Hierarchical decentralized control of a five-link biped robot

Document Type : Article

Authors

School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

Abstract

Most of the biped robots are controlled using pre-computed trajectories methods or methods based on the multibody dynamics models. The pre-computed trajectory based methods are simple but the system gets highly vulnerable to the external disturbances. In contrast, the dynamically based methods make the system acts faster, but they need extensive knowledge about the kinematics and dynamics of the system. This fact gave rise to the main purpose of this study, i.e., developing a controller for a biped robot to take advantages of the simplicity and computational eciency of trajectory-based methods and the robustness of the dynamic-based approach. To do so, this paper presents a twolayer hierarchical control framework for an under-actuated, planar, 5-link biped robot model. The upper layer contains a centralized dynamic-based controller and uses all system sensory data to generate stable walking. The lower layer in this structure is a decentralized trajectory-based controller network which learns to control the system based on the upper layer controller output. When
the lower controller fails to control the system, upper layer controller takes action and makes the system stable. Then, when the lower layer controller gets ready, the control of the system will be handed to this layer.

Keywords

Main Subjects


References
1. Mohammadi, E., Zohoor, H., and Khadem, S. Design
and prototype of an active assistive exoskeletal robot
for rehabilitation of elbow and wrist", Scientia Iranica,
23(3), pp. 998-1005 (2016).
2. Gritli, H. and Belghith, S. Walking dynamics of the
passive compass-gait model under ogy-based statefeedback
control: Analysis of local bifurcations via the
hybrid poincare map", Chaos, Solitons and Fractals,
98, pp. 72-87 (2017).
3. Razavi, H., Bloch, A., Chevallereau, C., and Grizzle,
J. Symmetry in legged locomotion: a new method for
designing stable periodic gaits", Autonomous Robots,
41(5), pp. 1119-1142 (2017).
4. Zhao, H., Hereid, A., Ma, W.-L., and Ames, A. Multicontact
bipedal robotic locomotion", Robotica, 35(5),
pp. 1072-1106 (2017).
5. Gupta, S. and Kumar, A. A brief review of dynamics
and control of underactuated biped robots", Advanced
Robotics, pp. 1-17 (2017).
6. Luo, J.-W., Fu, Y.-L., and Wang, S.-G. 3d stable
biped walking control and implementation on real
robot", Advanced Robotics, pp. 1-16 (2017).
7. Hasankola, M., Ehsaniseresht, A., Moghaddam, M.,
and Mirzaei Saba, A. Analysis, modeling, manufacturing
and control of an elastic actuator for rehabilitation
robots", Scientia Iranica, 22(5), pp. 1855-1865
(2015).
8. Ataei, M., Salarieh, H., and Alasty, A. An adaptive
impedance control algorithm; application in exoskeleton
robot", Scientia Iranica, 22(2), pp. 519-529 (2015).
9. Kulic, D., Venture, G., Yamane, K., Demircan, E.,
Mizuuchi, I., and Mombaur, K. Anthropomorphic
movement analysis and synthesis: A survey of methods
and applications", IEEE Transactions on Robotics,
32(4), pp. 776-795 (2016).
10. Hurmuzlu, Y., Genot, F., and Brogliato, B. Modeling,
stability and control of biped robots-a general framework",
Automatica, 40(10), pp. 1647-1664 (2004).
M. Yazdani et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 2675{2692 2689
11. Grizzle, J.W., Chevallereau, C., Sinnet, R.W., and
Ames, A.D. Models, feedback control, and open
problems of 3D bipedal robotic walking", Automatica,
50(8), pp. 1955-1988 (2014).
12. Luksch, T. Human-like control of dynamically walking
bipedal robots", PhD thesis, University of Kaiserslautern,
Kaiserslautern (2010).
13. Bora, N.M., Molke, G.V., and Munot, H.R. Understanding
human gait: A survey of traits for biometrics
and biomedical applications", 2015 International
