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Abstract. This paper proposes a novel method to obtain high-quality paths for self-
driving cars in underground parking lots. Self-driving cars require fast and accurate plan-
ning of collision less paths. When the self-driving car arrives at a parking lot, it downloads
the layout from the corresponding intelligent system and is assigned a parking space; then,
the locations of the designated parking space and the car are provided and pinpointed by the
intelligent system. A global path is planned by the global algorithm according to the loca-
tion of both parking space and car. In case of detecting dynamic or unknown obstacles in the
process of moving along the global path, the parameters of obstacles can be estimated using
the obstacle-detection algorithm. According to these obtained parameters, the local obsta-
cle avoidance path can be planned through the behavior dynamics method. After complet-
ing the obstacle avoidance, the car returns to the global path and continues to move toward
the target parking space. Finally, the proposed method was simulated by MATLAB, and
the results showed that the car could safely park in the target parking space. This method
could simultaneously satisfy the smooth and real-time requirements of path planning.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

The concept of self-driving car has recently received
extensive attention by many research institutions and it
has been applied to military, transportation, and other
scienti�c �elds [1]. The performance of path planning
determines the intelligence of a self-driving car and is
one of the most important core technologies among
the related technologies of the self-driving car. The
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main objective of path planning is to �nd a continuous
and collisionless path from the initial position to
the target position so that the path can satisfy the
environment, real-time, and kinematic and dynamic
constraints associated with self-driving cars.

Given the congested tra�c in urban scenarios, a
cluttered parking lot would be a challenging place to
navigate. Domokos and G�abor [2] presented a global
planning method for car-like vehicles, producing paths
with continuous curvature. Their proposed method
used straight segments, CCin-C-CCout triplets (CC-
turns), and elementary paths to generate a feasible
and human-like solution, even in narrow environments.
However, it was limited to a pre-set environment. Kim
et al. [3] adopted an improved Reeds-Shepp curve
algorithm for an e�ective forward and backward auto-
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Figure 1. Flow chart of the safety navigation method.

stop system. Their proposed auto-stop system enjoyed
an advantage, that is, the vehicle control system
was equipped with simple command data making the
vehicle move forward, backward, and laterally, as
well as tracking the travel distance values. However,
obstacle detection was neglected in the parking process.
Wang et al. [4] modeled a parking lot with a time-
varying graph. Their proposed system utilized a time-
dependent shortest-path algorithm and dynamically
tuned arc transit times based on planned vehicle routes
and tra�c 
ow sensor data. Simulation results showed
an average travel time reduction of more than 40% for
each in the best case. However, in the proposed system,
when a road was blocked at time t, for the simplicity of
implementation, the transit time of the corresponding
arc was chosen so that it could be increased at time t by
a constant to two times the speed limit of the parking
lot. In some cases, this method may cause an over-
tuning problem, i.e., the system tunes the transit time

of an arc to an unnecessarily large value so that the
time-dependent shortest-path algorithm cannot output
the actual optimal route.

In response to the above de�ciencies, in this
paper, a safety navigation method integrating global
path planning and local obstacle avoidance was
proposed to make the planned path suitable for
the self-driving car. The 
ow chart of the safety
navigation method is shown in Figure 1.

A great number of path-planning algorithms have
been taken from the self-driving car to face the chal-
lenges of road networks and driving rules. The most
relevant path planning algorithms implemented in mo-
tion planning for self-driving car are described below.

The A� algorithm is a graph search algorithm that
enables a fast node search due to the implementation
of heuristics. Its most signi�cant design aspect is
heuristic reducing computation time, yet the planning
path is not continuous and has many turns [5,6]. The



1320 J.K. Yin and W.P. Fu/Scientia Iranica, Transactions B: Mechanical Engineering 28 (2021) 1318{1328

Probabilistic Road Map (PRM) is a graph-based search
method that randomly selects N nodes in a planning
space. These nodes are �rst connected, the connection
lines with the obstacles are removed, and a path is
obtained [7]. Dijkstra's algorithm �nds the shortest
path in a series of nodes or grids and is suitable for
global planning in both structured and unstructured
environments. However, it functions slowly in vast
areas due to the signi�cant number of nodes. Since
the search is not heuristic and the resulting path
is not continuous, it is not suitable for real-time
applications [8{10].

