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Abstract. This study considers a novel class of bi-level fuzzy random programming
problems of insuring critical path. In this study, duration of each task is considered as
a fuzzy random variable and follows the known possibility and probability distributions.
Because an e�ective way to directly solve the problem does not exist, we �rst reduce the
chance constraint to two equivalent random subproblems under two di�erent kinds of risk
attitudes. Then, we use Sample Average Approximation (SAA) method for reformulating
the equivalent random programming subproblems as the approximation problems. Since
the approximation problems are also di�cult to solve, we explore a hybrid Genotype
Phenotype Binary Particle Swarm Optimization algorithm (GP-BPSO) for resolving two
equivalent subproblems, in which Dynamic Programming Method (DPM) is used for �nding
the solution in the lower-level programming. At last, a series of simulation examples are
provided for demonstrating the validity of the hybrid GP-BPSO compared with the hybrid
BPSO algorithm.

© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Critical path is one of the most important conceptions
of operations research, which controls project time and
speci�es the most critical activities. In the past few
years, critical path has been researched broadly in
the pure and applied areas of project management.
Joseph et al. [1] gave the conception of critical path,
and determined the distance between the initial node
and the target node. In order to �nd the longest
path, Chen et al. [2] proposed an e�cient method
to analyze 
ow time of each task duration with two
types of time constraints. Guerriero and Talarico [3]
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presented a conventional approach to solve network
problems under three kinds of time constraints in
certain circumstances.

Besides the research on deterministic critical path
problem, another research area deals with the random-
ness of task duration. For instance, M�ohring [4] min-
imized the resource costs for a project with each task
duration being uncertain and the project was subjected
to a given deadline for completion. Mitchell and Klas-
torin [5] developed an e�ective algorithm for compress-
ing general networks with stochastic activity times.
Shen et al. [6] studied a series of random optimization
problems of insuring critical path. Besides this, the
authors suggested decomposition approaches to settle
the problems for two types of penalty functions. Goh
and Hall [7] considered projects with uncertain task
durations and handled the robust optimization problem
with the conditional value at risk. Both Li et al. [8]
and Li et al. [9] considered novel kinds of two-stage
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random insuring critical path problems. Since decision
makers had risk aversion behavior, they used the
value at risk criterion and the minimum risk criterion
for the objectives, respectively. Li and Womer [10]
developed valid approximate approaches with respect
to the rollout policy for the project scheduling problems
with uncertain activity times and resource constraints.

With the development of the fuzzy set theory
proposed by Zadeh [11], fuzzy critical path problems
have been considered by several researchers, such as
those of references [12-20]. Among them, Chen and
Hsueh [12] explored an ordinary method in order to
resolve the problem of critical path method if task
durations were considered as fuzzy numbers. Zammori
et al. [13] proposed an innovative framework in order
to take additional important fuzzy parameters into
account. Amiri and Golozari [14] developed an e�ective
method, which considered four types of factors to deter-
mine the longest path, in which the parameter of each
factor was characterized by a fuzzy number. Zareei
et al. [15] gave a novel project scheduling algorithm for
solving fuzzy longest path issue, in which task duration
was considered as a fuzzy number. Li and Dai [16]
modeled a risk aversion problem of insuring critical
path in fuzzy decision systems. Kaur and Kumar [17]
presented a novel approach to �nding the best solution
in the fuzzy longest path problem. Jayagowri and
Geetharamani [18] presented a special way to �nd the
fuzzy longest path without converting the fuzzy activ-
ity times to crisp numbers. Pelikan et al. [19] utilized
the fuzzy approach to solving optimization problem of
project duration, critical path, and project resource
allocation. Sireesha and Shankar [20] presented a novel
approach to �nding the fuzzy total 
oats and the
longest path; their method could not �nd fuzzy earliest
and latest times.

Nevertheless, in the uncertain hybrid environ-
ment, there is fuzziness and randomness concurrence
in uncertain decision systems. For this reason, Liu
and Liu [21] explored kinds of measure criteria with
regard to fuzzy random variables, which had been
used successfully in extensive meaningful mathematical
programming problems, including the convergence of
the approximation problem [22], data envelopment
analysis [23], project scheduling problems [24], hub
location problem [25,26], hazardous materials trans-
portation problem [27], production-inventory system
problem [28], equilibrium standby redundancy opti-
mization problem [29], and so on. For insuring critical
path problem, the project manager cannot acquire the
complete information of every task duration in the
project management systems, yet some experts may
partially estimate probability distribution functions
of the task durations. Under such circumstances,
the stochastic task durations are known for fuzzy
information. Therefore, for project managers, the

randomness and fuzziness of the data are often mixed
together in each task duration. However, to our
knowledge, no research has considered the insuring
critical path problem in fuzzy random environments.
This motivated us to extend the application of the
fuzziness and randomness to optimize the insuring
critical path problem.

