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Abstract. Unsaturated soil shear strength can be determined using e�ective stress
relation that depends on the e�ective stress parameter. Several models have been developed
in the past few years to estimate this parameter. In this research, the Gene Expression
Programming (GEP) is used as an Arti�cial Intelligence (AI) method for developing a
model to predict the e�ective stress parameter, using e�cient parameters. The principal
advantage of the GEP approach is its ability to generate powerful prediction equations
without any prior assumption on the possible form of the functional relationship. The
input terminal set consists of net con�ning pressure, suction, Soil Water Characteristic
Curve (SWCC) �tting parameter, bubbling pressure, residual and saturated volumetric
water content. The output terminal set has one member, which is the e�ective stress
parameter. An experimental database obtained from the literature is employed to develop
the model. Comparison of the model prediction with the actual data, as well as other
investigators, indicates a very good performance and ability of model. Sensitivity and
parametric analyses are conducted to verify the results. It is also shown that soil suction
is the most in
uential parameter in the e�ective stress parameter of unsaturated soils.

c
 2013 Sharif University of Technology. All rights reserved.

1. Introduction

An optimized design of many geotechnical problems
above water table such as foundations, earth retaining
structures and slopes are based on shear strength of un-
saturated soil. Unsaturated soil shear strength may be
determined directly in the laboratory [1-5] or indirectly
using the developed models. The fundamental goal
of the experimental methods is to establish the shear
strength characteristics of unsaturated soils in terms
of net normal stress and matric suction. The main
challenges of the experimental determination of the
shear strength of unsaturated soils are generally more
complicated, more time consuming and more expensive
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when compared to conventional test methods for satu-
rated soils. In the indirect method of determining the
unsaturated shear strength, two major categories are
available that are described below:

1. The models developed by considering two indepen-
dent state variables, namely suction, S, and mean
net stress, P . The model proposed by Fredlund et
al. [1] as given below falls in this category.

� = c0 + S tan�b + P tan�0; (1)

where:
� = Shear strength;
S = ua � uw;
P = � � ua;
ua = Pore air pressure;
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uw = Pore water pressure;
�b = Angle of shearing resistance with

respect to matric suction;
�0 = E�ective friction angle;
c0 = E�ective cohesion.

Several models introduced recently fall in this
group [6-8].

2. E�ective stress-based method.
In this method, the shear strength is simply

expressed in terms of the e�ective stress by:
� = c0 + �0 tan'0; (2)

where �0 is the e�ective normal stress that is
expressed by the e�ective stress equation proposed
by Bishop [9] given by:

�0 = � � ua + �(s); (3)

where �(s) is the e�ective stress parameters. Sub-
stituting Eq. (2) in Eq. (1) yields:

� = c0 + [P + �S] tan�0; (4)

where � is E�ective stress parameter. This param-
eter is related to the matric suction with a value of
� = 0 for dry soils and � = 1 for saturated soils.

Although the value of � is known to be a�ected by
the soil structure, stress changes and cycles of wetting
and drying, this parameter has been expressed in
di�erent forms as listed in the next section. There has
been a considerable work in the literature to come up
with a suitable closed form relationship for the e�ective
stress parameter [8,10,11]. However, the approaches
employed so far make certain assumptions in order to
arrive at the desired equation.

The main objective of this paper is to employ a
powerful approach called Gene Expression Program-
ming (GEP), a branch of arti�cial intelligence method,
to propose a suitable relationship for the e�ective
stress parameter. The main advantage of the GEP
approaches over the regression and other soft comput-
ing techniques is their ability to generate prediction
equations without assuming prior form of the existing
relationship. In this study, soil water retention parame-
ters such as bubbling pressure (hb), residual volumetric
water content (�r), saturated volumetric water content
(�s), as well as soil suction (S) and net con�ning
pressure (P ), are considered independent variables.

2. Available methods for determining e�ective
stress parameter

There are several methods available for obtaining the
e�ective stress parameter for a particular soil. These
methods can be classi�ed into four major groups
described below.

2.1. Experimental
The �rst group contains relationships that are obtained
based on experimental result. In this group, Bishop et
al. [12] were the �rst who measured � for several soils,
using volume change and shear strength processes, the
results of which are indicated in Figure 1. Bishop and
Donald [13] arranged several experiments and plotted
the relationship between degree of saturation and � as
shown in Figure 1. Jennings [14] determined the �
by comparing the behavior of a soil specimen under
changes in applied suction with the behavior of an
identical saturated sample under changes in external
pressure. Zerhouni [15] updated Figure 1 initially taken
from Jennings and Burland [16].