Although the above-mentioned path planning al-
gorithms enjoy several advantages in solving general
planning problems, they are still required to model the
obstacles in a deterministic space and these constructed
models are quite complex. Therefore, these algorithms
cannot satisfy the needs of self-driving car path plan-
ning in a dynamically complex environment.

Rapidly exploring Random Tree (RRT) is a data
structure algorithm whose unique advantages make
it directly applicable to nonholonomic planning and
motion planning. The algorithm takes the given initial
point as the root node of the random tree and searches
quickly and e�ciently for a feasible space according to
the current environment. Therefore, RRT algorithm is
a randomized algorithm that can explore a large space
in a relatively short time, which is fast and e�cient for
the path planning of the self-driving car [11{14].

This paper is structured as follows: The global
path-planning algorithm is introduced in Section 2.
The local obstacle avoidance algorithm is discussed
in Section 3. Simulation results and discussion are
presented in Section 4. Finally, the conclusion and
future work are given in Section 5.

2. Global path-planning algorithm

In recent years, RRT algorithm has been widely studied
and used in the �eld of self-driving car path planning.
Since the random sampling strategy of the algorithm
does not need to preprocess the state space and has fast
velocity in the process of searching, it can e�ectively
solve the problem of path planning in a complex
environment. However, there are some defects:

1. The global uniform sampling strategy may increase
unnecessary cost and decrease the convergence rate;

2. The randomness of the algorithm generates an
unsmooth path that may not be directly executed
by the non-holonomic constrained self-driving car.

In view of the defects of the classical RRT algorithm,
some scholars have improved the algorithm. To im-
prove the search e�ciency, Ku�ner and LaValle [15]
proposed Bidirectional search tree (Bi-RRT) algorithm

in which two trees were simultaneously generated at the
initial point and target point to accelerate the conver-
gence rate of the algorithm. In view of the unsmooth
path generated by the randomness of the classical RRT
algorithm, Fraichar and Scheuer [16] employed the
method of a convolution curve to smooth the path.
However, the convolution curve method does not have a
closed-form solution, hence the path of the self-driving
car cannot promptly and accurately be planned. Lau
et al. [17] planned the path of a self-driving car using
a Quintic B'ezier curve, but the curvature continuity
of the path and constraints of the self-driving car were
neglected. Amiryan and Jamzad [18] employed some
randomized sampling methods such as the RRT or its
derivatives to plan a prior path, aiming to overcoming
the drawbacks of the Arti�cial Potential Field (APF)
method which comprise local minima and oscillation.
Qureshi et al. [19,20] introduced APF into the RRT�
algorithm to accelerate the rate of convergence and
signi�cantly reduce the number of iterations compared
with the classical RRT algorithm. Through combining
the reachability RRT and resolution-complete RRT,
Jaillet et al. [21] improved the success rate of the search,
especially the narrow channel, and reduced the number
of nodes in searching. However, the constraints of the
self-driving car are ignored by these methods, which
may lead to the planned path that does not meet the
requirements of the car.

2.1. Improved RRT algorithm
To solve the strong randomness of the generating node
of the classic RRT, the idea of gravitational force in
APF [22] was introduced into the classic RRT algo-
rithm (hereinafter referred to as A-RRT). The gravi-
tational force guides the random trees to grow toward
the direction of the target point, as shown in Figure 2.

The core idea of this improvement is to introduce
the target gravitational function G(n) to each node n in
the path. Here, n represents the nth point of the xnew
growing from the initial point xinit. Moreover, xrand
and xgoal denote the random node and target point,
respectively, and � represents the search step length.

In the gravitational function Gx = dUx=dx =
kp jxgoal � xnearj, x is the current position vector of the
self-driving car, kp the coe�cient of the gravitational

Figure 2. The growing process of nodes.
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�eld, xnear the nearest point, and jxgoal � xnearj the
absolute value of the geometric distance between the
node xnear and the target point xgoal.

According to the above-mentioned growing pro-
cess of nodes, the suitable target gravitational function
G(n) for RRT algorithm can be constructed as follows:

G(n) = � � kp � xgoal � xnear

jxgoal � xnearj : (1)

If a new leaf node is added through the A-RRT algo-
rithm, the target gravitational function will in
uence
the selection of the new node by calculating the gravity
from each node to the target and then, the random tree
will be guided toward the target to grow [23].