The aim of this paper is to employ equilibrium
chance [30] as a modeling criterion to handle insuring
critical path problem, in which each task duration
is considered as fuzzy random variable. That is,
a bi-level fuzzy random programming problem for
insuring critical path is proposed, in which a penalty
function is adopted in the upper-level programming;
it is non-decreasing and characterized by convexity
or non-convexity. Furthermore, each task duration
in the lower-level programming is considered as a
fuzzy random variable. In fact, because it is hard to
compute the chance function in this problem, we �rst
reduce each chance constraint to its equivalent prob-
abilistic constraint for triangular fuzzy random task
duration. Subsequently, we employ the SAA [29,31]
to reformulate the equivalent probabilistic constraints
as their approximation ones. Since the approximation
problems are also di�cult to solve, we will not compute
approximation programming problems by traditional
optimization methods. In this study, we adopt a
modi�ed Binary Particle Swarm Optimization (BPSO)
algorithm to settle the approximation problem of in-
suring critical path.

The BPSO algorithm, proposed by two ex-
perts [32] in 1997, has pullulated in the literature [33-
38] and the modi�ed and improved BPSOs are suc-
cessfully employed for the substantial programming
problems. For example, Lee et al. [33] studied amend-
ments and improvements of the original BPSO. Wang
and Watada [34] proposed a hybrid PSO algorithm for
fuzzy random facility location problem with value at
risk. Beheshti et al. [35] introduced memetic BPSO
to solve discrete optimization problems. Li et al. [36]
used chaotic BPSO for stochastic optimal operation of
microgrid. Liu et al. [37] analyzed the inertia weight
parameter of BPSO. Jiang et al. [38] presented a new
hybrid optimization method with wavelet mutation.
Motivated by the aforementioned work, our article
proposes a novel hybrid method, which combines SAA,
DPM, BPSO, and genotype-phenotype mechanism, to
compute the fuzzy random programming problem, in
which DPM is used for �nding objective of the lower-
level programming. For the above hybrid resolution
method, the phenotype presents position information
and the genotype presents direction information, which
are applied to encode schemes. They clearly keep the
searching information in every step and are compared
with each other for obtaining the best solution in the
search space. These features give us the motivation
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to incorporate the genotype-phenotype mechanism into
the BPSO in order to resolve the problem of insuring
critical path. At last, a series of simulation examples
are provided for demonstrating the validity of hybrid
GP-BPSO method.

The remainder of this study is as follows. The
second section gives a novel bi-level fuzzy random
programming problem of insuring critical path. In the
third section, the original problem is converted into two
equivalent random optimization models. In the fourth
section, the stochastic programming problems can be
transformed into an approximate 0-1 mixed integer pro-
gramming problem. The �fth section proposes a hybrid
algorithm for resolving the approximate problems. The
sixth section provides a series of simulated examples to
testify the e�ciency of the hybrid method. At last,
conclusions are drawn in the seventh section.

2. Problem description

This paper studies the insuring critical path problem in
complex project management. The project will be sub-
jected to a given completion date. If the project is not
completed within the deadline time, there is penalty for
delay. To ensure completion time for the project, the
project manager insures some critical arcs by prehiring
additional labor or paying additional money. For
insuring critical path problem, some experts partially
know the probability distribution functions of the task
durations by estimation. In other words, the random
task durations are known with fuzzy information, so
every task duration is described by fuzzy random
variable. Based on the above consideration, a bi-level
fuzzy random programming model of insuring critical
path is established in this section. In this way, some
notations and parameters in the network are de�ned in
the following:
i; j Node ordering, i 2 N , j 2 N ;
N Node set, N = f0; 1; 2; � � � ; ng;
A Arc set, A � N � N , where A is

composed of two nodes that satisfy
topological order sequence, that is, if
i < j, then (i; j) 2 A;