2.2. Fitting
The second group includes methods that correlate e�ec-
tive stress parameters with unsaturated soil parameters
such as matric suction, air entry value, saturated
water content and residual volumetric water content.
Aitchison [17] gives a �tted expression for the e�ective
parameter, written as follows:

� =

(
1 if Sr = 1��
S

�
Se if Sr < 1

(5)

where S is the matric suction, Se is the air entry suction
and � is a coe�cient varying from 0.3 to 0.35.

Khalili and Khabbaz [10] demonstrated that the
e�ective stress parameter � is unity at the suctions
below bubbling pressure, and the relationship between

Figure 1. E�ective stress parameter versus degree of
saturation for a number of di�erent soils by Zerhouni [15].
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� and logarithm of matric suction is linear:

� =

(�
S
hb

�

for S > hb

1 for S � hb
(6)

where

 : Varies from -0.4 (lower bound of the

equation) to -0.65 (upper bound),
averaging -0.55;

S : Is the matric suction;
hb : Is the air entry value in the drying

process being equal to the air expulsion
value in the wetting condition.

The validity of several forms of � as a function
of the degree of saturation was also examined by
Vanapalli and Fredlund [18], using a series of shear
strength test results for statically compacted mixtures
of clay, silt and sand from Escario et al. [19]. For matric
suction ranging between 0 and 1,500 kPa, the following
two forms showed a good �t to the experimental results:

� = Skr =
�
�
�s

�k
; (7)

where Sr is the degree of saturation, � is volumetric
water content, �s is the saturated water content, and k
is a �tting parameter used to obtain a best-�t between
measured and predicted values.

They also proposed an expression for � in terms
of e�ective saturation or e�ective volumetric water
content as follows:

� =
Sr � S�r
1� S�r =

� � �r
�s � �r ; (8)

where Sr is the degree of saturation, � is volumetric
water content, �s is the saturated water content, �r
is the residual volumetric water content and S�r is the
residual degree of saturation. Russell and Khalili [20]
developed the following equation for sand:

� =

8>>><>>>:
1 for

�
S
hb

�
< 1�

S
hb

��0:55
for 1 <

�
S
hb

�
< 25

250:45
�
S
hb

��1
for

�
S
hb

�
> 25

(9)

2.3. Theoretical
In this group, the relation for e�ective stress parameter
developed mathematically. In these categories, Xu [11]
de�ned the e�ective stress parameter, using surface
fractal dimension of soil (Ds):

� =
�
S
hb

�3�Ds
; (10)

where Ds is surface fractal dimension of soil pores.

2.4. Arti�cial intelligence
Arti�cial intelligence methods such as Neural Network
(NN), Genetic Programming (GP), Gene Expression
Programming (GEP), Evolutionary Polynomial Re-
gression (EPR) and other machine learning methods
have been used in various disciplines of civil engineer-
ing [21-26]. Prediction of e�ective stress parameter,
using arti�cial intelligence, fall into the fourth group.
Kayadelen [27] developed a neural network model with
six neurons in the input layer representing the angle
of shearing resistance, air entry value, sand fraction,
silt+clay fraction, suction and plasticity index. The
hidden layer includes: Three neurons and e�ective
stress parameter as output layer. The model square
correlation coe�cient (R2) for training data was 0.96.

Ajdari et al. [28] proposed a multilayer perceptron
network with six neurons in the input layer representing
the air entry value, the volumetric water content at
residual and saturated conditions, the slope of soil
water characteristic curve, the net con�ning stress, suc-
tion and bias. The hidden layer includes seven neurons
and e�ective stress parameter as the output layer. The
model square correlation coe�cients for training and
testing data were 0.96 and 0.75, respectively.

Gene expression programming by Ferreira [29] is
a branch of arti�cial intelligence and recent extension
to genetic programming that develops computer pro-
grams of di�erent sizes and shapes encoded in linear
chromosomes of �xed length. There have been some
scienti�c e�orts directed at applying GEP to the civil
engineering tasks [30-34]. The objectives of this paper
can be categorized as follows:

- Investigating the feasibility of gene expression pro-
gramming in order to �nd dependence of e�ective
stress parameter on soil suction, net stress and
parameters de�ning the Soil Water Characteristic
Curve;

- Assessing predictability of the model, using exper-
imental data not exposed to the model during its
development;

- Carrying out sensitivity analysis and parametric
study, using the developed GEP model;

- Comparing the accuracy of the GEP model with a
recent model.

