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Abstract. In this research, Method of Fundamental Solution (MFS) is coupled with
Particle Swarm Optimization (PSO) technique to determine the optimal phreatic line
in uncon�ned seepage problems. To model the uncon�ned boundary (phreatic line), a
formulation with 
oating geometry is derived. Regarding the use of fundamental solution
of the Laplace equation, expressed in the Radial Basis Functions (RBF), a boundary type
of the mesh-free method can be established. In this research, an objective function, based
on principle of minimum potential energy, is formed to control the position of uncon�ned
boundary. MFS and PSO are utilized simultaneously to �t the phreatic line, using 4th
degree polynomials, satisfying the 
ow continuity and energy principle. E�ciency and
accuracy of the proposed method are veri�ed through examples. The obtained results are
in a good agreement with other numerical and experimental models.
c
 2013 Sharif University of Technology. All rights reserved.

1. Introduction

Seepage is one of the most important phenomena in
geotechnical engineering which can be divided into
con�ned and uncon�ned problems. The con�ned
problems refer to problems with known boundaries and
the uncon�ned ones refer to problems with unknown
boundaries. Determination of the phreatic line is a fun-
damental step in solving uncon�ned seepage problems.
Broad studies, mostly numerically-based, have been
conducted in an e�ort to simulate this phenomenon
in earth dams [1-4]. Advancements in computational
technologies and data analysis have rendered numerical
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methods as valuable tools in almost all engineering
�elds. Finite Element Method (FEM) and Boundary
Element Method (BEM) have been used extensively in
modeling heat and mass transfer problems, especially
in situations with moving boundaries (e.g. phreatic line
in uncon�ned seepage problem) [5-7]. In this kind of
problems, which is a complicated and time-consuming
process, the major di�culty is the mesh generation
and/or regeneration (as strategy may require). An
excessively re�ned mesh is usually needed to simulate
such problems, leading to large matrices and higher
computational costs. Thus, special strategies for mesh
generation must be adopted in FEM [7,8]. On the
other hand, BEM is based on solving integral equations
along the boundaries. Singularities on the boundaries
are possible which render this approach as an in
exible
method. Furthermore, BEM produces large matrices
that makes this approach time-consuming in iterative
solution procedures.

Over the last decade, a new group of numer-
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ical techniques, known as mesh-free methods, have
been developed in computational mechanics. Most
importantly, these methods o�er a convenient approach
in solving problems with variable geometry [9-12].
The basic idea in mesh-free methods is based on
the Radial Basis Function (RBF), which introduces
the relationship between two distinct nodes, useful in
scattered data interpolation [13,14]. RBF is de�ned as
a function that de�nes the Euclidean distance between
two nodes [15,16].

The most popular RBF functions are:

r2m�2 log(r); (1a)

(r2 + c2)
m
2 ; (1b)

e��r; (1c)

where r = kx� xjk is the Euclidean distance between
any point, and node j in the problem domain m,
c, � are constant values. Eq. (1a) is introduced as
the generalized Thin Plate Spline (TPS). Eq. (1b) is
de�ned as the generalized multiquadric and Eq. (1c)
is the Gaussian function. In this research, Eq. (1a)
is selected as the RBF; it has been shown that bet-
ter results are to be expected when value of m is
one [17].

Usually, mesh-free methods are divided into two
main categories: domain type and boundary type.
Since in domain type formulation any single RBF can-
not satisfy the governing equations, obtaining a viable
solution would require a large number of collocation
points for both domain and boundary of the problem.
On the other hand, boundary type formulation requires
collocation nodes on the boundary of the problem
only. In boundary type problems, fundamental solution
of the governing linear di�erential equation can be
selected as the RBF solution space [18]. This ap-
proach automatically satis�es the governing equation.
Moreover, source nodes are set outside the problem
domain, which contains no singularities, and only a few
collocation points are needed on the boundary to solve
the problem [19].