According to Eq. (1), the equation of generating
new nodes that introduced the idea of gravitation can
be obtained as:

xnew =xnear

+�
�
xrand�xnear

jxrand�xnearj+kp�
xgoal�xnear

jxgoal�xnearj
�
: (2)

2.2. Constraint condition
To make a planned path e�ectively applicable to the
self-driving car, the path should be tracked so that it
would meet the road environment constraints. It is as-
sumed that Bl and Br are the left and right boundaries
of the road and that the nodes of the generated random
tree should be within the boundaries. The coordinates
of the node position should meet Eqs. (3) and (4):

Br � ty � Bl; (3)

Pini � tx � Ptar; (4)

where Pini is the initial point of each extension and
Ptar is the target point of each extension.

Given that a car has a geometric shape, the width
of the car can be expressed as D. Since Eq. (3) is the
restriction on the coordinates in the y direction of the
nodes, we have:

Br �D=2 � ty � Bl +D=2: (5)

Given that the center of the mass of the self-driving
car moves along the planned path, the curvature of
the planned path cannot change too much to ensure
the stability while driving. If the actual front wheel
steering angle has a maximal value, �max, the con-
nection line between the child node xb and its parent
node xa is xaxb; and the connection line between the
parent node xa and its parent node xinit is xinitxa;
further, the angle � between xaxb and xinitxa must
satisfy � < �max. Generally, the value of � is between
30��40�. Then, the angle constraint can be expressed
as follows:

arctan ((K1 �K2)=(1 +K1K2)) < � � �max; (6)

where K1 is the curvature of the straight line xaxb, and
K2 is the curvature of the straight line xinitxa.

To ensure that the extended points do not inter-
sect with obstacles, the method for elliptically envelop-
ing obstacle and properly enlarging the safe ellipse was
adopted to meet the requirements of obstacle avoid-
ance. If the connection line between the new node and
its parent node does not intersect with the safe ellipse,
the expanded new point would meet the requirement of
the obstacle avoidance. In case the �ve-equal partition
point P (x; y) is placed on the connection line, the
constraint equation can be expressed as:

(x� xobs)2=(s � a)2 + (y � yobs)2=(s � b)2 > 1; (7)

where (xobs; yobs) are the coordinates of the obstacle
and s is the safe ellipse magni�cation coe�cient. In
addition, the half-length and width of the car are a =
2 m and b = 1 m, respectively. When s equals

p
2, the

safe ellipse just right envelops the rectangular obstacle;
therefore, it is necessary to guarantee s � p2 in terms
of security obstacle avoidance.

2.3. The process of smoothing the path
The path planned by the classic RRT algorithm usually
has a small range of twists and turns, thus being
discontinuous. To make the path meet the stability
and safety requirements of the car while moving, it is
necessary to smooth the planned path. The B-spline
can locally adjust the path without changing the entire
shape of the path. According to the feature of the B-
spline, the path planned by the classic RRT algorithm
can ful�ll the purpose of the smooth path using the
interpolation technique. The commonly used B-spline
is the cubic spline curve.

The proposed A-RRT algorithm does not need an
accurate model of the global environment, which can
greatly shorten the planning time and improve the real-
time performance of the algorithm. Furthermore, the
cubic B-spline curve is employed to smooth the path
generated by the A-RRT algorithm, which can ensure
the curvature continuity of the path and satisfy the
constraints of the self-driving car.

3. Local obstacle avoidance using behavioral
dynamics

The environmental information can be detected by the
sensors of the self-driving car. In case of detecting a
dynamic obstacle, the behavioral dynamics method is
employed to plan the local obstacle avoidance path for
the self-driving car and then, the self-driving car begins
to avoid the obstacle.

According to the behavioral dynamics theory
[24,25], the target and the obstacle can be represented
as an attractor and a repeller, respectively. The
attractor can generate virtual attraction between the
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target and current position of the self-driving car in
the process of moving. The repeller can generate
a virtual repulsive force between the obstacle and
current position of the self-driving car in the process
of moving. First, the relationship between virtual
attraction and behavioral variables was established
by making the target of the typical driving behavior
an attractor. Second, the relationship between the
virtual repulsive force and behavioral variables was
structured by making the obstacle around the self-
driving car a repeller. Finally, the behavioral dy-
namics model of self-driving car path planning was
established by combining the attraction and repulsive
force model.

