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Abstract:   

After its rapid economic growth, China is facing a very serious problem of 

atmospheric pollution with major long-term atmospheric problems appearing in large 

cities. Air pollution not only affects people’s normal lives, but also has a greater 

negative impact on their bodies, causing diseases, impacting productivity, and 

influencing people’s creativity. Due to past articles, the discussion on the efficiency of 

innovation and research has not been considered the impact of environmental 

variables. This study combines energy consumption, economics, environmental 

variables and innovative research and development capabilities to analyze and explore 

the relationship between consumption, environment, economy, and innovative R&D 

capabilities, this is the feature of this article. This study employ the Dynamic Data 

Envelopment Analysis (DEA) model to calculate energy consumption efficiency, 

R&D input efficiency, innovation patent output efficiency, carbon dioxide emission 

efficiency, and AQI efficiency of each city and further compare each city to find their 

space for improvement. The results of the study show that 10 cities have a total 

efficiency score of 1, implying the improvement space is already 0, whereas the total 

efficiency scores of the other 21 cities mean there is still much room for improvement, 

and there are big differences among the cities.  
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1. Introduction 

Innovation capability is considered to be the most important ability for economic 

growth and social development in this new century, as it plays an extremely important 

role in sustainable development and acquiring competitive advantages for a nation 

and society. The development of innovative industries brings forth many employment 

opportunities and promotes the adjustment of industrial structure. Profit-oriented 

cities generally shift from traditional industries with high energy consumption and 

high pollution to high-tech and low-emission industries so as to achieve their own 

green, sustainable economic structure and economic growth model. After its rapid 

economic growth, China is facing a very serious problem of atmospheric pollution 

with major long-term atmospheric problems appearing in large cities. Air pollution 

not only affects people’s normal lives, but also has a greater negative impact on their 

bodies, causing diseases, impacting productivity, and influencing people’s creativity.  

To evaluate cities’ or countries’ performances in urban economic growth and energy 

consumption, most research studies have focused on energy consumption and carbon 

emissions, such as Hu and Wang [1], Kumar [2], Gomes and Lin [3], Zhou et al. [4], 

Yeh et al. [5], Zhang et al. [6], Choi et al. [7], Wang et al. [8], Lin and Yang [9], Zhou 

et al. [10], Pan et al. [11], Wang and Feng[12], Wu et al. [13], Liou et al. [14], Meng 

et al. [15], Wang et al. [16], Du et al. [17], and Feng et al. [18].  Some have 

conducted studies on the efficiency of urban energy and environmental assessment 

using sewage, sulfur dioxide, etc. as indicators for measuring environmental pollution, 

like Vardanyan and Noh [19], Rao et al. [20], Long et al. [21], Bi et al. [22], Wu et al. 

[13], Bian et al. [23], and Wang et al. [24].  

Some scholars analyze the impact of heating emission on air quality and explore how 
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to use new technologies or methods to reduce air pollution. Li et al. [25] Using the 

AQI heating model to analyze the relationship between AQI and heating system and 

energy conversion in building space through regression model; Li et al. [26] provide a 

method to accurately quantify the impact of China's heat emission on air quality. Xu 

et al. [27] used observations to assess the impact of Beijing's air pollution in winter 

and summer on energy demand; Tong et al. [28] proposed that natural ventilation can 

reduce building energy consumption and maintain a healthy indoor environment. 

Bidokhti et al [29] established a framework to observe emissions, urban climate 

change and mitigate and adapt to climate change in response to climate impacts in 

Tehran; Ahmadzadehtalatapeh [30] proposed a solar assisted desiccant evaporative 

cooling system for office building, providing energy and reducing pollution. 

Meanwhile, many scholars have suggested that air pollution has a problem with 

human health. Liao et al. [31] collected the Yangtze River Delta region data in 

2013-2016 to understand the air quality and health effects. The results showed that 

public health risks were the highest, and O3 pollution accounted for 70% of the public 

health problem; Li et al. [32] believe that heating emission leads to deterioration of 

environmental quality and human health. He used the heating impact index (HII) to 

evaluate 66 major cities in China and found that when AQI was 45%, the pollution 

time was 39%. Khveis et al. [33] estimated the number of asthma cases caused by 

NO2 and NOx each year in Bradford, England, and found that the increase in the 

number of asthma cases per year is related to air pollution caused by traffic; Maji et al. 

[34] used the exposure-response functions (ERF) model to assess the relationship 

between PM2.5 and mortality in 161 cities in China. The results showed that the 

number of premature deaths associated with PM2.5 was 652,000. 

There are of course many scholars who have conducted in-depth research on 
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innovation efficiency. For example, Laitinen [35] considered that a firm’s creativity 

and development capability can be appropriately quantified by the number of patents. 

Urpelainen [36] collected data on 22 OECD countries from 1991-2007, using 

statistical analysis to explore the impact of export orientation on energy efficiency 

innovation. Those empirical results found that export orientation has large positive 

effects on energy efficiency innovation.  

Bai and Li [37] used data of 30 regions in China from 1998-2008 for empirical 

analysis to explore the impact of government research expenditure on innovation 

efficiency, stating that local government R&D funding has a significantly negative 

impact on regional innovation efficiency. Chen and Guan [38] collected data from all 

regions in China and employed the relational network data analysis envelopment 

model to analyze the innovation efficiency of each region. Bai [39] applied stochastic 

frontier methods to estimate regional innovation efficiency in China and to investigate 

the major factors affecting efficiency scores. Moon [40] gathered data on South 

Korea’s electronic equipment industry, using the fuzzy data envelopment analysis 

(DEA) model to analyze the industry’s innovation efficiency and finding that it can 

save 28.7% of inputs by improving innovation efficiency.  