Method of Fundamental Solution (MFS) is used
in solving uncon�ned seepage problem. However,
the 
ow continuity over the downstream slope is not
considered [20].

In this research, the governing equation and
boundary conditions of the problem are explained,
followed by a brief description on MFS and RBF. Then
the Particle Swarm Optimization (PSO) algorithm is
brie
y explained, and it is applied using a 4th degree
polynomial as a phreatic line. At the end, numerical
results are shown and compared to other numerical
methods and indoor testing.

2. Governing equation and boundary
conditions

Uncon�ned seepage problems can be considered as
laminar steady state 
ow in a homogenous x�y-plane.
These assumption leads to Laplace equation as the
problem's mathematical model [21].

@2�
@x2 +

@2�
@y2 = 0; (2)

where �(x; y) is the total energy.
Based on energy principle, the total energy on

both domain and boundary of the problem is:

� = EH + PH; (3)

where EH is the elevation head, and PH is the pressure
head at every node of the problem's boundary.

Boundary conditions, regarding satisfaction of
the 
ow continuity, in the computational domain are
de�ned as [22] (see Figure 1):

1. Impermeable boundaries: Flow velocity is zero
along these segments (� = 0) or (@�@n = 0), these
boundaries de�ne streamlines ( 1).

2. Equipotential lines: Hydrostatic pressure is applied
to these boundaries, and the total head (�) is
constant along these segments (�01, �02).

3. Phreatic line: This boundary is the upper stream-
line in the problem domain and pore pressure is zero
on this surface (PH=0). In this paper, the phreatic
line is modeled using a 4th degree polynomial
function ( 2).

4. Seepage face: On this face, water seeps out of the
dam and the total energy equals each node eleva-
tion, and pressure head equals zero. This boundary
is neither an equipotential nor a streamline (�).

Figure 1. Flow through a 2-D homogenous dam.
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Since equipotential lines and streamlines are perpen-
dicular at upstream, the phreatic line is perpendicular
to the upstream slope and the phreatic line must be
tangent to downstream slope to satisfy 
ow continuity.

Generally, head loss leads to 
ow through a
dam; consequently, the mathematical de�nition of head
loss de�nes a path that descends along seepage 
ow.
Eventually, total energy at (x = x1, y = �1) is constant
and equal to upstream total head (� = �01).

In this research, the equation of the phreatic line
is assumed as a fourth degree polynomial, which is
introduced by Eq. (4):

P4(x) = c0 + c1x+ c2x2 + c3x3 + c4x4: (4)

Constraints depicted in Figure 1, are as follows:

P4(x) = �01jx=x1 ; (5a)

rP4(x) = � tan�1(�)jx=x1 ; (5b)

rP4(x) = tan(�)jx=x4 ; (5c)

rP4(x) < 0jx=xi (i = 1; 2; � � �m); (5d)

where r is the gradient operator ( d
dx ) and m is the

number of nodes on phreatic line. Eq. (5) should be
considered in optimization procedure as constraints of
objective function.

The node at x5 is dependent on the node at x4
to guarantee that the phreatic line is tangent to the
downstream slope:

x5 = x4 � �x;
�5 = �4 + �x: tan(�); (6)

where �x is introduced as a small distance between x4
and x5.

Since phreatic line is a 4th degree polynomial, it
is necessary to evaluate this function at least at �ve
nodes. Nodal coordinates are de�ned as follows:

P4(x) = �01jx1=0; (7a)

P4(x) = �2jx2= 1
3 (x4�x1); (7b)

P4(x) = �3jx3= 2
3 (x4�x1); (7c)

P4(x) = �4jx4=C��4: cot(�); (7d)

P4(x) = �5jx5=�5 : (7e)

In Eqs. (7b) to (7d), �i(i = 2 � 4) is determined
iteratively. �0i is a constant value and �5 depends on
�4 in solution steps. C is a geometry value (toe of
the dam) which is de�ned in Figure 1. Based on the

third boundary condition (phreatic line), an objective
function is de�ned as:

f =
mX
i=1

Z
(P4(xi)� �(xi; yi))2; (8)

where m is the number of nodes on phreatic line.
The main purpose of this research is to introduce

a function to satisfy the imposed constraints (Eq. (5))
while minimizing the goal function given by Eq. (8).