3. Gene expression programming

Gene expression programming is a method for learning
the most �t computer programs by means of arti�cial
evolution. It incorporates both the simple linear
chromosomes of �xed length similar to Genetic Algo-
rithms (GA) and the rami�ed structures of di�erent
sizes and shapes similar to the parse trees of genetic
programming [29,35,36].
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Behavior of GEP forms a metaphor of the pro-
cesses of evolution in nature. GEP, similar to GA
and GP, initializes a population that compounds the
random members known as chromosomes. Afterwards,
�tness of each chromosome is evaluated with respect
to a target value. The principle of Darwinian natural
selection is used to select and reproduce \�tter" pro-
grams. The process continues until a best solution for
that problem is reached (Figure 2).

In brief, eight stages are employed in GEP to solve
a problem. These stages are shown in Figure 2 and
listed below:

1. Generation of a random population of chromosomes
(genotype). Each chromosome is a symbolic ex-
pression that consists of variables (terminal) and
several mathematical operators (function) in the
Karva language;

2. Translating chromosomes into computer pro-
grams/models (phenotype);

3. Execution of the programs/models generated in the
previous step;

Figure 2. A typical representation of the GEP algorithm.

4. Performance evaluation of the programs, using the
selected �tness function;

5. Selection of the best performing programs;
6. Reproduction of chromosomes, using the best per-

forming individuals programs through genetic op-
erators replication, mutation, transposition and
recombination;

7. Development of a new generation of programs as a
result of the reproduction in the last step;

8. Re-execution of steps 1 to 7 until the chosen
termination criteria are ful�lled.

In GEP application, the chromosome can have
one or more genes. The gene contains two types of
information. The �rst type is stored in the head of
the gene containing the information which is used in
producing the overall GEP model. The head contains
some of the functions from the pre-selected function
set `F ', along with some terminals from the terminal
set `T '. The second type is stored in the tail, and
contains only terminals. The tail contains information
that can be used in generating future GEP models. The
arrangement of functions and terminals in head and
tail of a GEP gene is called its structural architecture.
The fundamental structural and functional di�erences
among GEP, GP and GA are summarized in Table 1.
It is only in recent years that GEP has found its
applications in geotechnical engineering [31-34].

4. GEP modeling of unsaturated soils e�ective
stress parameter

A GEP software, GeneXproTools 4.0 [37] was used in
this study to perform symbolic regression, using GEP,
to �nd a formulation for the e�ective stress parameter.
From previous works on the topic, it is well understood
that the e�ective stress parameter is dependent on
the SWCC of the soil considered. Hence, any of the
SWCC parameters and/or any combination of these
parameters may be considered appropriate candidates
for inputs of the model. Therefore, six independent
parameters, namely net con�ning pressure, suction,
SWCC �tting parameter, bubbling pressure, residual
volumetric water content, and saturated volumetric
water content were considered as potential input vari-
ables. These variables were then converted to dimen-
sionless quantities, listed in Table 2, to serve as input
terminals. The output terminal was the e�ective stress
parameter corresponding to the assigned input suction.

A large number of generations were needed to
�nd a formula with minimum error. The formulation
selection was based on simplicity and its relevance to
the nature of the problem; thus, ensuring a simple and
e�cient �nal GEP model. De�ning the chromosome
structure requires the speci�cation of the number of
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Table 1. Comparison of GEP technique to GP and GAs, Ferriera [29].

Genetic programming Genetic algorithms Gene expression programming

Population individuals
(chromosomes) are non-linear,
varying in length as well as shape
(also known as `parse trees')

Population individuals
(chromosomes) are linear
and of �xed length

Population individuals (chromosomes)
are linear and �xed length that are
converted to non-linear with varying
sizes and lengths (expression trees or
computer programs) at a later stage

Uses a single entity working as
genome (gene) and phenome
(body) at the same time

Similar to GP Has totally separated genomes and phenomes

Sometimes, invalid expressions
can be obtained

Similar to GP Always produces valid expressions

Not yet established beyond the
replicator threshold

Similar to GP Well established beyond the replicator threshold

Table 2. Range of basic properties adopted for
developing the GEP model.