According to the tra�c rules, the solid line cannot
be crossed by the vehicle and the dotted line can be
driven over for a short time, but the car cannot ride
on the line for a long time. The solid line is de�ned
as a strong constraint, and the dotted line is de�ned
as a weak constraint. The strong constraint must be
avoided while driving the car. The weak constraint
should not be avoided if the car needs to change lanes
or overtake another car while driving; only when the
car is driven in the mode of lane-keeping, for driving
safety, must a safe distance be kept between the car
and the lane.

3.1. Attraction model
According to the typical driving behavior of the self-
driving car, the relationship between the attraction
of tending to the target and the behavioral variables
including heading angle and velocity can be estab-
lished [26].

The behavioral variables of the self-driving car are
illustrated in Figure 3.

Figure 3. The behavioral variables of the self-driving car.

3.1.1. Heading angle attraction model
The heading angle attraction model is established by
the typical driving behavior of the self-driving car.
The heading angle  of the self-driving car must
�nally be consistent with the direction of the target.
By assuming that the direction of the target is the
attractor, it can be concluded that the heading angle
of the self-driving car must satisfy  tar 2 [��=2; �=2].
The heading angle attraction equation of tending to
the target can be established according to Fu et al.
[27], which is expressed as follows:

ftar = ftar; ( ) = ��tar; tan( �  tar); (8)

where �tar; is the heading angle attraction strength
factor, and the magnitude of the virtual attraction is
changed by adjusting �tar; . Moreover,  tar is the
heading angle between the target and the self-driving
car in the world coordinate system:

 tar = arctan((Ptar;y � Pveh;y)=(Ptar;x � Pveh;x)):

In addition, Ptar (Ptar;x, Ptar;y) and Pveh (Pveh;x,
Pveh;y) are the positions of both target point and
the self-driving car in the world coordinate system,
respectively.

Figure 4 shows the local coordinate system on the
self-driving car. The x0-axis direction is the moving
direction along the axis of the car, and the y0-axis
direction is perpendicular to the axis direction of the
car. Further, �tar 0 is the angle between the direction of
vehicle velocity and x0 coordinate, which is a behavioral
variable.

To ensure the �nal velocity direction in line with
the axis of the car and parking space, the speci�ed
parking space centerline is set as the target pose
attractor.

The pose behavioral dynamics model [28] of the

Figure 4. The coordinate system of the car.
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self-driving car can be established as follows:

_� = �� j�0 � �0tarj ; (9)

where � is the factor of pose attraction strength.

3.1.2. Velocity attraction model
In the path planning process of the self-driving car,
it is necessary to consider the safety and dynamic
characteristics of the car while establishing the velocity
attraction model. The velocity of the car must have
an upper limit. The contact time can be expressed as
T = dtar=v, where dtar is the distance between the self-
driving car and the target point. The contact time T
cannot be too long nor too short and must ensure the
safe distance of the car. Here, Tmax is the maximum
contact time:

Tmax = (dtar �Ds=v);

where Ds is the safe following distance. Furthermore,
the acceleration of the self-driving car _v must be lower
than that of the target car _vtar; otherwise, there will
be a collision.

According to [29], the velocity attraction equation
of tending to the target can be established as follows:

ftar;v(v) = ��tar;v(v � vtar) exp
�

(v � vtar)2

2�2
v

�
; (10)

where �tar;v is the velocity attraction strength factor,
and the size of the virtual attraction of the target point
to the self-driving car can be changed by adjusting
�tar;v. In addition, vtar and Dveh are the expected
velocity and width of the self-driving car, respectively,
and �v is the range of the attractor, which can be
expressed as:

�v = arcsin
�
Ds +Dveh

Dveh

�
; (11)

when the target is ahead of the moving car, vtar is the
velocity of the target car. Otherwise, the self-driving
car will drive at a constant velocity. The current
velocity of the self-driving car vc can be achieved
according to the inertial navigation system. The
distance S between the self-driving car and the target
car can be measured by the millimeter wave radar, and
the initial velocity vo can be set.

The velocity of the target car vtar can be calcu-
lated as follows:

vtar =
p

2aS + v2
c ; (12)

a =
vc � vo
Tmax

: (13)

3.2. Repulsive force model
According to the surrounding environment of the self-

driving car, the relationship between the repulsive force
and behavioral variables including the heading angle
and the velocity can be established.

