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Abstract. Most of the biped robots are controlled using pre-computed trajectory
methods or methods based on multi-body dynamics models. The pre-computed trajectory-
based methods are simple; however, a system becomes highly vulnerable to the external
disturbances. In contrast, dynamic methods make a system act faster, yet extensive
knowledge is required about the kinematics and dynamics of the system. This fact gave
rise to the main purpose of this study, i.e., developing a controller for a biped robot to
take advantage of the simplicity and computational e�ciency of trajectory-based methods
and the robustness of the dynamic-based approach. To do so, this paper presents a two-
layer hierarchical control framework for an under-actuated, planar, �ve-link biped robot
model. The upper layer contains a centralized dynamic-based controller and uses all system
sensory data to generate stable walking. The lower layer in this structure is a decentralized
trajectory-based controller network, which learns how to control the system based on the
upper layer controller output. When the lower controller fails to control the system, the
upper layer controller takes action and makes the system stable. Then, when the lower
layer controller gets ready, the control of the system will be handed to this layer.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Robots and, especially, biped robots have been a
research magnate in the last decades [1-8], giving
rise to fascinating robots and products. To achieve
such great products, a wide range of topics from
studying biological locomotion and their mechanical
model, model formulation, methods of gait synthesis,
and the mechanical realization of biped robots to the
control of such systems have been addressed in the
literature, e.g., see [9-14].

Recent studies have shown that the control of
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locomotion in mammals, including humans, is based
on the neural circuits activities within the spinal
cord (the Central Pattern Generator, CPG) [15-17].
Furthermore, these circuits are largely responsible for
learning rhythmic activities. In other words, through
conscious training, the learned motor patterns seem to
act as automatic and ingrained as CPG-driven motor
patterns clearly do [18]. This means that after the
circuits learn the pattern, the locomotion voluntarily
starts by the brain. Then, the circuits control the
muscle activation, making locomotion possible. This
implies that there exists a low-level programming
hierarchy that allows rhythmic activities without the
involvement of the brain [19].

This idea is the backbone of the current study.
In other words, the main objective of this article is to
develop a hierarchical two-layer controller framework
for a walking biped robot which replicates the function
of the brain in the learning process at the upper layer
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and the function of the neural circuits in the control
of locomotion at the lower layer. In this framework,
by connecting controllers of the lower layer in a chain
structure, they have the ability to generate and control
the desired locomotion without any prior knowledge
about the system. Furthermore, its distributed nature
makes it more robust to communicate and deal with
hardware failure. Besides, this framework can be used
to reduce production costs and increase modularity
in the robots' designs. At last, by using a sophisti-
cated high-level controller as a supervisory controller,
the system will take advantage of the robustness
and stability of the high-level controller as well as
the simplicity and computation e�ciency of low-level
controllers. It should be noted that the concept of
hierarchical controller and estimation is used for a
variety of applications. For more information, see [20-
30].

The high-level controller in this framework con-
trols the robot using dynamic-based methods, as shown
in [31-34]. In these strategies, the main focus is
on the dynamics and kinematics of the system to
generate gait motion. Although such an approach
needs extensive knowledge of the mechanical structure
and high computational power, they are performed
more robustly than trajectory-based controllers under
disturbances.

The low-level controllers in this framework rep-
resent a network of simple trajectory-based controllers
which operate based on the pre-calculated joint tra-
jectories. In this approach, the reference trajectories
are pre-computed, and then, these trajectories are
pursued by means of feedback controllers. To compute
these trajectories, some researchers used optimization
of various cost functions over a walking cycle, as in [35];
and some others extracted them from their analogy
with biological or simpler mechanical systems [36]. Ob-
viously, trajectories in the form of time value functions
are not suitable to be used as controllers' tracking
input signals. To solve this problem, inspired by neural
circuits in the spinal cord, stable oscillators are used
to encode these signals into parameters of nonlinear
oscillators with an intrinsic limit cycle property [37-
41]. Moreover, the structure of these oscillators sup-
ports the stability of the overall system via feedback
integration and o�ers a solid foundation for learning
and optimization algorithms [42].

In Section 2, the dynamic model of a �ve-link
biped robot corresponding to \RABBIT" prototype is
derived. In this model, it is assumed that the double
support phase is instantaneous, and the impact is mod-
elled as a contact between rigid bodies. Furthermore, it
is assumed that the contact between the stance leg and
the ground acts as a pivot during the single support
phase. Then, the controller structure for this robot
is proposed in Section 3. As mentioned before, this

structure has two independent layers. At the upper
layer, the controller is a sophisticated dynamic-based
controller which uses all available sensory data from
the system to generate stable movement. For the
considered robot, this controller is developed based
on partial feedback linearization method for under-
actuated systems [43]. In order to do that, a set of
outputs in terms of robot con�guration is considered
so that nullifying the outputs makes the system have
the desired posture [32]. This controller is discussed
in Section 3.1. On the other hand, at the lower level
of the proposed structure, the system is controlled
by a network of simple trajectory-based controllers.
The structure of this network and its nodes will be
presented in Section 3.2. After discussing the control
framework and its components, its implementation on
the considered robot is simulated, and the results are
presented in Section 4. Finally, the conclusions is
drawn in Section 5.

2. Robot model

The model used in this paper is based on a prototype,
called \RABBIT", developed by Le Centre national de
la recherche scienti�que, Paris, France [44].

This model consists of a link, which represents the
torso, and two identical kinematic open chains made
up of two links with pointed ends, which represent
the legs. These links are pivoted together at a point
called hip (Figure 1(a)). Therefore, the model has
�ve DoFs. Moreover, at each joint, a torque exerting
actuator is used as one of the inputs; thus, the system
has four independent inputs. In this model, it is
assumed that the motion is con�ned to sagittal plane,
and the walking of the robot is considered on the
surface level. Besides this assumption, the walking of
the robot is interpreted as consecutive single support
phases (meaning only one leg is on the ground and acts
as a pivot) and transition from one leg to another takes
place in an in�nitesimal length of time [31].