G(N;A) Digraph to represent any completed
project;

FS(i) The right adjacent node set, 8 i 2 N ,
FS(i) = fjj(i; j) 2 Ag;

RS(i) The left adjacent node set, 8 i 2 N ,
RS(i) = fjj(j; i) 2 Ag;

! One case from 
, where 
 stands for
the set of possible limited cases;

cij The cost of insuring task duration
without delay on the arc (i; j);

d!ij Task duration without insuring arc
(i; j) under scenario !, fuzzy random
variables;

g!ij Task duration with insuring arc
(i; j) under scenario !, fuzzy random
variables;

� The non-decreasing penalty function
for delay deadline;

Q(x; !) The critical path length of a scenario
!;

� A preselected risk-level parameter,
where 0 < � � 1;

x A decision vector, where the component
part, xij , takes 1 if the project manager
insures arc (i; j); or else, if the project
manager does not insure arc (i; j), then
xij = 0;

y!ij Binary decision variables, y!ij , takes 1
if arc (i; j) belongs to a certain critical
path under scenario !, otherwise
y!ij = 0.

Based on the above-mentioned notations and
parameters, a bi-level programming for fuzzy random
insuring critical path can be constructed as follows:

min '

s.t. :

Pr

(
! 2 
jCr

( X
(i;j)2A

cijxij

+�(Q(x; !))�'
)
�1��

)
�1��

xij 2 f0; 1g; 8 (i; j) 2 A; (1)

where ' is the minimum objective value, which is
a threshold of the total cost consisting of insuring
and penalty, Cr represents credibility measure in the
reference [39], Pr is probability measure, and Q(x; !)
represents the optimal value in the lower-level program-
ming:

max
X

(i;j)2A
(d!ij � (d!ij � g!ij)xij)y!ij

s.t. : X
j2FS(0)

y!0j = 1

X
j2FS(i)

y!ij�
X

l2RS(i)

y!li=0; 8 i2Nnf0; ng

y!ij 2 f0; 1g; 8 (i; j) 2 A: (2)
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In upper-level programming, the �rst constraint
includes two costs: the total cost of insuring arcs,P

(i;j)2A cijxij , and a penalty fee, �(Q(x; !)), in sce-
nario !. With a preselected risk-level parameter, � 2
(0; 1], the �rst constraint together with the objective
function, ', represents a (1 � �)-critical threshold
point of the minimum cost objective. In addition, the
second constraint gives a series of 0-1 decision variables.
The objective of the lower-level programming (2) is
obtaining the �nish time for the project. The �rst
constraint ensures the unique starting arc of the critical
path, the second constraint ensures the balance of arc
numbers in the critical path, and the third constraint
gives a series of 0-1 decision variables.

The upper-level programming (1) is a class of 0-
1 integer fuzzy random problems, which is extremely
di�cult to solve directly. One of the reasons is that
for a given decision, xij , the �rst constraint contains
fuzziness and randomness simultaneously. Besides this,
Q(x; �(!)) is unknown. To overcome these di�culties,
we reduce the �rst constraint from Model (1) to the
equivalent stochastic ones by using triangular fuzzy
random variables in the next section.

3. Equivalent conversion problem

This section �rst discusses the transformational model
of the upper-level insuring critical path model (1).
We suppose that uninsured or insured task duration
for each arc is known as a triangular fuzzy random
variable. Accordingly, the �rst constraint in program-
ming (1) can be simpli�ed to a random equivalence
transformation form. For simplicity of notation, let
H(!) = �(Q(x; !)).

For each ! 2 
 and any (i; j) 2 A, let d!ij and
g!ij be the triangular fuzzy random variables, d!ij =
(d!1
ij ; d!2

ij ; d!3
ij ) and g!ij = (g!1

ij ; g!2
ij ; g!3

ij ) be mutually
independent fuzzy variables, and d!1

ij ; d!2
ij ; d!3

ij ; g!1
ij ; g!2

ij ,
and g!3

ij be random variables. According to [25,40],
we can transform the �rst inequality constraint of
problem (1) into two subproblems as follows:

(i) If 0 < � � 1
2 , then:

Pr

(
! 2 
 jCr

( X
(i;j)2A

cijxij +H(!) � '
)

� 1� �
)
� 1� �; (3)

can be converted into the following form:

Pr

( X
(i;j)2A

cijxij + 2�H(!2)

+(1� 2�)H(!3) � '
)
� 1� �;

8 (i; j) 2 A: (4)

(ii) If 1
2 < � � 1, then:

Pr

(
! 2 
 jCr

( X
(i;j)2A

cijxij

+H(!) � '
)
� 1� �

)
� 1� �; (5)

can be converted into the following form:

Pr

( X
(i;j)2A

cijxij + (2�� 1)H(!1)

+ (2� 2�)H(!2) � '
)
� 1� �;

8 (i; j) 2 A: (6)

From the discussion above, we can summarize the
translation results of Model (1) as follows.