Chen et al. [41] combined the network SBM model with DEA window analysis to 

measure the trend and heterogeneity of technological innovation efficiency based on 

the data of 17 industry segments of China’s high-tech industry. Chen and Kou [42] 

collected province-level regional data and utilized the two-step hybrid analytical 

procedure model to analyze China’s province-level regional innovation systems. The 

empirical study showed that China’s regional innovation systems perform poorly in 

both technological creation efficiency and technological commercialization. Suh and 

Kim [43] uses the DEA method to estimate innovative activity efficiency of service 
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firms. Wan et al. [44] took data of industrial enterprises in China from 2006 to 2010 to 

explore the impacts of technological innovation modes on the eco-efficiency of 

industrial enterprises, finding that domestic independent innovation has a positive 

significant impact on their eco-efficiency in the Eastern region. Wang et al. [24] 

collected data from energy companies in China from 2009 to 2013 and used a 

two-stage DEA model to construct R&D efficiency, market efficiency, and integrated 

innovation efficiency indicators for each energy company. The empirical results show 

that all companies performed well in R&D efficiency and innovation efficiency.  

Kou et al. [45] proposed a new formulation approach for dynamic network DEA and 

evaluated the innovation efficiency of OECD countries in a multi-period and 

multi-division context. Huang et al. [46] collected 8601 Chinese firm-year 

observations from 2007 to 2012 and took a two-stage approach to explore the impact 

of religion in a firm’s social environment on corporate innovation and innovation 

efficiency. Greco et al [47] gathered 43,230 European firms to discuss the relationship 

between public subsidies and open innovation. The empirical results showed that local 

and national subsidies can improve innovation efficiency. Chen and Lei [48) used the 

Panel quantile regression model to study the impact of renewable energy and 

technological innovations in 30 countries and found that technological innovations 

affect countries with relatively high CO2 emissions. 

In the past, it was learned from the literature that scholars' research focuses on 

the analysis of energy consumption efficiency, the influence of heating emission on 

air quality and how to use new technologies or methods to reduce the impact of air 

pollution on human health. For research and development, only research and 

development efficiency is emphasized. Few articles combine the relationship between 

R&D, energy consumption and air pollution to establish a systematic framework to 
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explore the relationship between economic and social interactions and to provide 

more effective government recommendations in policy. 

 Thus, this study uses energy consumption, R&D, patents, CO2 emissions, and the 

AQI index in 31 cities of China from 2013 to 2015 as input and output variables. 

Using re-sampling to estimate various indicators in 2016, we employ the Dynamic 

DEA model to calculate energy consumption efficiency, R&D input efficiency, 

innovation patent output efficiency, carbon dioxide emission efficiency, and AQI 

efficiency of each city and further compare each city to find out the space for 

improvement. 

2. Research methods 

The research method herein is combined with Tone [49] in order to propose a 

re-sampling past-present-future model and also utilizes the Slack-Based Measures 

(SBM) Dynamic DEA model of Tone and Tsutsui [50] First, we use the re-sampling 

method to estimate the data of input and output variables in 2016 and then take 

2013-2016 data to conduct dynamic efficiency analysis. We describe this as follows.  

 

2.1  Resample Past-Present-Future Model 

Both the radial and non-radial efficiency measures in Data Envelopment Analysis 

(DEA) have errors in measurement. For example, Simar and Wilson [51,52] proposed 

a bootstrap method that considers repeated sampling to obtain the most efficient 

sample distribution. Tziogkidis [53] stated that the bootstrap DEA exhibits very 

significant development and application. However, these methods still have problems. 

For example, the characteristics of input and output (that is, DMUs are different) are 

not taken into account. The bootstrapping method, although it is like a re-sampling 

method, treats existing observations as maternal repeated sampling. In order to obtain 



7 

 

the original data deficiencies, it cannot explore the characteristics of the data. Tone 

[49] set up a repeat sampling method to eliminate DEA measurement error, and this 

method can also be used to predict the future efficiency value of a DMU. This model 

uses past DMU input and output data, (Xt, Yt)(t = 1, … , T), to predict future DMU 

input and output values (XT+1, YT+1) and then repeats sampling. DEA estimation can 

find the DMU confidence interval efficiency value. 

There are generally three methods for predicting the input and output values of future 

DMUs:  1) trend analysis, 2) weighted average, and 3) average of trend and weighted 

average. Essentially, these three methods offer little differences. From the trend 

analysis method, the correlation between input and output is higher than that from the 

weighted average method, the integrated average trend, and the weighted average 

method. Therefore, this study uses trend analysis and repeated sampling methods to 

estimate the input and output values of DMUs in 2016 and the DMU confidence 

interval efficiency value. 

2.2 Dynamic DEA 

DEA uses the envelope (i.e., isoquant) to project in space the input variables and 

output variables of all evaluated units. Depending on whether the projection point 

falls on the production boundary, a performance index ranging from 0 to 1 is then 

given as a judgment on whether there is efficiency between input and output. Charnes 

et al. [54] proposed their CCR model, which determines the architecture of the DEA 

model and solves multiple inputs and multiple outputs in a linear programming model 

with a fixed scale of return. However, the scale of change in the production process 

seems to be the norm in practice and cannot be considered as a fixed scale of 

compensation. Hence, Banker et al. [55] added the convexity limit of the linear 
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combination, replaced the assumption of constant returns to scale (VRS) by variable 

returns to scale (VRS), and offered the well-known BCC DEA model. Different from 

the CCR and BCC models, Tone [56] proposed using slacks as non-radial and 

non-oriented estimation methods to solve the problem that inputs or outputs cannot be 

adjusted by equal proportions in order to solve the most efficient problem. They 

called it the Slacks-Based Measure (SBM) model. The efficiency value calculated by 

this model has the following characteristics. 