Conference on Energy Systems and Applications, pp.
723-728 (2015).
14. Beigzadeh, B. and Meghdari, A. On dynamic nonprehensile
manipulation of multibody objects", Scientia
Iranica, Transactions B, Mechanical Engineering,
22(2), pp. 467-486 (2015).
15. Rossignol, S. Dynamic sensorimotor interactions in
locomotion", Physiological Reviews, 86(1), pp. 89-154
(2006).
16. Dietz, V. Spinal cord pattern generators for locomotion",
Clinical Neurophysiology, 114(8), pp. 1379-1389
(2003).
17. Guertin, P.A. The mammalian central pattern generator
for locomotion", Brain Research Reviews, 62(1),
pp. 45-56 (2009).
18. Hooper, S.L. Central pattern generators", Encyclopedia
of Life Sciences, John Wiley & Sons, Ltd, pp. 1-9
(2001).
19. Villarreal, D.J. and Gregg, R.D. A survey of phase
variable candidates of human locomotion", Annual
International Conference of the IEEE Engineering in
Medicine and Biology Society, 2014, pp. 4017-4021
(2014).
20. Wang, X., Ding, F., Alsaadi, F.E., and Hayat, T.
Convergence analysis of the hierarchical least squares
algorithm for bilinear-in-parameter systems", Circuits
Syst. Signal Process, 35(12), pp. 4307-4330 (2016).
21. Ma, J., Xiong, W., Chen, J., and Ding, F. Hierarchical
identi cation for multivariate Hammerstein systems
by using the modi ed Kalman lter", IET Control
Theory Applications, 11(6), pp. 857-869 (2017).
22. Wang, D., Mao, L., and Ding, F. Recasted
models-based hierarchical extended stochastic gradient
method for MIMO nonlinear systems", IET Control
Theory Applications, 11(4), pp. 476-485 (2017).
23. Ding, F. and Wang, X. Hierarchical stochastic gradient
algorithm and its performance analysis for a class
of bilinear-in-parameter systems", Circuits, Systems,
and Signal Processing, 36(4), pp. 1393-1405 (2017).
24. Wang, X. and Ding, F. Recursive parameter and state
estimation for an input nonlinear state space system
using the hierarchical identi cation principle", Signal
Processing, 117, pp. 208-218 (2015).
25. Wang, Y. and Ding, F. The auxiliary model based
hierarchical gradient algorithms and convergence analysis
using the ltering technique", Signal Processing,
128, pp. 212-221 (2016).
26. Wang, Y. and Ding, F. Novel data ltering based
parameter identi cation for multiple-input multipleoutput
systems using the auxiliary model", Automatica,
71, pp. 308-313 (2016).
27. Chen, H., Xiao, Y., and Ding, F. Hierarchical gradient
parameter estimation algorithm for hammerstein
nonlinear systems using the key term separation principle",
Appl. Math. Comput., 247(C), pp. 1202-1210
(2014).
28. Ding, F., Liu, X., Chen, H., and Yao, G. Hierarchical
gradient based and hierarchical least squares based
iterative parameter identi cation for CARARMA systems",
Signal Processing, 97, pp. 31-39 (2014).
29. Ma, J., Yuan, L., Zhao, Z., and He, F. Transmission
loss optimization-based optimal power
ow strategy by
hierarchical control for dc microgrids", IEEE Transactions
on Power Electronics, 32(3), pp. 1952-1963
(2017).
30. Zhao, J., Wong, P.K., Ma, X., and Xie, Z. Chassis
integrated control for active suspension, active front
steering and direct yaw moment systems using hierarchical
strategy", Vehicle System Dynamics, 55(1), pp.
72-103 (2017).
31. Grizzle, J.W., Abba, G., and Plestan, F. Asymptotically
stable walking for biped robots: analysis via
systems with impulse e ects", IEEE Transactions on
Automatic Control, 46(1), pp. 51-64 (2001).
32. Plestan, F., Grizzle, J.W.,Westervelt, E.R., and Abba,
G. Stable walking of a 7-DOF biped robot", IEEE
Transactions on Robotics and Automation, 19(4), pp.
653-668 (2003).
33. Westervelt, E.R., Grizzle, J.W., and Koditschek, D.E.
Hybrid zero dynamics of planar biped walkers", IEEE
Transactions on Automatic Control, 48(1), pp. 42-56
(2003).
34. Hurmuzlu, Y. Dynamics of bipedal gait Part IIStability