3. Method of Fundamental Solution (MFS)

In mesh-free methods, the total energy during the nth
iteration step is a linear combination of N Radial Basis
Functions (RBFs) [23].

�(n)(xi; yi) =
nX
i=1

�(n)
i qi(x; y); (9)

where qi(x; y) is an RBF with its source node located
at (xi; yi), and �(n)

i is the RBF weight.
Fundamental solution of Laplace operator is se-

lected as RBF, that is:

qi(x; y) = ln(di); (10)

where di is Euclidean distance from a boundary node
on the computational boundary to ith RBF center
(source node) [19]. Source nodes are set outside of
the computational domain. Thus, the solution form
satis�es the governing equation automatically even at
RBF centers. The main process is to �nd �(n)

i , which is
accomplished by solving a system of equations formed
from the boundary conditions.

Partial derivatives of the total energy de�ne the

ow velocity, i.e.:�

@�
@x

�n
=

NX
i=1

�(n)
i
@qi
@x

;

�
@�
@y

�n
=

NX
i=1

�(n)
i
@qi
@y

: (11)

There are N unknowns in each iteration (�(n)
i , i =

1; 2; � � �N). The constraint conditions yield the follow-
ing system of simultaneous equations to solve:264�1;1 � � � �1;N

... �i;j
...

�N;1 � � � �N;N

37524�1
:
�N

35 =

24 b1:
bN

35 ; (12)

where �i;j = qj(xi; yi) and bi = �(xi; yi). Solution of
Eq. (12) yields RBF weights that can be used along
with Eq. (9) to compute the total energy at every
boundary point.
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4. Particle Swarm Optimization (PSO)

Considering the non-linear objective function, which
is in the form of multi criterion, will lead to solve
nonlinear simultaneous equations. On the other hand,
the objective function must be solved through free
derivative optimization methods, because in the cal-
culation procedure, only the numerical value of the
objective function can be calculated [8]. Therefore,
application of an optimization procedure which is not
dependent on objective function derivative is useful for
these kinds of problems. The proposed algorithm for
optimization procedure is Particle Swarm Optimization
(PSO).

There are several evolutionary methods that can
be applied to solve the optimization problems. Among
the available solution techniques, PSO is proved to be
robust, e�ective and easy to apply [24]. This method
is based on a very simple framework and can be used
easily with primitive mathematical operators. This
method does not need much computer memory, while
the speed of computation is relatively fast [25].

Swarm behavior of bird societies has inspired
a simple and highly e�ective optimization algorithm
by Eberhart and Kennedy [26]. PSO includes a set
of individuals for which their knowledge is improved
iteratively in the search space. The position and
velocity of the individuals de�ne what is known as par-
ticles. PSO has no crossover or transformation between
particles. Moreover, particles are never substituted
by other individuals during the run. Conceptually,
in the search domain, PSO tries to attract particles
with high probability for �tness [27]. Each particle
has a memory function which allows it to remember
the best position it has experienced thus far. Also,
the best global position is visited by the entire swarm.
The information obtained thus far is divided into two
parts; the �rst part includes the particle's memory of
its past state and the second part entails memory of
the society. PSO has a �tness evaluation measure that
takes each particle's position, and returns a �tness
value for it. Global Best is de�ned as the maximum
�tness value that swarm has met. In addition, Local
Best is de�ned as the maximum �tness value that
each particle has individually experienced; hence, each
particle remembers both the Global and the Local best.