1) Unit invariance:  the efficiency value of the evaluated unit does not change with 

the unit of measurement of input and output items. 

2) Monotone:  the difference between oversupply or output shortage will incur a 

decreasing monotone - that is, the input or output slacks gradually decrease. 

Slacks-Based Measure (SBM) model: 
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  is a non-radial slack indicator 

m and s are the amount of input and output 


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and 



rs  represent the input slacks and output slacks 

X  and Y  represent values of the efficiency boundary of input and output items. 

 

Tone and Tsutsui [50] extended the model to the Slack-Based Measures (SBM) 
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D-DEA model. They used carry-over as a dynamic period link and classified inputs 

and outputs as desirable (good), undesirable (bad), discretionary (free), 

non-discretionary (fixed), etc. The D-DEA model is divided into input-oriented, 

output-oriented, and non-oriented types.  

We assess overall efficiency (OE) and term efficiency (TE) with the non-oriented 

SBM D-DEA approach in this study. Each period has independent input and output in 

every DMU, and there is a carry-over link from period t to t+1 so as to find the 

change across two periods. 

 

This model sets up n DMUs (j = 1, 2, …, n) over T periods (t = 1, 2, …, T). The 

DMUs have multiple different and independent inputs and outputs in each term, with 

the zgood as a carry-over from period t to period t+1 herein. The carry-over is 

guaranteed by equation (2): 

∑ 𝑧𝑖𝑗𝑡
𝛼𝑛

𝑗=1 𝑗
𝑡 = ∑ 𝑧𝑖𝑗𝑡

𝛼𝑛
𝑗=1 𝑗

𝑡+1  (; 𝑡 = 1, … , 𝑇 − 1)      (2)           

Here, symbol  shows good, bad, free, fix, etc., the non-oriented overall efficiency 

(*) is calculated by equation (3), and 
t
 and i are weights to term t and the input. 

 ∗ =

1

𝑇
∑ 𝜔𝑡[1−

1

𝑚+𝑛𝑏𝑎𝑑
(∑

𝜔𝑖
−𝑠𝑖𝑗

−

𝑥𝑖𝑜𝑡
+∑

𝑠𝑖𝑡
𝑏𝑎𝑑

𝑧𝑖𝑜𝑡
𝑏𝑎𝑑)𝑛𝑏𝑎𝑑

𝑖=1
𝑚
𝑖=1 ]𝑇

𝑡=1

1

𝑇
∑ 𝜔𝑡[1−

1

𝑠+𝑛𝑔𝑜𝑜𝑑
(∑

𝜔𝑖
+𝑠𝑖𝑗

+

𝑦𝑖𝑜𝑡
+∑

𝑠
𝑖𝑡
𝑔𝑜𝑜𝑑

𝑧
𝑖𝑜𝑡
𝑔𝑜𝑜𝑑)

𝑛𝑔𝑜𝑜𝑑
𝑖=1

𝑠
𝑖=1 ]𝑇

𝑡=1

          (3)     

Equation (2) is the connection equation between t and t + 1. 

 

xiot = ∑ xijt
n
j=1 λj

t + sit
−            (i = 1, … , m; t = 1, … , T)  

xiot
fix = ∑ xiot

fixn
j=1 λj

t                (i = 1, … , p; t = 1, … , T)    

yiot = ∑ yijt
n
j=1 λj

t − sit
+            (i = 1, … , s; t = 1, … , T)      (4)   

 yiot
fix = ∑ yiot

fixn
j=1 λj

t               (i = 1, … , r; t = 1, … , T)  
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ziot
good

= ∑ ziot
good

n

j=1

λj
t − sit

good
   (i = 1, … , ngood; t = 1, … , T)                  

ziot
bad = ∑ zijt

badn
j=1 λj

t + sit
bad        (i = 1, … , nbad; t = 1, … , T)  

ziot
free = ∑ zijt

freen
j=1 λj

t + sit
free       (i = 1, … , nfree; t = 1, … , T)  

ziot
fix = ∑ zijt

fixn
j=1 λj

t                (i = 1, … , nfix; t = 1, … , T)  

∑ λj
t n

j=1 = 1                     (t = 1, … , T)  

λj
t ≥ 0, sit

− ≥ 0, sit
+ ≥ 0, sit

good
≥ 0, sit

bad ≥ 0 and sit
free: free(∀i, t),   

The non-oriented term efficiency (*) follows below: 

 ∗ =
1−

1
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1−
1
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+
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         (5)   

3. Empirical study 

3.1 Data and variables 

Figure 1 reveals the framework of the inter-temporal efficiency measurement and 

variables. According to the basic production theory, employees, R&D, and energy are 

defined as input factors; GDP are used as output factors in the evaluation; and CO2, 

AQI, and patents are defined as carry-over intermediates, which are outputs produced 

in the current period that can be used as an input for the next period as well.  