analysis of a planar ve-link biped", Journal
of Applied Mechanics, 60(2), pp. 337-343 (1993).
35. Djoudi, D., Chevallereau, C., and Aoustin, Y. Optimal
reference motions for walking of a biped robot",
2005 IEEE International Conference on Robotics and
Automation, pp. 2002-2007 (2005).
36. de Pina Filho, A.C., Dutra, M.S., and Santos, L.
Modelling of bipedal robots using coupled nonlinear
oscillators", Mobile Robots Towards New Applications,
A. Lazinica, Ed., InTech, Ch. 4, pp. 55-78 (2006).
37. Mondal, S., Nandy, A., Chandrapal, Chakraborty, P.,
and Nandi, G.C. A central pattern generator based
nonlinear controller to simulate biped locomotion with
a stable human gait oscillation", International Journal
of Robotics and Automation (IJRA), 2(2), pp. 77-127
(2011).
38. Liu, G.L., Habib, M.K., Watanabe, K., and Izumi, K.
Central pattern generators based on Matsuoka oscillators
for the locomotion of biped robots", Arti cial
Life and Robotics, 12(1-2), pp. 264-269 (2008).
2690 M. Yazdani et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 2675{2692
39. Aoi, S. and Tsuchiya, K. Locomotion control of a
biped robot using nonlinear oscillators", Autonomous
Robots, 19(3), pp. 219-232 (2005).
40. Nassour, J., Hena , P., Benouezdou, F., and Cheng,
G. Multi-layered multi-pattern CPG for adaptive locomotion
of humanoid robots", Biological Cybernetics,
108(3), pp. 291-303 (2014).
41. Liu, C., Yang, J., Bu, W., and Chen, Q. A trajectory
generation method for biped walking based on
neural oscillators", 13th International Conference on
Networking, Sensing, and Control (ICNSC), pp. 1-6
(2016).
42. Yu, J., Tan, M., Chen, J., and Zhang, J. A survey on
CPG-inspired control models and system implementation",
IEEE Transactions on Neural Networks and
Learning Systems, 25(3), pp. 441-456 (2014).
43. Spong, M.W. Partial feedback linearization of underactuated
mechanical systems", IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS'94), pp. 314-321 (1994).
44. Buche, G., Chevallereau, C., Abba, G., Aoustin, Y.,
Plestan, F., Westervelt, E.R., Canudas-de-Wit, C.,
and Grizzle J.W. RABBIT: A testbed for advanced
control theory", IEEE Control Systems Magazine,
23(5), pp. 57-79 (2003).
45. Westervelt, E.R. and Grizzle, J.W. Design of asymptotically
stable walking for a 5-link planar biped walker
via optimization", IEEE International Conference on
Robotics and Automation, pp. 3117-3122 (2002).
46. Liu, C. and Su, J. Biped Walking control using
oine and online optimization", 30th Chinese Control
Conference (CCC), pp. 3472-3477 (2011).
47. Verhulst, F. Methods and applications of singular perturbations",
Boundary Layers and Multiple Timescale
Dynamics, 50, Springer Science & Business Media,
New York, NY (2005).
48. Prentice, S.D., Patla, A.E., and Stacey, D.A. Simple
arti cial neural network models can generate basic
muscle activity patterns for human locomotion at different
speeds", Experimental Brain Research, 123(4),
pp. 474-480 (1998).
49. Righetti, L., Buchli, J., and Ijspeert, A.J. Dynamic
Hebbian learning in adaptive frequency oscillators",
Physica D: Nonlinear Phenomena, 216(2), pp. 269-281
(2006).
50. Wang, W. and Slotine, J.-J.E. On partial contraction
analysis for coupled nonlinear oscillators", Biological
Cybernetics, 92(1), pp. 38-53 (2004).
51. Righetti, L. and Ijspeert, A.J. Programmable central
pattern generators: an application to biped locomotion
control", IEEE International Conference on Robotics
and Automation, pp. 1585-1590 (2006).
52. Chen, S., Cowan, C.F.N., and Grant, P.M. Orthogonal
least squares learning algorithm for radial basis
function networks", IEEE Transactions on Neural
Networks, 2(2), pp. 302-309 (1991).
53. Saad, D., On-Line Learning in Neural Networks, Cambridge
University Press (2009).
54. Khalil, H.K., Nonlinear Systems, Pearson Education
Prentice Hall (2002).