Therefore, the model of the robot can be de-
scribed by two parts:

1. A di�erential equation representing the governing
dynamics during single support phases;

2. An impulse model representing the contact event
(modelled as a contact between rigid bodies).

2.1. Single support phase model
During the single support phase, the stance leg acts
as a pivot. Therefore, the dynamic model of the
robot during this phase has �ve DoFs. Let q =
(�1; �2; �3; �4; �5)T be the set of coordinates depicted
in Figure 1(a); u = (u1; u2; u3; u4)T represents the
inputs of the system presented in Figure 1(c). Since
only symmetric gaits are of interest, the same model
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Figure 1. Schematic of biped robot: (a) All the absolute angles and the lengths of the links, (b) all the masses and
centers of masses, and (c) all the inputs.

can be used irrespective of which leg is the stance leg
if the coordinates are relabeled after each impact [45].
By using the Lagrange method, the equation of motion
for the robot can be derived as follows:

D(q)�q + C(q; _q) _q + g(q) = B(q)u; (1)

where D(q), C(q; _q), and B(q) are inertia, Coriolis,
and the inputs gain matrices, respectively. Also, g(q)
represents the gravity forces acting on the joints. By
writing the equation of motion in the state-space form,
we have:

_x =
�

_q
D�1(q)(B(q)u�C(q; _q) _q� g(q))

�
=: f(x) + g(x)u; (2)

where x = (qT ; _qT )T .

2.2. Impact model
The impact between the swing leg and the ground
is modelled as a contact between two rigid bodies.
At the contact event, the following conditions are
assumed [46]:

1. All joints are assumed perfectly elastic without any
backlash;

2. The impact is instantaneous. The impulsive forces
due to the impact may result in an instantaneous
change in the velocities; however, there is no
instantaneous change in the angles and positions;

3. The contact of the swing leg with the ground results
in no rebound or no slipping of the swing leg,
and the stance leg lifts from the ground without
interaction.

From the �rst and second hypotheses, one can conclude
that the angular momentum is preserved at the impact
about the impact point. The equation of angular
momentum conservation is solved with the equation
derived from the third hypothesis. It yields an expres-
sion for the velocities of the links after the impact in
terms of the velocities just before the impact. In other
words, the impact model results in a smooth discrete
map [32]:

x+ = �(x�); (3)

where x� is the value of the states just before the
impact and x+ is the value of the states just after the
impact. Furthermore, function � is responsible for the
mapping from the states of the system before impact
to the states of the system after the impact.

2.3. Overall model
The overall dynamic system can be expressed as a
hybrid system [32]:

� :

(
_x(t) = f(x(t)) + g(x(t))u(t) x�(t) =2 S
x+(t) = �(x�(t)) x�(t) 2 S; (4)

where S is the set of all feasible states belonging to the
walking surface de�ned as follows:

S := f(q; _q)jz2 = 0; x2 > 0g; (5)
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where x2 and z2 are the end tip locations of the swing
leg (see Figure 1(c)). In other words, the trajectory
evolution of the system is described by Eq. (2) until the
impact occurs (when the states of the system belong to
S). The impact, which is described by Eq. (3), changes
the states instantaneously and relabels them to be used
as the next single support phase initial condition.

3. Control architecture

The main purpose of the presented architecture is to
use the robustness of a dynamic-based controller and
the simplicity and computation e�ciency of trajectory-
based techniques at the same time in the control of
biped robots. Hence, as illustrated in Figure 2, it is
proposed that this architecture contains two entities:

1. A high-level controller which is a dynamic based
controller;

2. A network of low-level controllers in which each
node is a simple trajectory tracking controller that
corresponds to an actuator of the robot.

This method works as follows: �rst, the system is
controlled by the high-level controller. Meanwhile,

Figure 2. Schematic of low-level controllers network and
their interaction with the high-level controller (Ch); the
yellow circles with the wave sign in the middle represent
controllers' nodes and the blue square with the wave sign
inside is the representation of the feedback node; �i for
i = 1 � � � 4 is the output of the ith low-level controller
which synchronizes the (i+ 1)th node with the ith node
(see Section 3.2.2).

Figure 3. Controller's node structure in interaction with
the robot and the high-level controller; the dashed line
border area is the low-level controller boundary.

the input of each actuator (generated by the high-
level controller) is fed into the corresponding low-level
controller. This signal is used by each node to learn to
reproduce the desired trajectory of the corresponding
DoF. At the same time, each node evaluates whether
it can generate the desired trajectory or not. Next, if
all nodes in the network have the ability to generate
the desired trajectories, the high-level controller gets
turned o� and the robot will be controlled by low-
level controllers. A schema of this process is shown
in Figure 3.

Obviously, when the system is controlled by the
network of the low-level controllers, it should be stable
and imitate the output of the high-level controller.
Hence, due to its decentralized nature, each node
should generate the output in synchronization with the
unactuated DoF. Therefore, the nodes are connected
together in a chain structure and the leader in this
chain is synchronized with the unactuated DoF using a
feedback node (Figure 2). The feedback node structure
is discussed thoroughly in Section 3.2.2. Furthermore,
if the system is disturbed in this state, preventing any
of the nodes from tracking its desired trajectory, the
high-level controller gets turned on and controls the
system.

3.1. High-level controller
This controller design is based on the proposed method
by [31]. The fundamental idea of this controller is to
encode walking in terms of a set of posture conditions,
which are in turn expressed as holonomic constraints
on the position variables. These virtual constraints are
then used to construct outputs of the model and are
imposed on the robot via a feedback control. For the
considered simple model, the following constraint has
been chosen [32]:

y = K � h(q); (6)

where:

h :=

2664h1
h2
h3
h4

3775 =

2664 (�3 � �3d)
(d1 + d2)

(zH � zHd(d1))
(z2 � z2d(d1))

3775 ; (7)

and K is a diagonal matrix de�ned as follows:
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K =

2664k1 0 0 0
0 k2 0 0
0 0 k3 0
0 0 0 k4

3775 : (8)

It should be noted that in Eq. (7):

x1 = 0;

z1 = 0;

xH = l1 sin(�1) + l2 sin(�2);

zH = �l1 cos(�1)� l2 cos(�2);

x2 = xH � l1 sin(�5)� l2 sin(�4);

z2 = zH + l1 cos(�5) + l2 cos(�4);

d1 = xH � x1 = l1 sin(�1) + l2 sin(�2);

d2 = xH � x2 = l1 sin(�5) + l2 sin(�4): (9)

As illustrated in Figure 1(c), (xH ; zH) and (x2; z2) are
the hip and swing foot-end locations with respect to the
location of stance foot-end, i.e., (x1; z1). Moreover, in
Eq. (8), gains k1, k2, k3, and k4 are scaling constants.
Note that the latter constants normalize the outputs in
the process of controller design.