 

(Insert Figure 1 here) 

3.2 Data sources and description 

The study uses panel data for 31 cities that represent the most developed cities in 

China. Economic and social development data by cities from the years 2013 to 2016 

are collected from the Statistical Yearbook of China, Demographics and Employment 

Statistical Yearbook of China, and City Statistical Yearbooks. Air pollutants data are 
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collected from China Environmental and Protection Bureau Annual Reports and 

China Environmental Statistical Yearbook.  

The 31 sample cities are all capital cities that have the greatest pool of population and 

most aggregation of industries in the regions. The cities together represent the air 

pollution emission situation in China. We explain the variables (see Table 1) herein as 

follows. 

(Insert Table 1 here) 

 

Input variables 

Labor input (em):  This study uses the numbers of employees in each city by the 

end of each year. Unit: person.  

Energy consume (com):  It is calculated from the total energy consumption in each 

city. Unit: 100 million Ton. It included coal, oil, natural gas, and the total 

consumption of primary electricity and other energy. 

R&D (R&D) expenditure:  Research and development expenditure refers to the 

depreciation of the assets used in the R&D process, the raw materials consumed, the 

wages and welfare expenses, the rent incurred during the development process, and 

the borrowing costs. 

Output variable  

Gross Domestic Production (GDP):  Refers to the market value of all final 

products (products and services) produced in economic activity in a certain period 

(one quarter or one year). GDP is the core indicator of national economic accounting 

and is an important indicator for measuring the economic status and development 

level of a country or region. It consisted of the gross output for the primary, secondary, 

and tertiary industries calculated at current prices: unit: 100 million CNY. This study 
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uses the GDP of each city to measure their economic status. Unit: 100 million Yuan 

RMB.  

Carry-over Variables 

Patent (Pat):  Refers to the protected exclusive rights owned by the pioneers of 

certain inventions. It is a document issued by a government agency or regional 

organization representing several countries on the basis of an application, including 

the content of inventions and creations, and in a certain period of time a legal status is 

allowed in which patented inventions are created in general. It can only be 

implemented with the permission of the patent owner. We use the number of patent 

documents issued by each city each year as an indicator of the city’s innovation. 

Carbon emissions (CO2):  CO2 emissions data for each city were estimated from 

the energy consumption CO2 is seen as a primary cause of changing earth 

temperatures and rising sea levels. Among greenhouse gas emissions, carbon dioxide 

is the main component of greenhouse gases, and so CO2 emissions are used as an 

indicator for each city. 

Air Quality Index (AQI):  Is a non-linear dimensionless index that quantitatively 

describes air quality. A larger value, a higher level and category, and a darker color of 

the representation indicate that air pollution is more serious and has greater harm to 

human health. The major pollutants are fine Particulate Matter (PM2.5), PM10, SO2, 

NO2, O3, CO, etc. (PM2 .5 and PM10 are the 24-hour average concentration). PM2.5 

refers to atmospheric particulate matter (PM) that has a diameter of less than 2.5 

micrometers, written as PM2.5 and with the unit of micrograms / cubic meter. SO2 

refers to sulphur dioxide or sulfur dioxide. It is released naturally by volcanic activity 

and is produced as a by-product of the burning of fossil fuels contaminated with sulfur 

compounds. NO2 refers to Nitrogen Dioxide (NO2) and is one of a group of highly 
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reactive gases known as oxides of nitrogen or nitrogen oxides (NX). It is an 

intermediate in the industrial synthesis of nitric acid, and millions of tons of it is 

produced each year. At higher temperatures it is a reddish-brown gas that has a 

characteristic sharp, biting odor and is one of the most prominent air pollutants.  The 

AQI was considered to be the maximum value of the Individual air quality index 

(IAQI) for each pollutant. When the AQI was greater than 50, the corresponding 

pollutant was the primary pollutant, and pollutants with an IAQI greater than 100 

were considered excessive. 

3.3 Statistic description of input and output data 

From 2013 to 2016, the various input variables include Energy Consumed, Labor 

Input, and R&D Expenditure, whiles output variables are Gross Domestic Production 

(GDP), Patents, CO2, and AQI, which are defined as carry-over intermediates that are 

outputs produced in the current period that can be used as an input for the next term. 

  

As can be seen from the Table 2 and Figure2, the maximum value of the patent’s 

index has risen the most over time in all input and output indicators, but the difference 

between the maximum and minimum values also varies greatly. The maximum GDP 

and R&D costs of each city are growing rapidly, and the gap between the maximum 

and minimum of R&D costs is also relatively large. Relatively speaking, the gap 

difference between the maximum and minimum values of GDP is smaller than the gap 

of patents. The average of the two indicators shows an upward trend. Changes in other 

indicators are relatively flat. We see that the average of energy consumption and 

employed population increased slightly from 2013 to 2016. The maximum values of 

CO2 emissions and AQI indices have increased over time, but the mean values of 

these two indicators have shown a downward trend. 
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(Insert Figure 2 here) 

(Insert Table 2 here) 
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3.4 Empirical analysis and results 

3.4.1 Total city efficiency scores and evaluation 

From Table 3 and Figure 3, we can see that there is a big difference in the total 

efficiency of each city. First, the cities with an efficiency score of 1 include Beijing, 

Changsha, Guangzhou, Hangzhou, Hefei, Huhehot, Nanjing, Nanning, Shanghai, and 

Tianjin, indicating that the room of improvement for these cities is 0. Cities with an 

efficiency score below 0.2 include Haikou, Lanzhou, Lhasa, Taiyuan, Urumqi, Xining, 

and Yinchuan. The room for improvement in the total efficiency of these 7 cities is 

very large. Cities with an overall efficiency score of around 0.4 include Changchun, 

Harbin, Jinan, Kunming, Nanchang, and Shenyang. The efficiency of these cities is 

only slightly higher than the above 7 cities. However, they still have room for 

improvement. There are also cities that have room for improvement, but have little 

room for efficiency improvement, including Chengdu, Fuzhou, Wuhan, and 

Zhengzhou. 