Property Range

P=P �0 0 - 3.95
S=hb 0 - 300
SWCC �tting parameter, � 0.19 - 11.82
�r=�s 0 - 0.714
E�ective stress parameter, � 0.091 - 1

* P; P0: Net con�ning stress and atmospheric
pressure, respectively.

genes per chromosome, as well as the size of the gene.
The head size of gene is the maximum number of
functions and terminals that can be stored in the head
and the tail of the gene. The size of the gene is normally
controlled by its head size and the complexity of the
problem.

The stopping criterion for the GEP model evo-
lution process was achieved when the coe�cient of
determination (R2) reached 0.8 or more. The process
was executed several times, and stopped when no
signi�cant changes were noticed in the model statistics
(�ttness value and R2).

5. Database

A database consisting of 121 literature's triaxial shear
and pressure plate/�lter paper test results were used
to train and test the GEP model. Frequently, 80 to
85 percentage of database are used for training while
the remaining 15 to 20 percentage of data are used for
testing the model. In this study, the results from 100
Consolidated Drained (CD) triaxial shear tests (83%
of total data) performed on 14 di�erent soil types were
collected from the literature and employed to train the
GEP model to determine the e�ective stress parameter

under di�erent suctions [19,38-46]. The model was
further tested using another database containing 21
Constant Water (CW) data sets (17% of total data)
obtained from triaxial shear tests on di�erent soil by
Thu et al. [44]. Table 2 indicates the range of basic
soil properties adopted for this study. It should be
noted that, like all empirical models, GEP performs
best in interpretation rather than extrapolation; thus,
the extreme values of the data used are included
in the training set. For the testing data bubbling
pressure, residual volumetric water content, saturated
volumetric water content and SWCC �tting parameter
were constant and equal to 27kPa, 8.75, 52 and 0.94,
respectively.

Due to hydraulic hysteresis, the SWCC has two
di�erent branches, one corresponds to adsorption and
another to desorption. The soil tends to dilate and
absorb water during the softening phenomenon. How-
ever, the soil behavior in the strain hardening condition
is characterized by a reduction in volume accompanied
by 
ow of water out of the soil specimen. Hence, the
drying branch of the SWCC should be employed for
CW tests in the strain hardening condition and the
wetting branch of the SWCC should be used if the
strain softening and strength drop occur.

6. Performance

To set the model parameters a performance analysis
was done. In GEP, values of setting parameters have
signi�cant in
uence on the �tness of the output model.
These include the number of chromosomes, number
of genes, gene's head size and the rate of genetic
operators. This approach involved using di�erent
settings and conducting runs in steps. During each
step, runs were carried out and the values of one of the
above mentioned parameters were varied, whereas the
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values of the other parameters were kept constant [34].
The runs were stopped after one hundred thousand
generations, which were found su�cient to evaluate the
�tness of the output. At the end of each run, the Mean
of Squared Errors (MSE) for both training and testing
sets was recorded in order to identify the values that
give the least MSE. The results are shown in Figures 3
to 7. Selection of the optimum chromosome was based
on the following rules:

- When the output had several generations with sim-
ilar MSE around the minimum value in the training
set, the generation with the lower error for testing
data was selected.

- When the di�erence in MSE between two or three
cases was negligible, as in Figure 4, the one which
leads to a model with a smaller length (smaller head
size or gene number) was selected.

More details are given below:
In the �rst step, the number of chromosomes was

determined. Figure 3 shows that the model has the
best performance when the number of chromosomes
was 25. This value corresponds to the least MSE for
the training sets.

For selecting the number of genes and head size
it was tried to �nd the values with minimum length

Figure 3. E�ect of number of chromosomes on the
performance of the GEP model.

Figure 4. E�ect of gene head size on the performance of
the GEP model.

and acceptable error measure. From Figures 4 and 5, it
could then be concluded that the optimum chromosome
structure consists of 4 genes of head size=5.

Figures 6 and 7 present the in
uence of the rates
of genetic operators, mutation and gene recombination
on the performance of the GEP model. It can be seen
that the GEP model performs best when mutation and
gene recombination rates are 0.1 and 0.3, respectively.

After obtaining the optimum GEP model, the
in
uence of model operators on the model performance
may be investigated. Figure 8 shows the e�ect of

Figure 5. E�ect of gene number on the performance of
the GEP model.