Satisfying the �rst constraint implies that the
robot torso should maintain its desired constant angle
(i.e., �3d), the second one makes the robot take steps
and advance its hip, and the last two control trajec-
tories of the hip and swing leg foot-end in order to
have quite natural walking gait. To do so, the desired
trajectories are de�ned as second-order polynomial
with respect to the horizontal location of the hip (i.e.,
d1) such that [32]:

zHd(� sld=2) = zH min;

zHd(0) = zH max; (10)

and:

z2d(� sld=2) = 0;

z2d(0) = z2 max; (11)

where sld is the desired step length, zH max and zH min
are the maximum and minimum desired values of zH
over a step, and z2 max is the maximum desired value
of z2 over a step.

To design a controller to satisfy constraints of
Eq. (6)(drive them to zero), their governing dynamics
should be derived. To do so, time derivatives of
constraints are considered. Obviously, the dynamics of
the system is a second-order one, and constraints are

independent of the generalized velocities. Therefore,
the �rst derivative of the constraints dynamics is not
explicitly dependent on the inputs of the system. How-
ever, the second derivative of the constants dynamics
depends on the inputs of the system and can be written
as follows:

d2y
dt2

= L2
fh(q; _q) + LgLfh(q)u; (12)

where LgLfh(q) is called the decoupling matrix, and
Lfh(q; _q) is the Lie derivative of h(q; _q) along the
vector �eld of f(q; _q). If the decoupling matrix is
invertible, which is true in the region of interest [32],
one can choose the following controller:

u = (LgLfh)�1(�L2
fh + v): (13)

In this case, the governing dynamic equation of the
closed-loop system becomes:

�y = v: (14)

Therefore, in order to stabilize the virtual constraints,
the following PD feedback is used:

v = �1:y + �2: _y; (15)

where �1 < 0 and �2 < 0. This feedback structure
makes the origin in the space of the constraints ex-
ponentially stable. Subsequently, the trajectory of the
system is a stable periodic orbit [31], which means that
the robot is walking stably.

3.2. Low-level controller
The network of low-level controllers consists of four
controller nodes and a feedback node. Each controller
node is attached to a joint of the robot (do not relabel
with the change of stance leg) and the feedback node
is attached to the stance-leg shank (see Figure 2).
Therefore, it is very easy to work in relative coordinate
�q := (qa;qb)T where qa = ���1 is an unactuated coor-
dinate, and qb = ( 1;  2;  3;  4)T represents actuated
coordinates equal to (�2� �1; �4� �5; �2 + �3; �4 + �3)T
when leg number one is the stance leg and equal to
(�4��5; �2��1; �4 +�3; �2 +�3)T when leg number two
is the stance leg.

Therefore, the dynamic model in Eq. (1) in the
coordinates used in low-level controllers network can
be written as follows:

�D(�q)��q + �C(�q; _�q) _�q + �g(�q) = �B � u; (16)

where it can be easily shown that �B has the form of
�B = [04�1; I4�4]T .

In the rest of this section, the components of
the low-level controller are discussed. As depicted
in Figure 3, each controller node in the low-level
controllers network has three components as follows:
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� Learning agent whose mission is to reproduce the
desired trajectory synchronously with the desired
trajectories of the other DoFs based on the outcomes
of the system when the system is controlled by the
high-level controller. This agent and its structure
are discussed in Section 3.2.2;

� Critic agent is in charge of switching between the
high-level controller and low-level controllers based
on the control eligibility of low-level controllers.
This agent is introduced and discussed in Sec-
tion 3.2.3;

� Control agent which is to make sure that the system
follows the desired trajectories. This agent and its
properties are brought up in Section 3.2.1.

3.2.1. Control agent
Suppose that the system is controlled by the high-
level controller and its trajectory is a stable limit-
cycle. Furthermore, assume that the desired trajectory
and its corresponding input signals are generated by
low-level controllers within a satisfactory error, i.e.,
the generated trajectory is expressed as (�q�; _�q�), and
evolution of the desired input signals is denoted by u�.
These conditions make the system switch be controlled
by low-level controllers.

When the system is controlled by the low-level
controller, the control agents try to eliminate the
di�erence between the desired and actual trajectories.
To do so, the control agent output for the ith actuated
DoF is considered as DoF is considered as follows:
ui = u�i + �ui; (17)

where �ui should stabilize the perturbed system from
the desired trajectory. It means that the designed
controller makes the system follow the desired tra-
jectory. To design the controller, let us consider
the perturbation from the desired trajectory which is
denoted by (��q; � _�q). The governing equation for the ith
perturbed actuated DoF can be rewritten as follows:

�Dii���qi + �(1)
i � _�qi + �(2)

i ��qi + �(3)
i = �ui; (18)

where �(1)
i , �(2)

i , and �(3)
i are given in Appendix A.

Due to the existence of a critic agent, the large dis-
turbances make the system use the high-level controller
instead of the network of the low-level controllers. This
means that all variables are bounded on the domain of
a low-level controller de�nition. Hence, these bounds
can be used in the stability analysis and controller
design for the low-level controllers. In order to design
a controller to make the system follow the desired
trajectory, consider the following proposition.

Proposition 1. The high-gain feedback structure in
Eq. (19) for �ui makes the system in Eq. (18) stable.

�ui = �1
�

(� _�qi + c��qi) ; (19)

where c > 0 and �� 1.

Proof. The closed-loop equation for the ith actuated
DoF with the proposed controller structure (19) can be
written as follows:

� �Dii���qi +
�

1 + ��(1)
i

�
� _�qi +

�
c+ ��(2)

i

�
��qi

+ ��(3)
i = 0; (20)

where �(1)
i , �(2)

i , and �(3)
i are de�ned in Appendix A.