3.2.1. Heading angle repulsive force model
If a static or moving obstacle is detected while moving
toward the target point, the self-driving car must be
able to safely avoid the obstacle and safely reach the
target point. Here,  obs represents the repeller as an
unstable point that turns the in
uence of an obstacle
to zero in the behavioral dynamics method.

According to [30], the repulsive force equation of
the heading angle can be established as follows:

fobs;i( obs;i) =� �obs;i( �  obs)

�exp(�Cdobs;i)exp(�( � obs;i)2

2�2
obs;i

);
(14)

 obs;i = arctan(
Pobs;iy � Pvehy
Pobs;ix� Pvehx ); (15)

where �obs;i represents the heading angle repulsive force
strength factor, and the repulsive force can be changed
by adjusting �obs;i; C is the repulsive coe�cient of
attenuation with increasing distance, dobs;i the distance
between the obstacle and the self-driving car; and
Pobs;ix and Pobs;iy are the coordinates of the obstacle in
the world coordinate system. Further, �obs;i represents
the range of a repeller, which can be expressed as
follows:

�obs;i = arcsin(
Ds +Dveh

dobs;i +Dveh
): (16)

The heading angle repulsive force equation of multiple
obstacles can be written as follows:

Fobs =
X
i

fobs;i( obs;i): (17)

3.2.2. Velocity repulsive force model
In the path planning process, the velocity of the self-
driving car is not only related to the distance dobs
between the current position of the self-driving car
and the obstacle but to the safe distance Ds. Under
the premise of guaranteeing the minimal safe distance,
the linear velocity of the self-driving car decreases by
decreasing dobs.

According to Han et al. [31], the linear velocity
repulsive force equation can be established as:

fobs;i(v) = ��obs;v(v � vobs;i) exp
�

(v � vobs;i)2

2�2
v

�
:
(18)

3.3. Behavioral dynamics model
According to the above established attraction model
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and repulsive force model of the heading angle and
velocity, the behavioral dynamics model of the self-
driving car can be established by the weighting of each
attraction and repulsive force. In practical applica-
tions, each behavior needs to be coordinated and then,
be used for controlling the vehicle behavior.

Synthesized behavioral dynamics model that in-
cludes velocity and heading angle can be established
as:

_v = fv = wobsfobs;i(v) + wtarftar(v); (19)

_ = f = 
obsFobs + 
tarftar; (20)

where wobs, wtar, 
obs, and 
tar are the weight coe�-
cients of the behavioral dynamics model. According to
the weight of each behavior in the actual model, the
force of each behavioral variable can be changed by
altering the weight coe�cient. The interference should
be eliminated so that the target behavior and obstacle
avoidance behavior can simultaneously occur; to this
end, the four weight coe�cients should di�er depending
on the situation in the simulation process.

4. Simulation and discussion

To illustrate the e�ect of the A-RRT algorithm, Fig-
ure 5 contrasts the planning results of the A� algorithm
with those of the A-RRT algorithm. The initial param-
eters of the self-driving car are CarPos = [165, 20, 90,
5, 8, 90, 1] (initial x coordinate, initial y coordinate,
heading angle, velocity, perceptive distance, perceptive
angle, size of car), and the target position parameters
are TargetPos = [25, 175, 90] (x and y coordinates
of the target parking space). The obstacle position
parameters are ObstaclePos = [90, 95]. The horizontal

Figure 5. The chart of algorithm e�ect comparison.

Table 1. Comparison of simulation experimental data.

30 Experiments A� A-RRT

Planning time (s)

0.166 0.181
0.189 0.237
0.262 0.284
0.381 0.464
0.155 0.152

The length (m)

130.922 132.423
131.246 132.680
129.854 130.262
130.573 133.025
130.248 130.883

Successful times 30 30

Mean square deviation
of the path curvature

0.138 0.094

length is 200 m. In addition, MATLAB 2014a is used
hybrid for simulating the algorithm. A comparison of
the results is presented in Figure 5 and Table 1.

The path of the A-RRT algorithm was smoother
that of the A� algorithm, and there were no frequent
considerable curvature changes. To objectively evalu-
ate the performance of the algorithm, two algorithms
were planned 30 times in the same experimental scene
mainly because of the randomness of A-RRT algorithm.
Table 1 presents the partial results of the 30 experi-
ments, including �ve planning times, �ve path lengths,
times of success, and mean square deviation of path
curvature.