The canonical PSO has been widely used in
engineering and science [28-30]. Now, position (xi)
and velocity (vi) for each particle form the set of all
particles with population size of M (i = 1; 2; � � � ;M)
are de�ned as:
vi(t+ 1) =wvi(t) + c1r1(t)(pbesti(t)� xi(t))

+ c2r2(t)(gbest(t)� xi(t)); (13)

xi(t+ 1) = xi(t) + vi(t+ 1); (14)

where c1 and c2 are acceleration factors (constant
values); t shows the tth iteration; r1 and r2 are weights
generated randomly with values between 0 and 1; w is
an inertia weight that controls the impact of velocity
from previous iteration on newly computed velocity;
gbest is the Global Best and pbest is the Local Best.

Generally, PSO algorithm includes the following
�ve main steps:

1. Randomly generation of an initial position vector x
and the related velocity vector v for all particles in
the population set.

2. Evaluating �tness value of each particle.

3. Comparing the �tness value of each particle to its
local best.

If the current value is better than the previous
one, then it is replaced with the new value. When
individual particle's �tness measure is compared to
that of population's best, i.e. Global best, if the
current value is better than the previous one, it is
replaced as Global Best.

4. Changing velocity and position, using Eqs. (13) and
(14).

In conventional methods, usually a �xed num-
ber of trials are carried out with the minimum value
from all the trails taken as the global best. In the
current study, the limitation of conventional PSO
is solved based on termination proposal, introduced
by Cheng et al. [25].

If gbest gets stable after N2 iterations, the al-
gorithm will terminate by de�nition of the following
criteria:

jfg � fsf j � "; (15)

where xsf and fsf mean the best solution in the
current state and its related objective function
value. " is the tolerance of termination. PSO is
not sensitive to optimization parameters in most
problems. It is the brilliant specialty which ranks
PSO as a high recommended method in Geotechni-
cal problems [31].

5. Repeating steps 2 to 4 until the described termina-
tion criterion, based on Eq. (15).

In optimization method design variables, vari-
able bounds, constraints and penalty function are
summarized in Table 1.

In this study, the external penalty function
method as one of the most common forms of the
penalty function in the structural optimization is em-
ployed to transform the constrained problem into the
unconstrained one, as follows [24,32,33]:

~f(x) = f(x)(1 + rppf); (16)
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Table 1. Design variables, variable bounds, constraints and penalty function in this research.

Case Design
Variables

Variable
bounds (m)

Penalty
function

Goal
function

Constraints

Example 1 Eqs. (7b) to (7d) 0 to 24 Eq. (16) Eq. (8) Eq. (5)
Example 2 Eqs. (7b) to (7d) 0 to 3.2 Eq. (16) Eq. (8) Eq. (5)
Example 3 Eqs. (7b) to (7d) 0 to 0.46 Eq. (16) Eq. (8) Eq. (5)

where ~f(x) and rp are modi�ed function (�tness func-
tion) and an adjusting coe�cient, in a row, and pf is
the penalization factor, which is de�ned as the sum of
all active constraints violations.

After determination of variable designs in each
iteration a 4th degree polynomial is formed, all the
produced nodes on the curve should be considered if
they satisfy the goal function (Eq. (8)) and the related
constraints which are determined based on Eq. (5).

5. Numerical studies

Here, some examples are solved using the presented
methodology in order to verify the proposed method.
First, a rectangular dam is analyzed and compared to
available results [20,34,35]. Then, a trapezoidal dam
is considered which is available in literature [7]. Next,
the results are veri�ed by a laboratory test [36].

Solution procedure starts with generation of ran-
dom initial values for �1, �2, �3 (Eq. (7)); the
mentioned items should satisfy geometrical conditions.
Therefore, the variable bonds vary from 0 to 24, 3.2,
and 0.46 m in Examples 1, 2, and 3, respectively.
Thereby, forming individual set in PSO algorithm.
Every individual line is solved in the seepage problem,
using mesh-free concept. The obtained results for
each node on the proposed phreatic line ((�i (i =
1; 2; � � � ; Ns)), where Ns is the number of nodes on
phreatic line, is supplied to PSO to check the objective
function and the related constraints. This procedure
continues until the stop criterion is reached. The

owchart of the present method is illustrated in Fig-
ure 2.