Therefore, by using singular perturbation analysis [47]
(see Appendix B), the closed-loop response will be as
follows:

��qi(t) = ��qi(0)e�ct +O(�);

� _�qi(t) =� c��qi(0)e�ct + (� _�qi(0) + c��qi(0))�D(t=�)

+O(�); (21)

where �D(�) decays exponentially with the rate of its
argument and �D(0) = 1. This response means that
the closed-loop system in Eq. (18) with controller in
Eq. (19) is stable. �

Proposition 1 implies that the controller agent
with structures (17) and (19) guarantees that the ith
actuated DoF will achieve a trajectory within O(�)-
neighbor of the desired trajectory.

3.2.2. Imitating/learning agent
The missions of this agent are learning and generat-
ing the desired trajectory of its corresponding DoF,
which is a periodic motion. Therefore, this agent is
essentially a dynamical system with learning capability
to reproduce frequency contents of the desired trajec-
tory. In order to regenerate frequency content of a
dynamical system, based on the following theorem, a
new oscillator-based model is presented.

Theorem 2. Consider the following system:

_x = f(x); (22)

where x 2 Rn represents the states of the system.
Assume that system in Eq. (22) has a self-sustained
oscillatory stable trajectory with a period of T . Then,
for any arbitrary integer, 0 < n1 � n, there exists
a transformation, x = T(�; �), which transforms the
local dynamics of the system in the neighborhood of the
closed-loop trajectory into the following equations:

_� = A(�; �); (23)

_� = B(�; �); (24)

where the system in Eq. (23) is a neutral system (it is
neither stable nor unstable) whose state � 2 Rn1 shows
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monotonic behavior and A(� + T; 0) = A(�; 0). In
addition, the system in Eq. (24) with state � 2 Rn�n1

has an asymptotically stable equilibrium point � = 0
mapped onto the aforesaid oscillatory trajectory of the
system in Eq. (22).

Proof. See Appendix C. �
Due to the second-order nature of the biped,

it can be concluded that the desired trajectory of
each DoF is the projection of the system trajectory
into the state space of the corresponding DoF. There-
fore, by using Theorem 2, to reproduce the desired
trajectory corresponding to a DoF, it is enough to
have a monotonic dynamical system with periodic time
derivative and a map from this state to the desired
trajectory in the state space of the corresponding DoF.
Interestingly, this idea has been used previously to
model the human locomotion based on the cadence and
electromyographic data obtained from a human subject
who walked on a treadmill [48].

To implement this idea, a structurally stable
oscillator is used as the aforesaid monotonic dynamical
system. Then, an approximate function is used to
map the oscillator output to the desired output signal.
This function is called Shaping Network. It should be
noted that the inputs of the Shaping Networks are
the phases of their corresponding oscillators. This
structure is depicted in Figure 4. This structure has
two working modes: Learning and Imitating modes;
they are discussed in the following paragraphs.

At the learning phase, the desired oscillatory
signal is fed into the oscillator and neural network.
Meanwhile, the base frequency of the input signal
will be learned by the algorithm discussed in Section
3.2.2. In addition to that, the phase di�erence between
connected oscillators of the imitating agents of low-level
controllers will be learned by the algorithm discussed
in Sections 3.2.2. Simultaneously, based on the output
phase of the oscillator and desired trajectory, the

shaping network will be trained in such a way that the
error between the desired trajectory and the output of
the shaping network tends to zero. The structure of
shaping network and the learning algorithm used have
been discussed in Section 3.2.2.

At the imitating phase, training of the shaping
network is �nished, and it generates the desired signals
based on the frequency and the phase of its input
oscillator. Moreover, the connected oscillators will
get synchronized together in the network of low-level
controllers with the phase di�erences learned at the
learning stage. The used synchronization algorithm
will be discussed in Section 3.2.2. It should be noted
that this synchronization is mandatory because pro-
jections of the system oscillation phase into the state
spaces of actuated DoFs always are mapped onto the
consistent phases of oscillators. This means that if one
of the oscillators is disturbed, all oscillators should be
disturbed synchronously, guaranteeing that the point
generated by the outputs of all DoFs' imitating agents
always lies in the desired trajectory.

When the system is fully actuated, i.e., the system
does not exhibit internal dynamics, the aforesaid struc-
ture for learning and imitating rhythmic movement is
su�cient. However, when the system is underactuated,
the sum of dimensions of actuated subspaces is less
than the order of the system. Therefore, the trajec-
tory of the system cannot be fully expressed by its
projections on the state spaces of actuated DoFs. In
other words, states of internal dynamics of the system
inuence the overall system oscillation phase. In this
case, in order to generate the desired trajectory, the
phases of oscillators should be synchronized with the
oscillation phase of the internal dynamics of the system.
Hence, the projection phase of the system trajectory on
the internal dynamics subsystem should be extracted.
To extract the phase of the internal dynamics of the
system, the structure depicted in Figure 5 is used.
In this structure, based on internal dynamics of the

Figure 4. The considered structure of the imitating agent for each actuated DoF; the circle with a sinus sign in the
middle is a representation of a dynamically stable oscillator, and the box with a symbol of a network in the middle is the
representation of shaping network. Dashed lines show the synchronization signals transmitted to and received from the
network of imitating agents of low-level controllers.
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Figure 5. The considered structure of imitating agent for extracting internal dynamics phase; the circle with a sinus sign
in the middle is a representation of a dynamically stable oscillator; F�1(�) block represents the transformation function of
internal dynamics states to the internal dynamics phase, and the box with a symbol of a network in the middle is a
representation of shaping network which transforms internal dynamics phase to the phase of its base frequency component.
Dashed lines show the synchronization signals transmitted to the network of imitating agents of low-level controllers.

system, the phase of trajectory projection on this
subspace is extracted, and a stable oscillator will be
synchronized to the base frequency component of this
phase. Then, imitating agents' oscillators of the control
nodes will be synchronized to the oscillator of this node,
which is called the feedback node. It should be noted
that the base frequency of the feedback node's oscillator
is twice the base frequency of the system due to the
relabeling of the legs at the impacts.