Figure 6. E�ect of mutation rate on the performance of
the GEP model.

Figure 7. E�ect of recombination rate on the
performance of the GEP model.
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Figure 8. E�ect of linking function on the performance
of the GEP model.

Table 3. Optimum GEP setting based on performance
operation.

Parameters Achieved functions,
values and rates

Linking function Addition (+)
Number of chromosomes 25
Number of genes 4
Gene head size 5
Recombination rate 0.3
Mutation rate 0.1

the linking function on the performance of the GEP
model. It can be seen that the GEP model performs
best when linking function is addition. The optimum
GEP settings according to performance operation are
presented in Table 3.

7. Model development

The optimum GEP program (optimum formulation)
was obtained by evolving the programs toward the
formulation with minimum error, compared with the
actual test results. In this process, performance was
also checked using the sum of absolute di�erences
between the predicted and actual values of the e�ective
stress parameter. The average relative error is de�ned
as:

Relative Absolute Error (RAE) =
nX
i=1

����Ai � PiAi

����
� 100; (11)

where Ai and Pi are, respectively, the actual and
predicted output values for the ith output and n is
the number of data.

Iterations continued until this error measure did
not decrease appreciably for training and testing data.
Figure 9 indicates the variation of error (relative

Figure 9. Variation of error measured during training
and testing generations.

absolute error) measure during model development.
The model training error dropped from 2.69 in the �rst
generation to about 0.375 after 100,000 generations
and, in testing, the error dropped from 3.37 to about
0.633 in the same generation.

As mentioned earlier, one of the advantages of
the GEP technique is that the relationship between
the inputs and corresponding output is automatically
constructed in the Expression Trees (ET). In this
research the appropriate ETs (ET1 to ET4) that are
linked to each other with addition to produce the �nal
model are presented in Figure 10. The trees are easily
formulated into a mathematical equation given by:

Figure 10. Expression Tree (ET) of the developed GEP
mode.
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� =

�
S
hb

�
93:373(2:556� �)2 +

�
�r
�s

�4�
S
hb

�� 6:317

+
�

exp(0:133)
�
�r
�s
� S
hb

��0:25

�
 

0:1
�
S
hb

�0:2
!exp

�
P
P0

�
; (12)

where:
P = Net con�ning pressure;
P0 = Atmospheric air pressure (101.325

kPa);
S = Suction;
�s = Saturated water content;
�r = Residual volumetric water content;
hb = Bubbling pressure;
� = Soil water characteristic curve �tting

parameter.

Several GEP models were developed using di�er-
ent arrange of input variables. The performance of four
GEP models and e�ect of input parameter on error of
training and testing data-set are shown in Table 4. It
can be seen that model 1 has a signi�cantly superior
performance. Therefore, the e�ective stress parameter
of unsaturated soils strongly depends on the whole
selected input parameters (P=P0), (S=hb), (�), (�r=�s).

8. Results and discussion

Eq. (12) was used to predict all 100 e�ective stress
parameters of the training set and 21 in the testing set.
Figures 11 and 12 compare the predicted e�ective stress
parameter with the actual data for training and testing,
respectively. These �gures show a good correlation
between the predictions made, using GEP formulation,
and the actual data, both for training and testing data.
Furthermore, the proposed model is compared with the
model presented by Russell and Khalili [20]. Figures 13
and 14 show the e�ective stress parameters predicted
the model proposed by Russell and Khalili [20] for

Figure 11. Actual versus predicted e�ective stress
parameter values for training data, R2 = 0:81.

Figure 12. Actual versus predicted e�ective stress
parameter values for testing data, R2 = 0:83.

training and testing set data, respectively. In these
�gures, square correlation coe�cient, R2, is used to
compare the results given by:

R2 = 1�
nP
i=1

(Ai � Pi)2

nP
i=1

�
Ai � �Ai

�2 ; (13)

Table 4. Performance of di�erent GEP models.

Set type Training set Testing set

Model Used variables R2 RAE R2 RAE

1 (P=P0), (S=hb), (�), (�r=�s) 0.81 0.375 0.83 0.633
2 (P=P0), (S=hb), (�r=�s) 0.78 0.399 0.84 0.613
3 (S=hb), (�), (�r=�s) 0.73 0.434 0.59 0.929
4 (P=P0), (S=hb), (�) 0.74 0.424 0.67 0.685
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Figure 13. Actual versus predicted e�ective stress
parameter by Russell and Khalili [20] for training data,
R2 = 0:52.

