 A1 35.092 40.0
2 A2 � A5 11.590 40.0
3 A6 � A9 17.307 40.0
4 A10 � A11 35.092 40.0
5 A12 � A13 35.092 40.0
6 A14 � A17 6.759 40.0
7 A18 � A21 6.959 40.0
8 A22 � A25 11.802 40.0

searches [12,16-18,29,32]. As reported in Table 8, the
optimal weight of 545.25 lb, 546.61 lb, and 544.75
lb were found by FA, FA-R, and AFA, respectively.
The table shows that all three algorithms lead to very
satisfactory results, close to results of other algorithms.
However, the computational e�ort of AFA is very
low compared to most other methods. Moreover,
the optimal weight found by AFA is less than the
weight of most other structures reported in Table 8.
Figure 7 compares the rate of convergence of FA,
FA-R and AFA, revealing remarkable improvement
of FA in reducing the number of structural analyses
required for convergence by using AFA. The results of
optimal weights found by the three algorithms after 50
independent runs for 25-bar spatial truss structure is
shown in Figure 8 and the associated statistical results
are presented in Table 9. As Figure 8 and Table 9
show, AFA is very stable and robust compared to FA
and FA-R.

6.3. 72-bar spatial truss
The problem of weight optimization of 72-bar spatial
truss structure shown in Figure 9 is presented in this

Figure 7. Comparison of the convergence rates of the
three algorithms for the 25-bar spatial truss structure.

Figure 8. Comparison of the stability of the three
algorithms for the 25-bar spatial truss structure.
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Table 8. Comparison of optimal designs for the 25-bar spatial truss structure.

Variables

Optimal cross-sectional areas (in2)

Lee and
Geem
[16]

Lamberti
[29]

Kaveh
and

Talatahari
[18]

Camp
[32]

Li et al. [12] Degertekin
[17]

This study

HS CMLPSA HPSACO BB-BC PSO PSOPC HPSO EHS SAHS FA FA-R AFA
1 A1 0.047 0.0100 0.010 0.010 9.863 0.010 0.010 0.010 0.010 0.0100 0.0100 0.0100
2 A2�A5 2.022 1.9870 2.054 2.092 1.798 1.979 1.970 1.995 2.074 1.9722 1.7785 1.9995
3 A6�A9 2.950 2.9935 3.008 2.964 3.654 3.011 3.016 2.980 2.961 3.0074 3.1628 2.9598
4 A10�A11 0.010 0.0100 0.010 0.010 0.100 0.100 0.010 0.010 0.010 0.0100 0.0100 0.0100
5 A12�A13 0.014 0.0100 0.010 0.010 0.100 0.100 0.010 0.010 0.010 0.0100 0.0100 0.0100
6 A14�A17 0.688 0.6840 0.679 0.689 0.596 0.657 0.694 0.696 0.691 0.6852 0.7079 0.6904
7 A18�A21 1.657 1.6769 1.611 1.601 1.659 1.678 1.681 1.679 1.617 1.6836 1.7934 1.6824
8 A22�A25 2.663 2.6621 2.678 2.686 2.612 2.693 2.643 2.652 2.674 2.6564 2.5671 2.6531
Weight (lb) 544.38 545.15 544.99 545.38 629.08 545.27 545.19 545.49 545.12 545.25 546.61 544.75
No of analyses 15000 N/A 9875 20566 150000 150000 125000 10391 9051 38775 16225 6750

Table 9. Comparison of statistical results for �fty
independent runs of the three algorithms for the 25-bar
spatial truss structure.

Mean Standard
deviation

Coe�cient
of variation

(%)

FA Weight (lb) 575.806 27.813 4.830
No of analyses 30904 8936.75 28.92

FA-R Weight (lb) 574.430 23.213 4.041
No of analyses 13974 1663.69 11.90

AFA Weight (lb) 549.024 4.279 0.779
No of analyses 6593 1653.97 25.08

Figure 9. A 72-bar spatial truss structure.

section. This truss has been already investigated by
many researchers [11,12,16-18,29,32,33]. The modulus
of elasticity of the material was 10,000 ksi and material
density was 0.1 lb/in3. The cross-sectional areas of
members as design variables are separated into 16
groups:

(1) A1-A4, (2) A5-A12,
(3) A13-A16, (4) A17-A18,
(5) A19-A22, (6) A23-A30,
(7) A31-A34, (8) A35-A36,
(9) A37-A40, (10) A41-A48,
(11) A49-A52, (12) A53-A54,
(13) A55-A58, (14) A59-A66,
(15) A67-A70, (16) A71-A72.