Oscillator structure. In order to train the shaping
networks in the learning mode and reproduce the
desired trajectory in the imitating mode, the input
training signals, which are the phases of the oscillators
(the outputs of the oscillators), should be oscillatory,
and their intrinsic frequencies should be equal to the
base frequency of the desired trajectory at the end of
the learning phase and in the imitating phase.

In this manuscript, Hopf oscillators are used in
order to generate the input signals of the shaping
networks. A Hopf oscillator has a limit-cycle with
circular symmetry on a two-dimensional plane. Its
governing dynamics with an entrainment signal is
expressed by the following di�erential equations [49]:

_zi =
�

_zi;1
_zi;2

�
= F(zi;!i) + "

�
Pi
0

�
=
�
(�2 � z2

i;1 � z2
i;2)zi;1 � !izi;2

(�2 � z2
i;1 � z2

i;2)zi;2 + !izi;1

�
+ "

�
Pi
0

�
; (25)

where � controls the amplitude of the oscillations,  >
0 controls the rate of convergence, and !i is the intrinsic
frequency of the oscillator. In this oscillator, without
perturbations (when " = 0), the system is oscillating
at !i rad s�1. In order to adapt the intrinsic frequency
to the base frequency of the desired trajectory, it is
perturbed with an entrainment signal (Pi) which is
proportional to the desired trajectory. Then, by using
the following adaptation rule, the intrinsic frequency
will converge to one of the input signal frequency
component [49]:

_!i = �"Pi zi;2q
z2
i;1 + z2

i;2

: (26)

At last, it should be noted that the output of the ith
oscillator depicted in Figure 4 is the phase of oscillator,
which is de�ned by the following equation:

�i = atan
�
zi;2
zi;1

�
: (27)

Oscillators synchronization. As mentioned, it is
mandatory that all oscillators be synchronized together
in the imitating phase. To make them synchronized,
consider the following theorem.

Theorem 3. Consider the following network of n
coupled Hopf oscillators in a chain structure:8>>>><>>>>:

_z0 = F(z0;!0)
_z1 = F(z1;!1) + ks(R��01�0 � z1)
...
_zn = F(zn;!n) + ks(R��(n�1)n�n�1 � zn)

(28)

where �i is the output of the ith oscillator which is
de�ned as follows:

�i(t) = zi
�
!i+1

!i
t
�
: (29)

R� is a � planar rotation matrix which is de�ned as
follows:

R� =
�
cos(�) � sin(�)
sin(�) cos(�)

�
; (30)

and F(�; �) is the governing dynamics function of the
Hopf oscillator de�ned in Eq. (25). Furthermore, it
is assumed that !i+1 � !i. In addition, ��ij is
the desired phase di�erence between the ith oscillator
and the jth oscillator in the chain, and ks is the
synchronization gain.

Then, for any ks > �2, these n systems will
reach synchrony exponentially regardless of the initial
conditions. In this situation, the following relations
will be held as time tends to in�nity:
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8>>>><>>>>:
z1 = R��01�0
z2 = R��12�1

...
zn = R��(n�1)n�n�1

: (31)

Proof. Function F(zi; !i) � kszi is contracting in
Eq. (28) for any ks > �2 (see Appendix D), and
Eq. (31) is a particular solution of the system in
Eq. (28). Therefore, all subsystems of Eq. (28) will
reach synchrony regardless of the initial conditions [50]
and, in this case, Eq. (31) will be held. �

As a result, by using the following network, all
oscillators of controller nodes will get synchronized to
the leading oscillator of the chain (oscillator of the
feedback node) with the desired phase delay:8>>>>>><>>>>>>:

_z0 = F(z0; 2!)
_z1 = F(z1;!) + ks(R��01�0 � z1)
_z2 = F(z2;!) + ks(R��12�1 � z2)
_z3 = F(z3;!) + ks(R��23�2 � z3)
_z4 = F(z4;!) + ks(R��34�3 � z4)

(32)

where:

�0(t) = z0

�
t
2

�
;

�i(t) = zi(t); i 2 f1; 2; 3g: (33)

Learning phase di�erences between oscillators.
When the system is in training mode, based on
Eq. (25), all oscillators get synchronized with their
input signals. Obviously, due to phase di�erences
between input signals, it is expected that each oscillator
has a phase di�erence with its neighbors in the chain.
Therefore, to synchronize all oscillators together, phase
di�erences between neighbors should be adaptively
derived and learned in this mode. To do so, the
following adaptive law is used to update this value in
the training mode [51]:

� _�i(i+1) = �� sin
�
!i+1

!i
�i � �i+1 + ��i(i+1)

�
;
(34)

where �i and �(i+1) are the phases of the ith and
(i + 1)th oscillators in the chain, respectively, which
are de�ned in Eq. (27), and � > 0 controls the
convergence rate.

In the imitating mode, these phase di�erences are
updated and will be used in Eq. (28) for the oscillator
synchronization.

Shaping network. One of the most important parts
of the imitating/learning agent is its shaping network.

This part is responsible for approximating the mapping
from the output of the corresponding oscillator to the
desired trajectory for an actuated DoF agent. Further-
more, it is an essential block of feedback node which
maps the states of the internal dynamics subspace onto
its corresponding oscillator phase.

In this manuscript, a radial basis function network
is used to approximate the desired mapping. By using
this technique, the shaping network outputs of the
agent for the ith actuated DoF are written as follows:

q�b;i =
nX
k=1

wik�k(�i) + wi0; (35)

_q�b;i =
nX
k=1

vik�k(�i) + vi0; (36)

u�i =
nX
k=1

�ik�k(�i) + �i0; (37)

where activation function, �k(�), is a radial basis
function (a.k.a. RBF) de�ned as follows:

�k(�) = exp
�
� 1
�2 (��  k)2

�
: (38)

�i is the phase of the oscillator of the ith controller
node, and wik, vik, and �ik are weights of RBFs in the
network.

It should be noted that, in Eq. (38),  k is the
center of radial basis function. These centers can be
selected by various methods, e.g., randomly sampled
among the input instances, obtained by Orthogonal
Least Square Learning Algorithm [52] or selected via
clustering of the inputs. Besides, � controls the width
of RBFs which is usually considered to be constant for
all RBFs.