From the perspective of time, there are some cities whose overall efficiency is 

declining. These cities are Lanzhou, Shenyang, Xining, Harbin, Haikou, Jinan, Xining, 

and Yinchuan. As Chengdu, Chongqing, Fuzhou, and Kunming changed over time, 

their total efficiency rose first and then declined. The total efficiency of cities such as 

Changchun, Guiyang, and Urumqi fluctuates greatly. There are also fewer cities 

where total efficiency has risen over time, such as Xian, Nanchang, and Wuhan. 

(Insert Table 3 here) 

(Insert Figure 3 here) 

      

3.4.2 Cities’ efficiency score evaluation of energy consumption, patents, CO2 

emissions, and AQI 

From the total efficiency scores of cities, we can see that different cities’ efficiency 
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has great room for improvement. Next, we look at the changes in the efficiency scores 

of the major input indicators and output indicators for each city. Through re-sampling, 

we estimate the various input and output indicators of each city in 2016 and then 

calculate the efficiency scores of various input and output indicators of each city 

through the dynamic DEA method, as shown in Table 4. Table 4 and Figure 4 present 

the scores of energy consumption efficiency, patent efficiency, carbon dioxide 

efficiency, and AQI efficiency of each city, as well as their changes over time. There 

are also very large differences between the indicators in different cities. 

From the perspective of differences in energy consumption efficiency, cities with an 

efficiency score of 1 include Beijing, Changsha, Guangzhou, Hangzhou, Hefei, 

Huhehot, Nanjing, Nanning, Shanghai, and Tianjin. The room for improvement to 

energy consumption efficiency of these cities is naturally 0. Cities with an energy 

consumption efficiency score of 0.4 or below are Changchun (except for 2016, when 

it has 1), Guiyang, Jinan, Kunming, Lanzhou, Shijiazhuang, Taiyuan, Xian, Xining, 

and Yinchuan. It shows that the energy consumption of these 10 cities can be greatly 

improved. In addition, the energy consumption efficiencies of 8 cities are around 0.6 

or above 0.6, such as Chongqing, Fuzhou, Harbin, Haikou, Nanchang, Shenyang, 

Urumqi, and Wuhan. From the perspective of time, Wuhan’s energy consumption 

efficiency from 2013 to 2014 is around 0.9, rising to 1 in 2015 and 2016. Chengdu’s 

energy consumption efficiency is 1 from 2013 to 2015, but it declines to 0.87 in 2016. 

Cities with declining energy consumption efficiencies include Chongqing, Harbin, 

Haikou, Lanzhou, Taiyuan, Xian, Urumqi, Xining, and Yinchuan, indicating that these 

cities still need to further strengthen energy use and energy structure adjustments. 

There are few cities where energy consumption efficiency is on an upward trend. The 

overall trend of Kunming and Wuhan is rising. However, Kunming and Wuhan have 
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lower efficiency values in 2014. In 2013, Wuhan’s energy consumption efficiency is 1 

in 2015 and 2016. 

In terms of patent efficiency, cities with an efficiency score of 1 include Beijing, 

Changsha, Guangzhou, Hangzhou, Hefei, Huhehot, Nanjing, Nanning, Shanghai, and 

Tianjin, indicating no need on room for improvement in patent efficiency. However, 

there are many cities with patent efficiency below 0.4, such as Guiyang, Harbin, 

Haikou, Kunming, Lanzhou, Lhasa, Nanchang, Shenyang, Shijiazhuang, Taiyuan, 

Xian, Xining, and Yinchuan. Most of these cities are located in the western highlands 

of China or the old industrial bases in the northeast, and their patent efficiency has 

great room for improvement. In addition, Chongqing’s patent efficiency score exceeds 

0.8 in 2015 and 2016 and has greatly improved. The patent efficiency score of 

Urumqi in the first two years is slightly higher than 0.6, but hit 0.7 in the following 

two years. 

The four-year patent efficiency score of Wuhan exceeds 0.8 and the last two years 

reaches 1. Zhengzhou’s patent efficiency score is only about 0.7 in 2013 and has 

reached 1. Chengdu fell from 1 in the previous three years to 0.95 in 2016. From the 

point of view of time, cities where patent efficiency is declining include Changchun, 

Fuzhou, Jinan, Shenyang, and Xining. Among the cities showing an upward trend are 

Chongqing, Guiyang, Kunming, Lhasa, Nanchang, Shijiazhuang, Wuhan, Urumqi, 

and Zhengzhou. Most of these cities are second-tier western cities that have rapidly 

developed in recent years. It shows that the innovation output of these cities has 

significantly increased. 

From the perspective of CO2 emissions, cities with an efficiency score below 0.4 

include Changchun, Guiyang, Jinan, Lanzhou, Shijiazhuang, Taiyuan, Xian, Xining, 

and Yinchuan, meaning there is still much room for improvement in their carbon 
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emission efficiency. Chongqing, Fuzhou, Haikou, Harbin, Nanchang, Shenyang, and 

Urumqi are slightly higher than those previous 9 cities, but still have much room for 

improvement. Cities with an efficiency score of 1 are Beijing, Changsha, Guangzhou, 

Hangzhou, Hefei, Huhehot, Nanjing, Nanning, Shanghai, and Tianjin. 