If 0 < � � 1
2 , then we could transform the original

problem (1) into a stochastic programming problem as
follows:

min '

s.t. :

Pr

( X
(i;j)2A

cijxij + 2�H(!2)

+(1� 2�)H(!3) � '
)
� 1� �

xij 2 f0; 1g; 8 (i; j) 2 A (7)

If 1
2 < � � 1, then we could convert the original

problem (1) into a stochastic programming problem as
follows:

min '

s.t. :

Pr

( X
(i;j)2A

cijxij + (2�� 1)H(!1)

+(2� 2�)H(!2) � '
)
� 1� �

xij 2 f0; 1g; 8 (i; j) 2 A (8)
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Problems (7) and (8) are also extremely di�cult
to simultaneously solve. The reason may be that
for a given upper-level decision, xij , the probabilistic
constraint of the upper-level model is hard to com-
pute, since it requires a multi-dimensional integration.
Furthermore, to solve this problem, we still require
the conversion of the probabilistic constraints to their
approximation problems.

4. Solution method

In practical decision making, most of the decision
makers may select the behavior with high risk aversion,
that is, 0 < � � 1

2 . Thus, we convert model (7) into
its approximate programming problem.

When the risk-level parameter � satis�es the
condition 0 < � � 1

2 , the following probabilistic
constraint from model (7) is considered:

Pr

( X
(i;j)2A

cijxij + 2�H(!2) + (1� 2�)H(!3)

� '
)
� 1� �: (9)

Further, we consider the case when the task
durations of arcs d!1

ij , d!2
ij , d!3

ij , g!1
ij , g!2

ij , and g!3
ij are

general discrete random variables. For convenience, we
give the probability distribution pk > 0,

PK
k=1 pk = 1

(k = 1; 2; � � � ;K).
At this point, we introduce a constant M that is

big enough, i.e.:X
(i;j)2A

cijxij+2�H(!2)+(1�2�)H(!3)�M�':
(10)

Subsequently, by introducing a vector z of binary
variables, we may calculate the number of satisfying
constraints. The vector is composed of some compo-
nent zk, which is 1 if the corresponding constraint is
not satis�ed and 0 otherwise.

Based on the de�nition of probability mea-
sure [41,42], the SAA method can be employed for
the probability constraint in model (7). Then, we
can transform model (7) into approximate 0-1 mixed-
integer programming problem:

min '

s.t. : X
(i;j)2A

cijxij+2�H(!2)+(1�2�)H(!3)

�Mzk � '

KX
k=1

pkzk � �

zk 2 f0; 1g; k = 1; 2; � � � ;K
xij 2 f0; 1g; 8 (i; j) 2 A: (11)

In upper-level programming problem, Q(x; !) is
the time limit for a project and the best value for the
lower-level programming:

max
X

(i;j)2A
(d!ij � (d!ij � g!ij)xij)y!ij

s.t. : X
j2FS(0)

y!0j = 1

X
j2FS(i)

y!ij�
X

l2RS(i)

y!li=0; 8 i2Nnf0; ng

y!ij 2 f0; 1g; 8 (i; j) 2 A: (12)

The upper-level programming (11) is a bi-level 0-1
mixed-integer programming model, in which the upper-
level penalty function, H(�k), is unknown. Hence,
model (11) cannot be resolved by traditional optimiza-
tion method. In the next section, we will introduce an
e�ective method to seek the time limit of a project for
the lower-level programming (12), which is important
for the solution to Problem (11).

5. The hybrid GP-BPSO algorithm

In this section, we use dynamic programming to com-
pute the lower-level programming in the �rst subsec-
tion; then, we adopt the hybrid method to resolve
the approximate upper-level programming by some
simulation experiments in the second subsection.