In the learning mode, the weights of the network
are adaptively changed in order to minimize the follow-
ing objective function (39):

J1(t) =
1
2
�
q�b;i(t)� qb;i(t)�2 +

1
2
�

_q�b;i(t)� _qb;i(t)
�2

+
1
2

(u�i (t)� ui(t))2 : (39)

Using the gradient descent method [53] to derive
adaptive laws for the weights in the network yields the
following:

_wi0 = �wrwi0J1 = �w(q�b;i � qb;i); (40)

_wik = �wrwikJ1 = �w(q�b;i � qb;i)�k(�i);

k 2 f1; 2; � � � ; ng; (41)



2684 M. Yazdani et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 2675{2692

_vi0 = �vrvi0J1 = �v( _q�b;i � _qb;i); (42)

_vik = �vrvikJ1;= �v( _q�b;i � _qb;i)�k(�i);

k 2 f1; 2; � � � ; ng; (43)

_�i0 = ��r�i0J1 = ��(u�i � ui); (44)

_�ik = ��r�ikJ1 = ��(u�i � ui)�k(�i);

k 2 f1; 2; � � � ; ng; (45)

where rx(�) = @
@x (�).

It should be pointed out that when the training
is over and the system is in the imitating mode, the
weights of the network become constant and will be
used to generate the desired trajectory and control
input.

In the case of internal dynamics phase mapping,
the phase of internal dynamics is used as the input
of a network, which generates the phase of its base
frequency. In other words, the shaping network output
of the imitating agent of the unactuated coordinate will
be as follows:

��0 =
nX
k=1

�k�k(�I) + �0; (46)

where �I = qa = � � �1 is the input of RBF functions.
The weights of RBF functions are adaptively changed
by the gradient descent method in order to minimize
the following objective function:

J2(t) =
1
2

(��0(t)� �0(t))2; (47)

which yields:

_�0 = ��r�0J2 = ��(��0 � �0); (48)

_�k = ��r�kJ2 = ��(��0 � �0)�k(�I);

k 2 f1; 2; � � � ; ng; (49)

where �0 is the oscillator output of the feedback
node which is synchronized with the base frequency
component of the internal dynamics in the training
mode.

3.2.3. Critic agent
The assessment of the control ability of the low-level
controller is made by this agent. This agent evaluates
this ability using the error between the output of the
shaping network and the outputs of the system. For
the controller nodes, this error is de�ned as follows:

ei = (qb;i � q�b;i); (50)

_ei = ( _qb;i � _q�b;i); (51)

and, for the feedback node, it is de�ned as follows:

e0 = (�0 � ��0); (52)

_e0 = ( _�0 � _��0): (53)

Then, this error will be used to generate the assessment
value which is de�ned as follows:

u�;i =

(
1 e�;i > emax

0 else;
(54)

where:

e�;i = kejeij+ k _ej _eij; i 2 f0; 1; � � � ; 4g: (55)

In other words, this value assesses the ability of the
imitating agent to generate the desired trajectory
within an acceptable error margin at the current time.
In order to use this value and assess the ability of the
imitating agent to generate the desired trajectory at
all times, the history of the assessment value should be
taken into account. In order to do that, the following
dynamical system is used which is called the assessment
system:

_�i = � 1
�l

(1� u�;i)�i + �uu�;i(1� �i); (56)

where �l and �u are small constants, and �i is the
output of the assessment system.

This dynamical system has two di�erent terms
which have contrary e�ects on its output. The �rst
one is trying to increase the output fast when the error
is greater than a threshold. In other words, the error
above a speci�c level means that the low-level control
has failed to control the system. Therefore, the critic
agent should act fast and assign the control task to the
high-level controller. On the other hand, the second
term in Eq. (56) will try to decrease the output slowly
when the error drops lower than the threshold. The
slow dynamics of this term helps the system to take
the history of the assessment value into account.

In order to avoid Zeno phenomenon and oscilla-
tions in switching between high-level and low-level con-
trollers and, thus, instability of the overall system, this
decision is made by a switching function with hystere-
sis. In other words, when the system is controlled by a
high-level controller and 0 < �i < �u, the critic agent
commands the system to be controlled by the low-level
controllers. In this case, the imitating/learning agents
of the low-level controllers are switched to the imitating
mode. Afterwards, if �i > �l > �u, the system will be
switched to be controlled by the high-level controller.
Therefore, imitating/learning agents of the low-level
controllers will be switched back to the learning mode.
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Figure 6. Implementation of the low-level controller for the ith actuated DoF. Single border blocks (green blocks in
colored version) represent agent subsystems of critic; double border blocks (yellow blocks) are subsystems of control agent;
dash dot border blocks (red blocks) describe the imitating/learning agent, and dash border block (blue block) is a
representation of time evolution dynamics of the system. u(e)

i is the control action of the high-level controller and u(i)
i

represents control action of the low-level controller for the ith actuated DoF.

3.2.4. Low-level controller in a nutshell
In brief, the structure of the low-level controller node
is depicted in Figure 6. In this structure, when the
system is not trained, the high-level controller's control
action is directly fed into the system and its output is
used to train the imitating/learning agent. When all
the imitating/learning agents of the system are trained
enough (the error between the output of the system and
the outputs of these agents tends to zero), the critic
agent cuts the high-level controller action and reroutes
the input of the system to the output of the control
agent.

The structure of the feedback node is just the
same as that of an actuated DoF; however, it does not
have a control agent and an estimator for the controller
input.

4. Simulation

Consider the model in Eq. (4) with the values of the
parameters for RABBIT prototype [33] presented in
Table 1.

In addition to that, the parameters in Table 2 are
used for constructing the virtual constraints mentioned
in Eqs. (8) and (9).

It should be noted that, to stabilize the virtual
constraints, feedback gains are set as �1 = 9000 and
�2 = 400.

To �nd the approximation of the desired trajecto-
ries, the values presented in Table 3 are considered for
the parameters of the imitating/learning agents.

When the system is switched to be controlled
by low-level controllers, the controller agents use the
values presented in Table 4 for their parameters.

In this simulation, all critic agents use the param-
eters values shown in Table 5.

Table 1. Mechanical parameters of RABBIT prototype
(see Figure 1(a) and (b)).