Judging from the development of time, Chengdu’s carbon dioxide efficiency is 1 from 

the previous 3 years, but drops to 0.9 or more in 2016.  Wuhan and Zhengzhou rise 

from about 0.9 in 2013 to 1 in the next three years. The efficiency score of Changchun 

in the first three years is below 0.4, however, its last year’s efficiency score is 1. 

Lhasa’s CO2 emissions show some fluctuations at less than 1 in 2013 and 2015 and 

hitting 1 in 2014 and 2016. As a whole, cities with declining trends include 

Chongqing, Harbin, Haikou, Lanzhou, Shenyang, Taiyuan, Xian, Urumqi, and Xining. 

Changchun, Guiyang, Jinan, Kunming, Shijiazhuang, Wuhan, and Zhengzhou show 

an upward trend in efficiency, indicating that they are better controlling CO2 

emissions. 

In terms of AQI efficiency, cities with an efficiency score of 1 include Beijing, 

Changsha, Guangzhou, Hangzhou, Hefei, Huhehot, Nanjing, Nanning, Shanghai, 

Tianjin, and Zhengzhou. Cities with a lower AQI score (less than 0.6) are Lanzhou, 

Lhasa, Shijiazhuang, Taiyuan, Xian, Xining, and Yinchuan. Moreover, the efficiency 

scores of these cities have dropped rapidly since 2013, falling below 0.2 in 2016. It 

shows that their AQI efficiency scores are lower than 0.6 for most of the time. More 

governance measures are thus needed for control and improvement. The efficiency of 

Changchun, Chongqing, Fuzhou, Guiyang, Harbin, Haikou, Kunming, Nanchang, 

Shenyang, and Urumqi varies from 0.8 to 1.  

In terms of time series, the efficiency scores of Changchun, Chengdu, Chongqing, and 

Nanchang increased and are higher than 0.8 in the first three years, but then declined 
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in 2016 to lower than 0.6. Urumqi’s AQI efficiency rises each year up to 2016, while 

Wuhan’s also rises to 1 in 2015 and 2016. Harbin and Haikou show a rise in 2014, but 

then fall in 2015 and 2016 and drop to a lower efficiency score. These cities need to 

pay more attention to improving the efficiency of AQI through the development of 

innovation and economic processes. Over time, the above 8 cities of Guiyang, Jinan, 

Lanzhou, Lhasa, Taiyuan, Xian, Xining, and Yinchuan exhibit declining efficiency 

scores. For Fuzhou and Kunming, their AQI efficiency in 2015 is higher than in 2014, 

but in 2016 it drops again. Harbin, Haikou, and Shenyang in 2014 have an AQI 

efficiency score higher than 2013, but then it begins to decline afterwards. Only 

Wuhan’s and Urumqi’s AQI efficiency scores continue to rise. It is noteworthy that, 

the estimated 2016 efficiency score for each city in 2016, in addition to 8 cities with 

efficiency scores of 1 and other than Wuhan, Urumqi, the other cities' AQI efficiency 

scores in the current year were significantly lower than the other years before 2015. 

There are quite a few cities in 2016 with room for improvement in AQI efficiency, as 

it drops to around 0.2 or below, including Fuzhou, Guiyang, Jinan, Kunming, 

Lanzhou, Lhasa, Shenyang, Taiyuan, Xian, Xining, and Yinchuan. 

(Insert Table 4 here) 

(Insert Figure 4 here) 
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4. Conclusion  

Since innovative research and development capabilities are the most important 

factor in economic activities and the driving force of social development. However, 

scholars in the past have paid more attention to the impact of innovative research and 

development capabilities on economic activities, while ignoring the impact on the 

environment. This paper combines the variables of energy consumption, economy, 

environment and innovation research and development capabilities, collects data from 

31 cities in China, and uses dynamic SBM DEA model to explore urban efficiency 

and efficiency of variables. After considering input and output indicators such as 

energy consumption, R&D investment, patent output, CO2 emissions, and AQI, this 

paper calculates the total efficiency scores of 31 cities in China and presents the 

scores of each indicator, which show large differences and characteristics. Our 

findings run as follows.  

From the point of view of total efficiency, 10 cities have a total efficiency score of 1, 

meaning no need for efficiency improvement. However, the total efficiency scores of 

the other 21 cities show large room for improvement, and there are big differences 

among them. Of these, 13 cities have a total efficiency of less than 0.4. As time 

changes, the overall efficiency score of each city changes, and we see significant 

differences. The total efficiency of 8 cities continues to decline, while the total 

efficiency of 4 cities rises first and then declines. In addition, 3 cities’ total efficiency 

fluctuates. However, only three cities have efficiency that continues to rise over time. 

The efficiency scores of various input and output indicators of the cities are also very 

different. With the change of time, the development of these various indicators in 

different cities presents a broad spectrum. Some cities show an upward trend in some 

indicators while others show a downward trend. Among the indicators, the number of 
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patents in each city has grown rapidly, but there are still wide differences among the 

cities. 

From the perspective of energy consumption, there are 10 cities with an energy 

consumption efficiency score of 1 and 18 cities with an efficiency score of around 0.6 

or below. Among those 18, 10 cities have energy consumption efficiency of less than 

0.4. These cities thus have significant room for improvement. There are few cities 

with efficiency scores that continue to rise over time, and only three cities show 

fluctuations. In addition, there are at least 9 cities whose energy consumption 

efficiency scores continue to decline, indicating that their energy consumption 

structure still needs more measures to be taken. 