Particle size, maximum velocity, maximum par-
ticle movement amplitude and maximum number of
iteration are considered as important factors in PSO,
that a�ect convergence rate and hence the cost of
computation. In this research, the best values of
mentioned parameters are achieved through several
runs (Table 2).

MFS is based on the concept of RBF; hence the

Table 2. PSO parameters used in solution procedure.

Particle
size
(n)

Max.
velocity

Max.
particle
move

N1 N2

30 0.5 0.009 500 200

Figure 2. Flow chart for the particle swarm optimization
and method of fundamental solution.

Table 3. MFS parameters used in this solution procedure.

Example
Source

point-boundary
point distance (cm)

Node
distribution

distance (cm)
1 20 50
2 30 50

distance between source nodes and boundary nodes
plays an important role in progression of the solution.
Table 3 lists the parameters used in mesh-free analysis.

Geometry of the rectangular dam is as follows:

1. Upstream water level (total energy-upstream) is
24 m. Thus �01 = �1 = 24 m.

2. The length of the dam is 16 m.
3. Downstream water level (total energy-downstream)

is 4 m. Thus �02 = 4 m.
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Figure 3. Instances of individual in PSO algorithm to
solve Example 1. a) Individual 1; b) Individual 2; and c)
Individual 3.

Some of PSO individuals, selected randomly, are shown
in Figure 3.

The phreatic line, obtained from presented
method is illustrated and compared with the previous
studies (see Figure 4).

The node where the boundary condition number
(3) and (4) meet is called separation node (see Fig-
ure 1). Di�erent separation nodes which are the results
of various methods are listed in Table 4.

Geometry of the trapezoidal dam is as follows:

1. Upstream water level (total energy-upstream) is
3.2 m. Thus �01 = �1 = 3:2 m.

Figure 4. Comparison of phreatic line from previous
studies and present method.

Table 4. Separation point achieved in di�erent methods.

Method Height (m)

MFS 12.88
FDM 12.79
FEM Not presented
BEM 12.68
MFS+PSO (presented method) 12.86

Table 5. Separation point coordinates achieved in
di�erent methods.

Method X (m) Y (m)

Ouria & Tou�gh (2009) 3.248 1.64
MFS+PSO (presented method) 3.382 1.537

2. The length of the dam is 9.6 m.

3. Downstream water level (total energy-downstream)
is zero. Thus �02 = 0.

Some of the PSO individuals, selected randomly, are
shown in Figure 5.

The Phreatic line obtained from the present
method is illustrated and compared to the results
reported by other researchers (see Figure 6) [7]. Table 5
lists the separation node.

The outcomes of research are compared with the
results of seepage 
ow through earth dam which is con-
ducted in laboratory. The layout of the experimental
facility is re-drawn in Figure 7. The dam is compacted
with nature sedimentation with natural density of sand.
The porosity is estimated to be 0.2, and the saturated
hydraulic conductivity (K) is determined in the steady-
state 
ow case, with K = 3:5e�4 m

s . The pressure in
the dam is measured by piezometric tubes [36]. The
results are illustrated and compared with experimental
data in Figure 8.

Note that the results obtained from the present
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Figure 5. Instances of individual in PSO algorithm to solve Example 2. a) Individual 1; b) Individual 2; c) Individual 3;
and d) Individual 4.

Figure 6. Resulted phreatic line from present method
and �nite element method.

Figure 7. Redrew layout of experimental facility [36].

method are 
exible and can accurately model the
uncon�ned boundary, which renders a larger range of
selection for individuals (phreatic line) as compared
to previous studies; furthermore, the computed results
satisfy 
ow continuity.