The maximum allowable stress in all members
was equal in tension and compression and it was �25
ksi. Maximum allowable displacement of uppermost
nodes was �0:25 inches in both x and y directions.
Table 10 gives the two load cases for this example.
This problem was analyzed for two cases: Case 1 in
which minimum cross-sectional area of each members
was 0.1 in2, and Case 2 in which this value was 0.01
in2.

Table 11 compares the optimal cross-sectional

Table 10. Load cases for the 72-bar spatial truss
structure

Node
Case 1 (Kips) Case 2 (Kips)

Px Py Pz Px Py Pz
17 5.0 5.0 -5.0 0.0 0.0 -5.0

18 0.0 0.0 0.0 0.0 0.0 -5.0

19 0.0 0.0 0.0 0.0 0.0 -5.0

20 0.0 0.0 0.0 0.0 0.0 -5.0
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Table 11. Comparison of optimal designs for the 72-bar spatial truss structure (Case 1).

Variables

Optimal cross-sectional areas (in2)

Lee and
Geem
[16]

Perez
and

Behdinan
[11]

Kaveh
and

Talatahari
[18]

Camp
[32]

Li et al.
[12]

Degertekin
[17]

This study

HS PSO HBB-BC BB-BC PSO EHS SAHS FA FA-R AFA

1 A1�A4 1.7901 1.7427 1.9042 1.8577 41.794 1.967 1.860 1.8898 2.0554 1.9046
2 A5�A12 0.521 0.5185 0.5162 0.5059 0.195 0.510 0.521 0.5062 0.4894 0.5236
3 A13�A16 0.100 0.1000 0.1000 0.1000 10.797 0.100 0.100 0.1023 0.1042 0.1000
4 A17�A18 0.100 0.1000 0.1000 0.1000 6.861 0.100 0.100 0.1000 0.1003 0.1000
5 A19�A22 1.229 1.3079 1.2582 1.2476 0.438 1.293 1.271 1.2781 1.1904 1.2462
6 A23�A30 0.522 0.5193 0.5035 0.5269 0.286 0.511 0.509 0.5258 0.4865 0.5067
7 A31�A34 0.100 0.1000 0.1000 0.1000 18.309 0.100 0.100 0.1000 0.1000 0.1000
8 A35�A36 0.100 0.1000 0.1000 0.1012 1.220 0.100 0.100 0.1000 0.1000 0.1000
9 A37�A40 0.517 0.5142 0.5178 0.5209 5.933 0.499 0.485 0.5506 0.5217 0.4726
10 A41�A48 0.504 0.5464 0.5214 0.5172 19.545 0.501 0.501 0.5135 0.5276 0.5224
11 A49�A52 0.100 0.1000 0.1000 0.1004 0.159 0.100 0.100 0.1000 0.1000 0.1011
12 A53�A54 0.101 0.1095 0.1007 0.1005 0.151 0.100 0.100 0.1145 0.1322 0.1002
13 A55�A58 0.156 0.1615 0.1566 0.1565 10.127 0.160 0.168 0.1573 0.1548 0.1569
14 A59�A66 0.547 0.5092 0.5421 0.5507 7.320 0.522 0.584 0.5238 0.5534 0.5546
15 A67�A70 0.442 0.4967 0.4132 0.3922 3.812 0.478 0.433 0.4576 0.4352 0.3995
16 A71�A72 0.590 0.5619 0.5756 0.5922 18.196 0.591 0.520 0.5337 0.5743 0.5546
Weight (lb) 379.27 381.91 379.66 379.85 6818.67 381.03 380.62 380.50 381.30 379.54
No of analyses 20000 N/A 13200 19621 150000 15044 13742 72925 36500 12780

areas and overall weight of structures found by FA,
FA-R and AFA and those obtained by other studies.
As Table 11 shows for Case 1, the weights of 380.50 lb,
381.30 lb, and 379.54 lb were obtained using FA, FA-R,
and AFA, respectively. AFA �nds the optimal struc-
ture, which is lighter than most of structures reported
in Table 11, after 12780 structural analyses. Figure 10