From the perspective of innovative research and development capabilities, the cities 

with a patent efficiency score of 1 are the same cities with an energy consumption 

efficiency score of 1. However, there are 14 cities whose patent efficiency is lower 

than 0.4. As time progresses, there are 5 cities whose patent efficiency continued to 

decline, and 9 cities whose patent efficiency continued to rise. It shows that many 

cities have achieved good results in the field of innovation ability enhancement. 

From the perspective of environmental variables, the CO2 efficiency point of view, 

the 10 cities mentioned above have an efficiency score of 1. However, 9 cities have a 

CO2 efficiency score of less than 0.4, and 7 cities have a CO2 efficiency score of 

about 0.6. All 16 cities have significant room for improvement. With the development 

of time, nine cities have continued to decline in CO2 efficiency, and seven cities have 

continued to rise. It shows that many cities have also made significant progress in 

CO2 emission control, but there are still some cities that need to take on more 

measures to control this pollution. 

In terms of AQI efficiency, 11 cities have an efficiency score of 1. However, 11 cities 



22 

 

have AQI efficiency scores below 0.6, but their efficiency scores are all higher than 

0.2. The AQI efficiency scores of the other cities are higher at around 0.8 from 2013 

to 2015, but the estimated figures in 2016 show a more significant decline. Eleven 

cities have more obvious room for improvement due to their AQI efficiency score. As 

time change, the AQI efficiency scores of two cities continued to rise, but those of 

eight cities continued to decline. In 2016, the AQI efficiency scores of all cities 

dropped significantly, as many cities’ score fell below 0.6. There are also 11 cities in 

2016 with an efficiency score dropping to around 0.2 or below 0.2. 

The results of this study suggest that due to the relatively large differences between 

cities, targeted policies should be formulated to optimize the adjustment of industrial 

structure and to explore different industrial advantages, factor endowments, 

geographic features, demographic characteristics, and cultural characteristics of each 

city. New technologies can be applied to the use of clean energy and the clean use of 

traditional energy sources. Priority should be given to the control and prevention of 

environmental pollution, such as increasing R&D investment and improving and 

optimizing industrial and energy structures. Policymakers must also pay close 

attention to air pollution and carbon emissions and formulate policies and measures 

that are more conducive to the construction of green, ecological, and sustainable 

economic and social development in all the big cities of China. 
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                              Figure 2: Statistic analysis of input and output indices from 2013 to 2016 
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Figure 3: Total efficiency scores of cities in 2013-2016 
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Table 1: Input and output indices 

Input variable Desirable output Carry-over 
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(GDP)  
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Table 2: Statistics of the indices 

 
2013em 2014em 2015em 2016em 2013com 2014com 2015com 2016com 2013R＆D 2014R＆D 2015R＆D 2016R＆D 2013GDP 2014GDP 

Max 635.57 652.2 681.76 702.7 11345.69 11084.63 11387.44 11314.34 1487.4 1652.8 1801.2 1970.4 21602.12 23560.94 

Min 20.41 21.09 21.16 20.57667 171 191.1 156.38 158.2067 2.3 2.4 3.1 3.4 304.87 347.45 

Average 123.80226 126.50968 135.9597 140.9146 3715.788 3758.6002 3735.649 3731.844 382.65806 420.435484 456.56452 493.792473 6365.28355 6951.2813 

SD 141.93629 147.07432 157.9371 165.1526 2479.046 2519.9475 2586.888 2653.622 417.46728 461.677069 507.05184 552.511548 5280.10857 5782.6045 

               

 
2015GDP 2016GDP 2013pat 2014pat 2015pat 2016pat 2013co2 2014co2 2015co2 2016co2 2013AQI 2014AQI 2015AQI 2016AQI 

Max 25123.45 26950.167 62671 74661 94031 108481 28820.04 29498.79 29607.344 30096.0313 292 164 133 122.33333 

Min 289.46 298.51667 46 48 232 0.94031 496.86 444.6 406.588 359.077333 75 41 39 0.00292 

Average 7479.8477 8046.7017 14336.74 14103.58 18540.45 20340.267 9772.36 9661.05 9474.7576 9338.45137 149.96774 92.0967742 85.516129 44.74203 

SD 6215.9718 6700.6092 15202.87 16076.01 20606.31 23469.376 6551.864 6445.519 6617.2677 6650.65642 51.414498 25.9805819 22.4353853 29.37955 
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Table 3: Total efficiency by cities for the years 2013 to 2016 

DMU Overall Score Rank 2013(1) 2014(1) 2015(1) 2016(1) 