In this research, only boundary of the problem is

Figure 8. Resulted phreatic line from present method
and indoor testing.

modeled, and hence the number of collocation nodes
and source nodes are much less than similar solution
procedures that are based on domain type formula-
tions, whether they are mesh-free or �nite element
methods. Totally, all the mentioned e�orts translate to
time saving in both modeling and computing. It should
also be noted that the present method is sensitive to the
distance between source nodes and collocation nodes;
hence suitable results are achieved through trial and
error in node positioning.

6. Discussion

The advantage of current method is the usage of a
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fully mesh-free method, dealing only with the 
oating
boundary of the problem. In optimization procedure,
each individual proposes a di�erent curve which should
be analyzed. Ouria and Tou�gh used an optimization
procedure which was based on Finite Element Method
(FEM) analysis, but the procedure needs a special
strategy to establish a convergent method, because the
regularity of generated meshes has profound e�ects
on convergence of the results [7]. A study done
by Shahrokhabadi and Tou�gh introduced the use
of Natural Element Method (NEM) instead of FEM.
Despite much less sensitivity on mesh generation,
the mentioned procedure should consider the problem
domain to be tessellated by Delaunay triangles. Ac-
cordingly, the problem domain should be analyzed as
well, which is not the aim in �nding optimum phreatic
line. Moreover, Delaunay tessellation is a kind of mesh
generation in this approach. Subsequently, it is not a
fully mesh-free method [37].

The recent study proposes a method which uses
only the boundaries of the problem, and by using a
simple algorithm, results in the same achievements in
much less time-consuming process. The method also
considers the 
ow continuity which was not considered
in the previous studies. Specially, Figure 4 shows that
the previous studies did not consider 
ow continuity,
which means that phreatic line should be tangent on
downstream slope. It could not easily be obtained be-
cause the slope of rectangular dam is �

2 at downstream
(in the case of rectangular dam). However, introducing
suitable constraints in optimization procedure of the
presented method ful�lls this goal.

Eventually, the proposed method bene�ts from
Method of Fundamental Solution (MFS). This leads
to the analysis of all proposed individuals (curves)
by PSO. In the similar way, if FEM was used, some
randomly individuals which led to inappropriate mesh
generation would cause diverge. Therefore, this kind
of individuals should be omitted prior to analysis,
but in the current method, all individuals can be
analyzed.

Regarding the 15 times of running the algorithm,
the stability of the proposed method is observed in
Table 6. It is noteworthy that the stability of the
presented method is acceptable based on the shown
standard deviation.

Table 6. Stability of presented method with respect to
worst, mean, best, and standard deviation.

Case Worst Mean Best Standard
deviation

Example 1 1.65 0.7984 0.039 0.5389

Example 2 1.2 0.1447 0.0029 0.3275

Example 3 0.1892 0.0269 0.0003 0.0704

7. Conclusion

Here, the Method of Fundamental Solution (MFS) is
coupled with the particle swarm algorithm to simulate
uncon�ned seepage problem. Fundamental solution of
Laplace operator satis�es the governing equation. In
addition, the entire source nodes are placed outside
the computational domain, and thus singularities do
not appear. The computational procedure is the
boundary type of Mesh-free methods. The mesh
generation is not an issue here; in addition, only few
collocation points are needed along the boundary with
associated source nodes to model and solve the seepage
problem successfully without numerical integration, all
of which translates into time saving in modeling and
computations, as well as low requirement on computing
resources.

Particle Swarm Optimization (PSO) is adapted to
�nd the best possible 4th degree polynomial, thereby
minimizing the error function and satisfying 
ow con-
tinuity constraints.

PSO is an optimization procedure that does not
require the computation of error function's derivative.
Simplicity of PSO, as well as MFS, leads to the the
introduction of a new robust procedure that is not lim-
ited by the mesh generation or the usual optimization
issues.

Accuracy of the present method is con�rmed via
solving a standard rectangular homogeneous dam that
has been studied by other researchers. A trapezoidal
dam is also investigated and accurate results have been
obtained with satisfaction of 
ow continuity constrains,
and the accuracy of the present method is also evalu-
ated through experimental data, which is available in
other researches.
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