Model param. Tibia
(n=1)

Femur
(n=2)

Torso
(n=3)

Mass, Mn (kg) 3.2 6.8 20

Length, ln (m) 0.4 0.4 0.625

Mass center, �n (m) 0.13 0.16 0.2

Inertia, In (kg m2) 0.93 1.08 2.22

Table 2. Values of the virtual constraint parameters [32].

Output Gain Parameters

y1 k1 = 62:5 �3d = ��=9 rad

y2 k2 = 500

y3 k3 = 1 zHmax = 0:79 m, zHmin = 0:76 m

y4 k4 = 1 z2 max = 20 mm, sld = 0:45 m
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Table 3. The parameters values of the imitating/learning agents.

Param. Description Value

" The entrainment signal gain (see Eqs. (25) and (26)) 9
 The gain controls the convergence rate in the governing dynamics of the oscillators (see Eq. (25)) 1000
� Control the amplitude of oscillators (see Eq. (25)) 1
ks The synchronization gain (see Eq. (28)) 1000
� The gain controls the convergence rate in Eq. (34) 800
n Number of neurons for approximating desired trajectories(see Eqs. (35)-(37) and (46)) 300
� Width of radial basis functions (see Eq. (38)) 0.1

w, v,
�, x�

Gradient descent gains (see Eqs. (40)-(45), (48) and (49)) 10

Table 4. The parameters' values of the controller agents.

Param. Description Value

� The inverse of the velocity feedback gain (see Eq. (19)) 1/300
c Ratio of the position feedback gain to the velocity feedback gain (see Eq. (19)) 50

Table 5. The parameters' values of the critic agents.

Param. Description Value

emax Maximum allowable error (see Eq. (54)) 0.1
ke Error gain (see Eq. (55)) 1
k _e error velocity gain (see Eq. (55)) 0
�l Constant gain controls the fast dynamic time constant in Eq. (56) 0.2
�u Constant gain controls the slow dynamic time constant in Eq. (56) 0.5
�1 The level of the switching from the high-layer controller to the low-level controllers 0.10
�2 The level of the switching from the low-level controllers to the high-layer controller 0.30

Figure 7. Time evolution of oscillators frequencies (a) and their phase di�erences (b) at t = 26:7. The system is switched
to be controlled by low-level controllers. Therefore, these values do not change after the switching time.

By using the described parameters' values, the
result of the simulation for more than 50 walking
steps is depicted in the following �gures. In Figure 7,
time evolution of the frequencies of the oscillators
and the phase di�erence between them are presented.
During the training, the error between the desired
trajectories (the output of the system) and the output

of imitating/learning agents gets smaller and smaller
until the system decides to assign control task to the
low-level controllers. Figure 8 shows the position errors
of the actuated DoFs. As mentioned before, when one
of the legs hits the ground, the shaping networks cannot
approximate the outputs accurately. Therefore, the
errors increase at these times.
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Figure 8. Error of the outputs of the imitating agents for controller nodes, i.e., ei =  i � q�b;i for i = 1 � � � 4. The red
dashed line shows the time the system switched to be controlled by the low-level controllers network.

Figure 9. Outputs of the assessment systems in time.

The outputs of the critic agents are presented in
Figure 9. As shown, at t = 26:7, the outputs of all
critic agents become less than the switching value, �l.
Therefore, the system is switched to be controlled by
low-level controllers at this time.

In Figure 10, the performance of the system using
the high-level controller and the low-level controllers is
depicted.

At last, the simulated gait is depicted in
Figure 11.

5. Conclusion

In this article, the control of the walking gait for a
5-link biped robot was accomplished via a two-layer
hierarchical controller.

Inspired from nature, the objective of this study
was to develop a control framework for the walking
gait of a biped robot to replicate the functionality of
the nervous system in the animals and its learning
capability under conscious trainings. To do so, a
hierarchical framework was proposed which consists of
two independent layers: (1) the high-level controller
and (2) a network of low-level controllers.

The high-level controller was designed to replicate
the function of the brain. In this study, it is a feedback
linearization controller which uses a set of outputs as
virtual constraints. Imposing these constraints on the
system made the system achieve its desired posture. In
the proposed architecture, this controller was used as a
supervisory controller, which controls the system when
the low-level controllers are not trained enough, or it
is unable to control the system stably.

On the other hand, the low-level controllers'
network was designed to replicate the functionality of
the neural circuits in the spinal cord. In this design,
the entities are connected together in a chain structure
in which each has three components:

1. Imitating/learning agent;



2688 M. Yazdani et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 2675{2692

Figure 10. Time evolution of the values of the constraints de�ned in Eq. (6).

Figure 11. Simulated gait; the divider dashed red line shows the position in which the system has been switched to be
controlled by the low-level controllers.

2. Critic agent;

3. Controller agent.

The imitating agent is the core of the low-level con-
troller which learns to reproduce the desired rhythmic
pattern synchronously with the other imitating agents
in the network; the critic agent makes decision about
switching between low-level controller network and
the high-level controller network. In addition, the
controller agent makes the system follow a desired
pattern generated by the imitating agent.

In a nutshell, the proposed method works as
follows: First, the system is controlled by the high-
level controller. Meanwhile, the low-level controllers
are trained and their outputs are evaluated at the same
time. Next, if all low-level controllers in the network
have the ability to generate the desired trajectories,
the high-level controller gets turned o� and the system
will be controlled by low-level controllers. The result
shows the applicability of this method in the walking
gait of biped robots. Therefore, the developed frame-
work controls an unstable under-actuated biped robot
using simple identical controllers which have no prior
knowledge about the system. This makes the control
of the system modular, simple, and computationally
e�cient.
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Appendix A

De�nition of Parameters in the perturbed
dynamics
In this section, the variables used in Eq. (18) are given
by:8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

�(1)
i = �Cii� _�qj +

P
k

h
@ �Dik
@ _�qi

��q�k + @ �Cik
@ _�qi

_�q�k
i

�(2)
i = @�gi

@�qi +
P
k

h
@ �Dik
@�qi

��q�k + @ �Cik
@�qi

_�q�k
i

�(3)
i =

X
j 6=i

 
�Dij���qj + �j�gi + �Cij� _�qj+X

k

�
�j �Dik��q�k + �j �Cik _�q�k

�!
(A.1)

where Cij and Dij denote row i and column j of matrix
C and matrix D, respectively. In addition, gi denotes
the ith component of vector g. Moreover:

�j = ��qj
@
@�qj

+ � _�qj
@
@ _�qj

: (A.2)

Appendix B

Perturbation analysis of dynamics of an
actuated DoF with the high-gain controller
In this section, singular perturbation analysis of
Eq. (20) is considered.