Beijing 1 1 1 1 1 1 

Changchun 0.4017 18 0.4165 0.4532 0.3274 0.4281 

Changsha 1 1 1 1 1 1 

Chengdu 0.8488 13 0.8101 1 1 0.6295 

Chongqing 0.5569 14 0.5323 0.5963 0.6056 0.4961 

Fuzhou 0.5316 15 0.7024 0.7055 0.4711 0.3605 

Guangzhou 1 1 1 1 1 1 

Guiyang 0.2242 23 0.2168 0.1955 0.2727 0.2264 

Harbin 0.4034 17 0.4887 0.4085 0.3992 0.3327 

Haikou 0.0995 27 0.114 0.1067 0.0946 0.0845 

Hangzhou 1 1 1 1 1 1 

Hefei 1 1 1 1 1 1 

Huhehaote 1 1 1 1 1 1 

Jinan 0.4005 19 0.4653 0.3929 0.3864 0.3648 

Kunming 0.2983 22 0.3028 0.341 0.3103 0.2379 

Lanzhou 0.1103 26 0.1422 0.1091 0.1093 0.0804 

Lhasa 0.019 29 0.0118 0.0096 0.1847 0.1726 

Nanchang 0.3872 20 0.3406 0.3749 0.383 0.4647 

Nanjing 1 1 1 1 1 1 

Nanning 1 1 1 1 1 1 

Shanghai 1 1 1 1 1 1 

Shenyang 0.3656 21 0.4359 0.4025 0.3611 0.2671 

Shijiazhuang 0.2107 24 0.2114 0.209 0.2287 0.1932 

Taiyuan 0.0096 31 0.1816 0.0393 0.0457 0.0018 

Tianjin 1 1 1 1 1 1 

Wuhan 0.9236 12 0.7961 0.9136 1 1 

Urumqi 0.1355 25 0.1499 0.1158 0.1552 0.1247 

Xian 0.5185 16 0.498 0.5061 0.5218 0.5526 

Xining 0.0187 30 0.0305 0.0246 0.0161 0.0118 

Yinchuan 0.0634 28 0.099 0.0567 0.0531 0.04 

Zhengzhou 0.9261 11 0.761 0.9936 1 1 
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Table 4: Comparison of energy consumption efficiency, patent efficiency, CO2 emissions, and AQI efficiency scores for cities in 2013-2016 

 
Com pat CO2 AQI 

DMU 2013 2014 2015 2016 2013 2014 2015 2016 2013 2014 2015 2016 2013 2014 2015 2016 

Beijing 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Changchun 0.31 0.27 0.31 1 0.53 0.55 0.36 0.32 0.27 0.36 0.31 1 0.9 0.93 1 0.54 

Changsha 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Chengdu 1 1 1 0.87 1 1 1 0.95 1 1 1 0.957 1 1 1 0.51 

Chongqing 0.67 0.65 0.61 0.59 0.63 0.71 0.85 0.84 0.65 0.67 0.61 0.608 0.85 0.93 1 0.61 

Fuzhou 0.71 0.67 0.59 0.63 0.73 0.79 0.44 0.4 0.67 0.71 0.59 0.671 1 0.82 0.95 0.22 

Guangzhou 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Guiyang 0.24 0.23 0.22 0.21 0.22 0.2 0.31 0.32 0.23 0.25 0.27 0.294 1 0.91 0.91 0.48 

Harbin 0.73 0.71 0.64 0.63 0.4 0.31 0.34 0.31 0.71 0.72 0.64 0.657 0.96 1 0.88 0.55 

Haikou 0.71 0.59 0.49 0.4 0.08 0.07 0.08 0.07 0.59 0.71 0.49 0.489 0.95 1 0.91 0.74 

Hangzhou 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Hefei 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Huhehaote 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Jinan 0.31 0.28 0.26 0.42 0.62 0.51 0.55 0.51 0.28 0.31 0.26 0.5 0.87 0.74 0.69 0.26 

Kunming 0.4 0.38 0.44 0.45 0.32 0.36 0.34 0.36 0.38 0.4 0.44 0.457 1 0.8 0.87 0.18 

Lanzhou 0.15 0.13 0.09 0.08 0.15 0.14 0.16 0.16 0.13 0.15 0.09 0.091 0.89 0.52 0.47 0.1 

Lhasa 1 0.8 0.88 0.76 0.01 0.01 0.27 0.31 0.8 1 0.88 1 0.56 0.37 0.32 0.07 

Nanchang 0.68 0.62 0.53 0.84 0.28 0.32 0.36 0.38 0.62 0.68 0.53 1 0.83 0.83 0.84 0.52 

Nanjing 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Nanning 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Shanghai 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Shenyang 0.68 0.68 0.52 0.53 0.37 0.32 0.35 0.33 0.68 0.66 0.52 0.504 0.89 1 0.78 0.12 

Shijiazhuang 0.31 0.32 0.29 0.27 0.26 0.27 0.28 0.29 0.32 0.3 0.46 0.439 0.39 0.35 0.41 0.05 
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Taiyuan 0.07 0.07 0.06 0.05 0.2 0.05 0.06 0 0.07 0.07 0.06 0.057 1 0.62 0.59 0.13 

Tianjin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Wuhan 0.94 0.9 1 1 0.81 0.91 1 1 0.9 0.99 1 1 0.71 0.99 1 1 

Urumqi 0.29 0.27 0.25 0.22 0.14 0.13 0.19 0.19 0.27 0.29 0.25 0.252 0.88 0.52 0.5 0.11 

Xian 0.62 0.58 0.55 0.49 0.64 0.63 0.73 0.73 0.58 0.62 0.55 0.485 0.76 0.81 0.84 1 

Xining 0.09 0.08 0.07 0.07 0.04 0.04 0.02 0.02 0.08 0.09 0.07 0.077 0.48 0.27 0.27 0.06 

Yinchuan 0.19 0.15 0.11 0.13 0.12 0.13 0.15 0.15 0.15 0.19 0.11 0.163 0.45 0.32 0.27 0.08 

Zhengzhou 1 0.97 1 1 0.72 1 1 1 0.97 1 1 1 1 1 1 1 
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