According to the results of the simulation ex-
periments in Figure 5 and the data in Table 1, A�
algorithm outperforms A-RRT algorithm in planning
time and path length; however, A-RRT algorithm
enjoys some signi�cant advantages in terms of path
smoothing and meeting car constraints. Therefore, the
A-RRT algorithm is more suitable for the self-driving
car.

Figure 6 illustrates the process of obstacle avoid-
ance. The self-driving car and the obstacles are
both located in an initial position at t1 moment. A
millimeter wave radar and two ultrasonic radars are
arranged on the head of the self-driving car. The
detection range is expressed as a sector, and the angle
of the sector is 120�. Both car and dynamic obstacle
keep their own velocity vector before t3 moment, and
the car moves toward the target point at a speed of
5 km/h. When the dynamic obstacle is detected at
t3 moment, a red mark appears and then, the path
of obstacle avoidance is planned using the behavioral
dynamics method. The average time of all 20 times
of obstacle avoidance path planning is 0.072 s, and
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Figure 6. Obstacle avoidance using the behavioral dynamics method.

the planning time decreases while improving the com-
puter con�guration. Furthermore, the time it takes
for a human from discovery to brain judgment to
manipulation of the hands and feet is called reaction
time, which is about 0.38 s. Hence, the behavioral
dynamics obstacle avoidance meets the requirement of
real time.

Monte Carlo method is a stochastic simulation
method that uses random numbers or some kind of
probability phenomenon to simulate the real-world
problems. Since the self-driving car may randomly
stop during parking to the designated parking space,
this method can be employed to simulate the path
between the random initial state and target state. As
the path length is proportional to the navigation error
of the goal point, the navigation path planning problem
can be reduced to the shortest path problem from the
initial state to the target state under the premise of
the maximum allowable error. The process of safety
navigation is shown in Figure 7.

Figure 7(a) shows the environment of the un-
derground parking lot of the Wal-Mart International
Shopping Center. The area of the underground parking
lot is 26,000 m2 with 800 parking spaces. The size

of the parking space is 5.5�2.4 m. Moreover, the
width of the parking space line and the lane line
are 9 cm, and the lane width is 6 m. Figure 7(b)
shows the layout of the parking lot. Figure 7(c)
presents the global and partial enlarged drawing of
the planning path. The entrance coordinate of the
parking lot is [885, 55], expressed in green, and can
be used as the initial point. The designated parking
space coordinate is [658, 110], expressed in yellow, and
can be used as the target point. The global path
can be planned using the A-RRT algorithm and then,
the proposed obstacle detection algorithm is used to
estimate the obstacle parameters when the dynamic
obstacle is detected. The black rectangle represents the
dynamic obstacle and the larger rectangle that wraps
the dynamic obstacle represents the area of potential
collision. According to the initial point coordinates
and foregone values, the parameters for the dynamic
obstacle can be calculated. The possible radius and
velocity of the dynamic obstacle are in the range of
0.5{0.8 m and 3.5{4 m/s, respectively. The estimated
parameters for the dynamic obstacle are transmitted
to behavioral dynamics for obstacle avoidance, and the
process of obstacle avoidance for the self-driving car
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Figure 7. The process of safety navigation

can be clearly observed in Figure 7(c); then, the self-
driving car returns to the global path. Finally, it safely
reaches the designated parking space.

5. Conclusion

For the typical self-driving scene of the parking lot,
an e�cient trajectory planning framework for the self-
driving car was presented in this study. In this
respect, APF was introduced into the classical RRT
algorithm to accelerate the convergence speed and
obtain an optimal solution. The convergence rate
enhanced by almost four times, the smoothness and
curvature continuity of the path were greatly improved,
as shown in Table 1, and the improved algorithm
only required 68% of the original iterations to �nd a
solution. Moreover, constraints of the road and self-
driving car were considered during the expansion of
the nodes, making the planning path meet the self-
driving car requirements. The behavioral dynamics
method was employed to plan an obstacle avoidance
path based on the dynamic obstacle parameters and the
average time of replanning the path was 0.072 s, thus
meeting the real-time requirement. The experimental
results from MATLAB indicated that the hybrid path
planning model showed a good real-time performance
and reliability, and the self-driving car could safely
bypass the obstacle along the desired path and reach
the target point. Future related works should apply the

proposed method to a real self-driving car to perform
real-life tests and further performance measurement.
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