Without loss of generality, let us assume that
there exists a regular expansion for the solution, i.e.:

��qi(t) =�Q(0)
i (t=�) + ��Q(1)

i (t=�) + � � �
+ �q(0)

i (t) + ��q(1)
i (t) + � � � : (B.1)

It should be noted that, due to the singularity of the
system, Q(n)

i (t=�) for n = 0; 1; � � � is added to the
solution to prevent the boundary layer jump near t =
0. Substituting the proposed expansion into Eq. (20)
yields:8>>>>>>>>>>><>>>>>>>>>>>:

� _q(0)
i + c�q(0)

i = 0;

� _q(1)
i + c�q(1)

i = ��(3)
i � �Dii��q(0)

i
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i � _q(0)
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i �q(0)
i

� _q(n)
i + c�q(n)

i = � �Dii��q(n�1)
i ��(1)
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i

��(2)
i �q(n�1)

i ; n 2 f2; 3; � � � g:

(B2.)
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Therefore, the solution of these terms at the lowest
order is written as follows:(

�q(0)
i (t) = Ae�ct

� _q(0)
i (t) = �cAe�ct (B.3)

where A is a constant determined by the initial condi-
tions.

For the boundary layer solution, the proposed
expansion yields the following equations:8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

�Dii� �Q(0)
i + � _Q(0)

i = 0;

�Dii� �Q(1)
i + � _Q(1)

i = �c�Q(0)
i ��(1)

i � _Q(0)
i ;

�Dii� �Q(2)
i + � _Q(2)

i = �c�Q(1)
i ��(1)

i � _Q(1)
i

��(2)
i Q(0)

i ��(3)
i ;

�Dii� �Q(n)
i + � _Q(n)

i = �c�Q(n�1)
i ��(n�1)

i � _Q(n�1)
i

��(2)
i Q(n�2)

i ; n 2 f3; 4; � � � g:

(B.4)

In these equations, 0 < �Dii < 1 ( �D(t) is a positive
de�nite matrix for 8t 2 R); therefore, the lowest order
term of the boundary layer solution is exponentially
stable [54, p. 154] and decays with rate t=�:8><>:�

_Q(0)
i (t=�) = B�D(t=�)

�Q(0)
i (t=�) = �B

R t=�
0 �D(�)d�

(B.5)

where �D(�) is an exponentially decaying function with
the rate of its argument and �D(0) = 1, and B is a
constant determined by the initial conditions.

Therefore, the solution of the system will be as
follows:8><>:��qi(t) = Ae�ct +O(�);

� _�qi(t) = �cAe�ct +B�D(t=�) +O(�)
(B.6)

Hence, satisfying the initial conditions yields:(
A = ��qi(0);
B = � _�qi(0) + c�qi(0):

(B.7)

Appendix C

Proof of Theorem 2
Clearly, if system (22) could be expressed in the form
of Eqs. (23) and (24), the theorem is proved and the
mentioned transformation exists.

It is obvious that the local dynamical behavior of
a system with n states can be fully expressed by a set of
its projections on n1 linear independent subspaces Ui

where n1 � n and
Pn1
i=1 dim(Ui) = n. Now, consider

the projection of the system in Eq. (22) on subspace
Ui where dim(Ui) = di. By taking the assumption into
consideration, the system in Eq. (22) has an oscillatory
stable trajectory with the period of T . It means that
the trajectory of the system is a closed orbit in Rn
and its projection on any subspace. Therefore, the
projected dynamics of the system on Ui is a stable
closed trajectory, and its states can be divided into
a monotonic state and (di � 1) asymptotically stable
ones. The monotonic state in this subsystem can be
interpreted as the phase of the oscillation. Due to
the oscillatory nature of the system, it can be also
concluded that its time derivative is a periodic function
with the period of T with respect to this state. Besides,
by considering the assumption that the trajectory of
the system is an asymptotically stable one, it can
be concluded that any deviation from the trajectory
will be forgotten in subspace Ui and the system will
asymptotically converge to the trajectory. This means
that there is an asymptotically stable equilibrium point
for the other (di � 1) states of the subspace Ui and
without loss of generality, it can be assumed that it
is located at the origin. Hence, the dynamics of the
system on subspace Ui is governed by the following
equations:

_�i = Ai(�; �); (C.1)

_�i = Bi(�; �); (C.2)

where �i is monotonic on the trajectory projected
into subspace Ui, and �i denotes asymptotically sta-
ble states of subspace Ui. It should be noted that
� = (�1; �2; � � � ; �n1) 2 Rn1 is the stacked vector
of monotonic states of all aforesaid subspaces, and
� = (�1; �2; � � � ; �n1) 2 Rn�n1 is the stacked vector
of asymptotically stable states of the subspaces.

Appendix D

Contraction analysis of driven Hopf oscillator
Consider the driven Hopf oscillator system:(

_z1 = 
�
�2 � ks= � z2

1 � z2
2
�
z1 � !z2 + u1

_z2 = 
�
�2 � ks= � z2

1 � z2
2
�
z2 + !z1 + u2: (D.1)

The corresponding Jacobian matrix can be written as
follows:

J =
�
J1 J2

�
; (D.2)

where:

J1 =
�� �3z2

1 + z2
2 + ks= � �2�

! � 2z1z2

�
; (D.3)
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and:

J2 =
� �! � 2z1z2� �3z2

2 + z2
1 + ks= � �2�� : (D.4)

This matrix is negative de�nite for ks > �2. There-
fore:

d
dt
�
�zT�z

�
= 2�zTJ�z < 0; (D.5)

where �z is a virtual displacement between two neigh-
boring solution trajectories. It implies that the system
is contracting for ks > �2 [50].
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