Figure 10. Comparison of the convergence rates of the
three algorithms for the 72-bar spatial truss structure
(Case 1).

compares convergence rates of the algorithms. The
�gure shows that AFA outperforms the other two
algorithms in fast optimization of structure. Tables 12
reports statistical results obtained after 50 independent
runs of these three algorithms, and Figure 11 compares
the stability of these algorithms for Case 1. As the
results show, AFA is a very stable algorithm compared
to FA and FA-R. The optimal results of 72-bar spatial
truss structure for Case 2, by using various algorithms,
are given in Table 13. As it is clear from the table,

Table 12. Comparison of statistical results for �fty
independent runs of the three algorithms for the 72-bar
spatial truss structure (Case 1).

Mean Standard
deviation

Coe�cient
of variation

(%)

FA
Weight (lb) 405.505 29.195 7.200

No of analyses 71377 24783.75 34.72232

FA-R
Weight (lb) 392.412 13.162 3.354

No of analyses 33318.4 7564.00 22.70

AFA
Weight (lb) 381.489 1.115 0.292

No of analyses 13132.80 2999.74 22.84
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Table 13. Comparison of optimal designs for the 72-bar spatial truss structure (Case 2).

Variables

Optimal cross-sectional areas (in2)
Lee and
Geem
[16]

Lamberti
[29]

Samara [33] Li et al. [12]
Degertekin

[17]
This study

HS CMLPSA Simple
GA

Simple
GA

PSO PSOPC HPSO EHS SAHS FA FA-R AFA

1 A1�A4 1.963 1.8866 2.141 1.732 40.053 1.652 1.907 1.889 1.889 1.8539 1.8927 1.9085
2 A5�A12 0.481 0.5169 0.510 0.522 0.237 0.547 0.524 0.502 0.520 0.5123 0.5217 0.5130
3 A13�A16 0.010 0.0100 0.054 0.010 21.692 0.100 0.010 0.010 0.010 0.0100 0.0100 0.0100
4 A17�A18 0.011 0.0100 0.010 0.013 0.657 0.101 0.010 0.010 0.010 0.0100 0.0497 0.0100
5 A19�A22 1.233 1.2903 1.489 1.345 22.144 1.102 1.288 1.284 1.289 1.2889 1.1831 1.2553
6 A23�A30 0.506 0.5170 0.551 0.551 0.266 0.589 0.523 0.526 0.524 0.5406 0.5051 0.5142
7 A31�A34 0.011 0.0100 0.057 0.010 1.654 0.011 0.010 0.010 0.010 0.0100 0.0124 0.0100
8 A35�A36 0.012 0.0100 0.013 0.013 10.284 0.010 0.010 0.010 0.010 0.0100 0.0100 0.0100
9 A37�A40 0.538 0.5207 0.565 0.492 0.559 0.581 0.544 0.528 0.539 0.5151 0.5277 0.5487
10 A41�A48 0.533 0.5180 0.527 0.545 12.883 0.458 0.528 0.525 0.519 0.5183 0.5327 0.5194
11 A49�A52 0.010 0.0100 0.010 0.066 0.138 0.010 0.019 0.010 0.015 0.0100 0.0100 0.0100
12 A53�A54 0.167 0.1141 0.066 0.013 0.188 0.152 0.020 0.063 0.105 0.1012 0.1354 0.1050
13 A55�A58 0.161 0.1665 0.174 0.178 29.048 0.161 0.176 0.173 0.167 0.1686 0.1655 0.1670
14 A59�A66 0.542 0.5363 0.425 0.524 0.632 0.555 0.535 0.550 0.532 0.5198 0.5456 0.5343
15 A67�A70 0.478 0.4460 0.437 0.396 3.045 0.514 0.426 0.444 0.425 0.4131 0.4105 0.4500
16 A71�A72 0.551 0.5761 0.641 0.595 1.711 0.648 0.612 0.592 0.579 0.6577 0.6375 0.5925
Weight (lb) 364.33 363.818 372.40 364.40 5417.02 368.45 364.86 364.36 364.05 363.98 364.57 363.85
No of analyses 20000 N/A N/A N/A 150000 125000 125000 13755 12852 41085 21990 11000