5.1. Computing critical path
For solving the approximate model, by analyzing the
characteristics of the lower-level programming, we
adopt dynamic programming [43] to refresh objective
of the lower-level programming based on a concrete
computational expression as follows:

h(j) = max
(i;j)2A

�
h(i) + (qij � (qij � pij)xij)	 ; (13)

in which h is the length of computing critical path;
for arc (i; j), qij and pij are task durations without and
with insuring the arc, respectively; and xij takes 1 if the
project manager insures the arc, or else if the project
manager does not insure the arc, then xij = 0.
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5.2. A hybrid GP-BPSO method
In 1997, two experts [32] turned standard continuous
Particle Swarm Optimization (PSO) algorithm [44] to
binary spaces. However, BPSO is a variant of the
continuous PSO, which has not been studied much.
Based on BPSO simulation method, we explore a novel
revised GP-BPSO method. In the following, we show
the concrete operating procedures.

5.2.1. Encoding representation of solution
In the algorithm, the components of the vector x =
(xij)1�m, consisting of 0 and 1 as a group of particles,
are used for expressing a solution to problem (11)
above, in which m represents the number of arcs. Each
gene xij = 1 reveals that arc (i; j) is protected from
delay; conversely, each gene, xij = 0, shows that arc
(i; j) is not protected from delay time.

5.2.2. Initialization value
For the lower-level programming (11), we randomly
generate a series of phenotypes from the f0; 1gm,
forming a position vector xp = (xp;1; xp;2; � � � ; xp;m).
If a randomly generated number in the (0; 1) interval
of uniform distribution is larger than 0.5, then set it to
1; otherwise, set it to 0. Repeating this process for Psize
times, Psize groups of the original particles consisting of
both the phenotype particles and the genotype parti-
cles (xp;1; xg;1); (xp;2; xg;2); � � � ; (xpPsize;m

; xgPsize;m
) can

be produced.

5.2.3. Evaluation
Let �t(�) = �' be the �tness function. Thus, the
particle with the better target is assessed by the higher
�tness.

5.2.4. Renewal process of velocities of GP particles
For this operation, we need to seek the current best
particle, Pbest;i(i = 1; 2; � � � ; Psize), by the end of
a certain phenotype particle, xp;i. As the renewal
population of phenotype particles increases, the global
best particle, Gbest, can be produced until the end
of the population of the entire phenotypes. At this
time, given each i, each genotype particle xg;i, each
phenotype particle, xp;i, and each velocity vector, vi;d
are considered by the following regulations for renewal,
respectively:

xg;i = xg;i + vi;d; (14)

xp;i;j =

(
1; if rand () < S(xg;i;j),
0; if rand () � S(xg;i;j),

(15)

vi;d =w � vi;d + c1 � rand() � (Pbest;i � xp;i)
+ c2 � rand() � (Gbest;i � xp;i); (16)

in which w is a coe�cient; both c1 and c2 are rates;
rand() is randomly generated in the interval (0; 1) of

uniform distribution; let S(x) = 1=(1 + e�x); xp;i;j
and xg;i;j , respectively, represent the components of
the vectors xp;i and xg;i. Through the above process,
a new generation of phenotype particles can be found.

Based on the description above, a brief outline
of the hybrid algorithm to resolve the approximate
problem (11)-(12) is the following:

Step 0: Install �ve parameters of c1, c2, w, Psize,
and vmax;
Step 1: Initialize particles;
Step 2: Renew particles;
Step 3: Solve lower-level model (12) subject to
expression (13);
Step 4: Compute �tness function of each phenotype
particle;
Step 5: Renew Pbest;i from each renewal particle
of phenotype, and renew Gbest up to the end of the
phenotype population;
Step 6: Duplicate the second step to the �fth step
up to the given maximum generation number;
Step 7: Serve particle Gbest for the approximate best
solution.

6. Numerical experiments

In this section, we implement some numerical simu-
lation examples for the above approximate problem
in order to illustrate the hybrid GP-BPSO algorithm.
The parameters in the BPSO part have been selected
according to the referred algorithm papers [34,35,38],
and the parameters in the GP part have been selected
according to the referred algorithm papers [9,33]. All
the algorithms based on the C++ programming lan-
guage are encoded by a Windows 8 system (ThinkPad
with Intel(R) Core(TM) i5-3337U 1.80GHZ CPU and
4.00GB RAM).