Figure 14. Actual versus predicted e�ective stress
parameter by Russell and Khalili [20] for testing data,
R2 = 0:848.

where Ai and Pi are, respectively, the actual and
predicted output values for the ith output; �Ai is the
average of the actual outputs; and n is the number of
data.

9. Sensitivity analysis

To evaluate the model response to changes in input
parameters, a sensitivity analysis was carried out. For
this purpose, all input parameters, the normalized net
con�ning pressure (P=P0), SWCC �tting parameter
(�), and normalized suction by bubbling pressure
(S=hb), ratio of residual volumetric water content to
the saturated volumetric water content (�r=�s) were
considered. To evaluate the in
uence of each parameter
on the e�ective stress parameter, the mean value of

the input parameter was increased approximately 20%,
while the ranges of the other input parameters were
kept constant. The results are given in Table 5.
In this table, negative change means reduction and
positive means increasing e�ect on the e�ective stress
parameter. It is shown that, with an increase in
P=P0 and �, an increase occur in the e�ective stress
parameter. Furthermore, Table 5 shows that with
an increase in S=hb and �r=�s, the e�ective stress
parameter decreases. This table shows that the applied
mean net stress (P=P0) plays an important role in the
e�ective stress parameter.

10. Parametric analysis

For further veri�cation of the proposed GEP models,
a parametric analysis was performed. The main
goal was to �nd that how each parameter a�ects the
e�ective stress parameter. Figures 15 to 18 present
the predicted values of the e�ective stress parameter
as a function of each parameter where others were
constant. For this purpose, several arbitrary data sets
from training and testing data set were considered
for the parametric analysis. Response from typical
data set, given in Table 6, was selected to investigate
in
uence of various parameters.

The results of the parametric analysis indicate
that as expected, the e�ective stress parameter con-
tinuously increases due to increasing mean net stress
and SWCC �tting parameter. The e�ective stress

Table 5. The change in e�ective stress parameter
corresponding to 20% increase in the mean value of the
input parameters.

Parameter P=P0 S=hb � �r=�s
Change (%) 0.47 -0.174 0.00025 -0.218

Figure 15. Parametric analysis of output model with
respect to P=P0.
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Figure 16. Parametric analysis of output model with
respect to S=hb.

Figure 17. Parametric analysis of output model with
respect to SWCC �tting parameter.

parameter decreases when the ratio of suction to
bubbling pressure and the ratio of residual to saturated
volumetric water content increases.

11. Conclusion

A model based on GEP as an arti�cial intelligence
method was proposed to estimate the e�ective stress
parameter for unsaturated soils. The input model
consisted of net con�ning pressure, suction, soil water
characteristic curve �tting parameter, bubbling pres-

Table 6. Selected data from training and testing data-set
for parametric analysis.

Parameter P=P0 S=hb � �r=�s
Training 0.987 1.50 0.89 0.0051
Testing 2.960 2.815 0.94 0.1680

Figure 18. Parametric analysis of output model with
respect to �r=�s.

sure, residual volumetric water content, and saturated
volumetric water content. A database containing the
results of 121 literature's triaxial shear and pressure
plate/�lter paper test carried out was employed to
develop the model. The results from 100 consolidated
drained triaxial shear tests performed on 14 di�erent
soil types were employed to train the model to de-
termine the e�ective stress parameter under di�erent
suctions. The model was further tested using another
database containing 21 constant water data sets ob-
tained from triaxial shear tests on di�erent soils. The
model prediction indicated a reasonable accuracy both
for the results used in the training, as well as the
results in the testing. The model prediction compared
to the actual test data indicated its good performance
for prediction of the e�ective stress parameter. The
sensitivity analysis also showed that the soil suction
is the most in
uential parameter in e�ective stress
parameter. Furthermore, a parametric analysis showed
an acceptable trend for the e�ective stress parameter
with changing the input parameters of the model.
These models have certain limitations in that they do
not take into account the hysteresis phenomena and
soil fabric e�ects.

The authors suggest the following future works for
further improvements and extension on the topic:

- Studying other types of AI systems such as EPR;
- Validating the conclusions drawn in this paper as

further data becomes available;
- Extending the AI systems to include hysteresis

phenomena and soil fabric;
- Reliability assessment of the developed model.
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