Figure 11. Comparison of the stability of the three
algorithms for the 72-bar spatial truss structure (Case 1).

the weights of 363.98 lb, 364.57 lb, and 363.85 lb
were found using FA, FA-R, and AFA, respectively.
The structure obtained by AFA is lighter than most
other structures reported in the table. In addition, the
proposed AFA requires very less computational e�ort
than other techniques. It is worthy of remark that as
it is clear from Tables 11 and 13, the well-known PSO
algorithm has been practically unable to �nd a solution

Figure 12. Comparison of the convergence rates of the
three algorithms for the 72-bar spatial truss structure
(Case 2).

for both cases. This implies that the �rey algorithm
might be superior to PSO in truss optimization, since in
all our experiments satisfactory solutions were obtained
by all versions of �rey algorithm. Figure 12 compares
convergence rates of the algorithms for Case 2 of this
problem. Table 14 gives statistical results obtained
after 50 independent runs of these three algorithms and
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Table 14. Comparison of statistical results for �fty
independent runs of three algorithms for the 72-bar spatial
truss structure (Case 2).

Mean Standard
deviation

Coe�cient
of variation

(%)

FA Weight (lb) 373.602 15.634 4.185
No of analyses 48306 12146.42 25.14

FA-R Weight (lb) 369.533 4.082 1.104
No of analyses 21546.70 4708.61 21.85

AFA Weight (lb) 364.880 0.557 0.153
No of analyses 10657.00 2210.46 20.74

Figure 13. Comparison of the stability of the three
algorithms for the 72-bar spatial truss structure (Case 2).

Figure 13 is presented to compare the stability of these
algorithms for Cases 1 and 2, respectively. Superiority
of AFA compared to FA and AFA in producing very
close results after each independent run is obvious from
these �gures.

7. Summary, discussion and conclusion

The capability of �rey algorithm in weight optimiza-
tion of truss structures was �rst investigated in this
paper. Firey algorithm is a recently developed tech-
nique and is not thoroughly tested in optimizing real-
life problems. The studies showed that �rey algorithm
is a robust approach and suitable for size optimization
of truss structures. As indicated in this paper, in some
cases, the standard PSO algorithm is not capable of
�nding the optimal solution for the problem contrary to
�rey algorithm. More speci�cally, an asymptotic case
of �rey algorithm is the standard PSO by approaching
the light absorption coe�cient to zero ( ! 0). On
the other hand, when  ! 1, attraction is almost
zero in the sight of other �reies, and hence, no �rey
can be seen and �reies randomly move in the search
space and hence this extreme case is reduced to random

search method. Since the range of variation of  is
extensive, appropriate value for this parameter should
be found for each problem. As mentioned by Yang [22]
and shown in this paper, it is possible to adjust the
parameters  and � such that FA outperforms PSO.
However, the number of iterations required for conver-
gence is still considerable. Therefore, in the second
part of this paper, the standard FA was improved
to accelerate the algorithm. The accelerated �rey
algorithm (AFA) was based on gradually decreasing
the randomness as the solution is approached, and
scaling the random part of �reies' movement. To
clearly distinguish between these two modi�cations,
two algorithms including the reduction only (indicated
by FA-R) and both reduction and scaling (indicated
by AFA) were examined. The e�ectiveness and stabil-
ity of each algorithm were tested through optimizing
some benchmark truss structures. The results show
that the reduction of randomness imposed in FA-
R can improve the stability and performance of the
standard FA. However, signi�cant improvement in
computational e�ort, stability and performance can be
achieved by considering both reduction and scaling in
AFA. The enhanced e�ciency of the proposed AFA
is impressing in optimizing complicated real-life truss
structures.
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