First, a given project for the above fuzzy random
problem is shown in Figure 1. In this fuzzy random
problem, we suppose M = 105. Besides this, the
penalty function in the above model is the following:

�(t) =

8>>><>>>:
0; 0 < t � 940;
120 + (t� 940)2=400; 940 < t � 950;
240 +

p
t� 950=50; 950 < t � 960;

360 + (t� 960)2=200; t > 960:
(17)

On every arc (i; j) 2 A, the value of each task
duration satis�es the following condition:

dkij � (a; b; c); a � U [80; 100];

b � U [180; 200]; c � U [280; 300]:
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and gkij for arc (i; j) 2 A are all generated from the
uniformly distributed [0:5dkij ; 0:8dkij ]. At the same time,
the cost cij is obtained by obeying uniform distribution
in the interval [60; 80]. At last, all dkij , gkij , and cij take
integer values.

Figure 1. A project in which each circle represents a
node, each line with an arrow represents an arc, and each
number represents the number of the node.

For our hybrid GP-BPSO approach, we let the
population size be Psize = 30, the maximum velocity
be vmax = 2, and the learning rates be c1 = c2 = 2.
The weight w decreases between 0.9 and 0.4, which is
expressed as follows:

w =
1

2GEN
(GEN � gen) +

2
5
; (18)

in which gen and GEN are iteration times for the
current and maximum cases, respectively.

For a series of insuring critical path problems,
Table 1 outlines all computations through the proposed
GP-BPSO method above for a project containing 30
nodes and 42 arcs. Column 1 provides the number of
sample sizes; column 2 reports decision makers' four
di�erent kinds of risk attitude; column 3 addresses the
arcs for insuring according to their topological order in
Figure 1; and column 4 shows the threshold values of
the allowable total cost.

To fully evaluate practical e�cacy of the method
proposed above, we report the comparison results be-
tween the hybrid GP-BPSO algorithm and the hybrid
BPSO algorithm, which are shown in Table 2 and
Figures 2-5.

Table 1. Simulation outcome of our modi�ed algorithm (GEN = 300).

K � Optimal solution '

1000

0.20 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0,
0, 0, 1, 0, 0, 0, 0,0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1)

935

0.15 (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0)

1034

0.10 (0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1)

1073

0.05 (0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0,
0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0)

1190

3000

0.20 (1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0,
0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1)

944

0.15 (1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0)

1035

0.10 (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0)

1074

0.05 (1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1,
0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0)

1191

5000

0.20 (1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1)

947

0.15 (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0,
0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0)

1039

0.10 (1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1)

1076

0.05 (1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1,
0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1)

1194
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Table 2. Comparison results (GEN = 300).

� K
1000 3000 5000

0.05 Hybrid GP-BPSO 1190 1191 1194
hybrid BPSO 1203 1204 1206

0.10 Hybrid GP-BPSO 1073 1074 1076
Hybrid BPSO 1123 1126 1127

0.15 Hybrid GP-BPSO 1034 1035 1039
Hybrid BPSO 1062 1062 1066

0.20 Hybrid GP-BPSO 935 944 947
Hybrid BPSO 983 984 985

Figure 2. Performance comparison with GEN = 300,
� = 0:10, and K = 1000.

Figure 3. Performance comparison with GEN = 300,
� = 0:05, and K = 1000.

7. Conclusions

This paper proposed a new bi-level fuzzy random
programming model for insuring critical path in which

Figure 4. Performance comparison with GEN = 300,
� = 0:15, and K = 1000.

Figure 5. Performance comparison with GEN = 300,
� = 0:20, and K = 1000.

a penalty function was adopted in the upper-level
programming. Also, it was non-decreasing and char-
acterized by convexity or non-convexity. Besides these,
each task duration in the lower-level programming was
assumed to be a fuzzy random variable. For the general
task duration distributions, we could not resolve the
proposed model by traditional programming methods.
To avoid this di�culty, we �rst transformed the pro-
posed insuring critical path problem into the equivalent
random programming subproblems. Subsequently, the
SAA method was used for rewriting the equivalent
submodels into their approximation problems.

Then, DPM was incorporated into hybrid GP-
BPSO method, which constituted a novel algorithm
to simulate the approximate subproblem; DPM was
utilized for computing the objective of the lower-level
problem. By performing a series of simulated examples,
we observed that the method proposed above was both
feasible and e�ective.
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