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Abstract. In this paper, the Incompressible Smoothed Particle Hydrodynamics (ISPH)
method is presented to simulate ood waves in uneven beds. The SPH method is a mesh-
free particle modeling approach that is capable of tracking large deformation of free surfaces
in an easy and accurate manner. Wave breaking is one of the phenomena whose free surface
is complicated. Therefore, ISPH method is a robust tool for the modeling of this kind of
free surface. The basic equations are the incompressible mass conservation and Navier-
Stokes equations that are solved using a two-step fractional method. In the �rst step, these
equations are solved to compute velocity components by omitting the pressure term in the
absence of an incompressible condition. In the second step, the continuity constraint is
satis�ed and the Poisson equation is solved to calculate pressure terms. In the present
model, a new technique is applied to allocate density of the particles for the calculations.
By employing this technique, ISPH method is stable. The validation by comparison with
laboratory data is conducted for bumpy channel with various boundary conditions. The
numerical results showed good agreement with available experimental data. In addition,
relative error is calculated for two numerical cases.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Flood wave is a complex phenomenon that occurs in
free surface ows with large deformation. Dam break
wave is one of such ows that can cause losses and
damages. Therefore, the prediction of the water level
position, velocity, and pressure is essential. These
problems are di�cult to simulate due to the existence
of the arbitrarily moving surface boundary conditions
and also because of the complex governing Navier
Stokes Equations (NSEs) [1]. Therefore, the dam
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break problem has been the subject of many analytical,
experimental, and numerical studies for hydraulics
scientists and engineers [2-4]. The marker and cell [5]
and Volume Of Fluid (VOF) [6] methods are the
most common methods for simulating such ows, in
which the Navier-Stokes equations are solved on a �xed
Eulerian grid [7]. In MAC method, marker particles
are used to de�ne the free surface, while, in VOF
method, the governing equations are solved for the
volume fraction of the uid. However, in spite of
successful use of both methods for treating free surface
ows, numerical di�usion arose due to solving NSEs on
a �xed Eulerian grid, especially when the deformation
of free surface is very large [8]. In the general area of
computational mechanics, there is a growing interest
in developing so-called meshless/mesh-free methods or
particle methods as alternatives to traditional grid-
based methods such as �nite di�erence methods and
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�nite-element methods [9]. One of the oldest mesh-
less methods is the Smoothed Particle Hydrodynamics
(SPH) method. Smoothed particle method is originally
used for astronomic problems. Recently, this method
has been well studied and applied in computational
uid dynamics, especially for ows with complex free
surface [10]. Furthermore, SPH method was used
successfully to model the �xed-bed dam break ow
on dry-bed and wet-bed downstream channels [11,12].
Ozbulut et al. [13] carried out a numerical investigation
into the correction algorithms for SPH method in
modelling violent free surface ows.

SPH simulations of the incompressible ows can
be carried out by two approaches:

1. Approximately simulating incompressible ows
with small compressibility, or Weakly Compressible
SPH (WCSPH);

2. Simulating ows by enforcing incompressibility, or
Incompressible SPH (ISPH).

In WCSPH method, the ow is considered as slightly
compressible, with a state equation for the pressure
calculation [14,15]. In ISPH method, the pressure-
velocity coupling is generally solved by the projection
method [16-19].

In this �eld, Xenakis et al. [20] improved the pres-
sure predictions using an incompressible SPH scheme
for free surface Newtonian ows. Nomeritae et al. [21]
presented an explicit incompressible SPH algorithm for
free surface ow and, then, compared this algorithm
with weakly compressible scheme.

This paper presents an incompressible 2D ISPH
model to simulate ood waves in uneven bed and
validated in Sections 5 for a rough bumpy channel with
various boundary conditions. Furthermore, the relative
error is calculated in a di�erent section.

2. Governing equations

The Navier-Stokes equations (mass and momentum
conservation equations) are written in 2D Lagrangian
form as follows [3]:

1
�
D�
Dt

+r:u = 0; (1)

Du
Dt

= �1
�
rp+

�
�
r2u + fb; (2)

where � is the ow density, u is the ow velocity, p
is the pressure, � is dynamic viscosity, fb represents
the body force, and t is time. Eq. (1) is in the form
of a compressible ow. Incompressibility is enforced
in a correction step of the time integration by setting
D�
Dt = 0 at each particle. The motion of each particle
is calculated by Dr=Dt = u, with r being the position
vector. These equations are solved by SPH method.

3. Numerical methodology

3.1. ISPH formulations
In the SPH method, nodal points that are scattered in
space with no de�nable grid structure and move with
the uid represent the uid domain. Each of these
nodal points has information, such as density, pressure,
velocity components, etc. [22]. The SPH formulation
is obtained as a result of interpolation between a set of
disordered points known as particles. The interpolation
is based on the theory of integral interpolants that uses
a kernel function to approximate delta function. The
kernel approximation of f is written in the form [23]:

f(r) =
Z



f(r)
_
W (jr� r0j ; h) dr: (3)

In the particle approximation, for any function of �eld
variable:

f(ri) =
nX
j=1

mj

�j
f(rj)

_
W (jri � rj j ; h) ; (4)

where 
 is the support domain, mj and �j are the mass
and density of particle j, mj=�j is the volume element
associated with particle j,

_
W is the interpolation kernel

function (in this paper, kernel based on the spline
function is used [23]), r is the position vector, h is the
smoothing distance which determines width of kernel
and, ultimately, the resolution of the method and in
this paper h = 1:2� dr where dr is the initial particle
spacing, and n is the total number of particles within
the smoothing that a�ects particle i. For example,
density of a particle in the SPH approximation is
represented as follows:

�i =
nX
j=1

mj
_
W (jri � rj j ; h) : (5)

The formulation of the gradient term has di�erent
forms depending on the derivation used [23]. The
gradient of the pressure is expressed as follows:

1
�i

(rPi) =
X
j

mj

 
Pj
�2
j

+
Pi
�2
i

!
rWij ; (6)

where P is pressure of the particles.
Similarly, the divergence of vector u at particle i

can be expressed by:

r:~ui = �i
X
j

mj

 
~ui
�2
i

+
~uj
�2
j

!
:riWij : (7)

The Laplacian for the pressure and viscosity term
is formulated as the hybrid of a standard SPH �rst
derivative coupled with a �nite di�erence approxima-
tion for the �rst derivative [4]. Furthermore, it has
been found that the resulting second derivative of the
kernel is very sensitive to particle disorder and will
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easily lead to pressure instability and decoupling in the
computation due to the co-location of the velocity and
pressure [8]. These are represented by:

r:
�

1
�
rP

�
i

=
X
j

mj
8

(�i + �j)2
Pijrij :riWij

jrij j2 + �2 ; (8)

�
�
�
r2u

�
i
=
X
j

4mj(�i+�j)rij :ri _W ij

(�i+�j)2(jrij j2+�2)
(ui�uj); (9)

where Pij = Pi � Pj , rij = ri � rj , � is the viscosity
coe�cient, and � is a small number introduced to
keep the denominator non-zero during computation
and is usually equal to 0:1h. After employing the SPH
formulation in Eq. (9) for the Laplacian of pressure, the
corresponding coe�cient matrix of linear equations is
symmetric and positive de�nite and can be e�ciently
solved by available solvers.

3.2. Limitation of time step
In the simulation of water ows, in which the uid vis-
cosity is not a control factor, the stability of the ISPH
computation requires the following Courant condition
to be observed:

�t � 0:1
�x
vmax

; (10)

where vmax denotes the maximum particle velocity in
the computational domain. Factor 0.1 ensures that
the particle moves only a small fraction of the particle
spacing per time step [24].

3.3. Boundary conditions
3.3.1. Free surface boundary
The ISPH model uses the particle density to judge
the free surface, and a zero pressure is given to these
particles. The criterion is that there is no uid
particle existing in the outer region of the free surface;
therefore, the particle density on the surface should
drop signi�cantly [8]. Therefore, a particle which
satis�es the following equation was considered to be
on the free surface:

(��)i < � � (�0)i: (11)

In this equation, � is the free surface parameter
and 0:8 < � < 0:99 [25]. In this paper, � =
0:94 is used. Eq. (11) is applied to the free surface
particles in order to move correctly, avoid instability in
the computations, and control their incompressibility
condition [1].

3.3.2. Solid wall boundaries
Solid walls are simulated by one line of particles. In
order to satisfy the non-slip boundary condition, the
velocities of wall particles are set to zero. To balance
the pressure of inner uid particles and prevent them
from penetrating the solid walls, the pressure Poisson

equation is solved for these wall particles, and the
Neumann boundary condition is imposed. In addition,
two lines of dummy particles are placed outside wall
boundaries and their pressure is set to that of a wall
particle in the normal direction of the solid walls.
By imposing these conditions, the density of particles
is computed accurately, and wall particles are not
considered as free surface particles [8].

4. Solution algorithm

At �rst, the initial conditions, such as problem geom-
etry, smoothing distance, number of particles, mass,
dynamic viscosity, initial, coordinate, and their velocity
are de�ned. Then, two-step fractional algorithm is
applied. In the �rst step, the Navier Stokes equations
are solved to compute velocity components without
the pressure term in the absence of incompressible
condition. In the second step, the continuity constraint
is satis�ed, and the resulting Poisson equation is solved
to calculate pressure terms [8]. This algorithm can be
summarized in �ve stages:

- The density of the particles using the following
equation is calculated [8]:

�0
i =

X
j

mj
_
W (jri � rj j ; h) : (12)

- The prediction step: Temporary particle positions
and velocities by considering the gravity and viscos-
ity terms in Eq. (2) are computed [8]:

�~u� =
�
~g +

�
�
r2u

�
�t; (13)

u� = ut + �u�; (14)

r� = rt + u��t; (15)

where ut and rt are the particle velocity and position
at time t; u� and r� are the temporary particle ve-
locity and position, respectively, and �u� is changed
in the particle velocity during the prediction step. In
this step, due to omitting the pressure term, the uid
density is changed and computed again by Eq. (16).
Therefore, incompressibility is not still satis�ed [8].

��i =
X
j

mj
_
W
���r�i � r�j

�� ; h� : (16)

- The correction step: in this step, the pressure term
is computed through Poisson equation (Eq. (19)) by
considering the continuity constraint and enforcing
incompressibility with combining Eqs. (17) and (18)
as follows [8]:

1
�0

�0 � ��
�t

+r:(�u��) = 0; (17)
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�u�� =
�1
��
rPt+1�t; (18)

r:
�

1
��
rPt+1

�
=
�0 � ��
�0�t2

: (19)

The Poisson equation produces a system of linear
equation solved by iterative solvers.

- New particle velocities are obtained from Eqs. (19)
and (20) [8]:

ut+1 = ut + �u��: (20)

- The new position of particles is computed by
Eq. (21) [8].

rt+1 = rt +
ut+1 + ut

2
�t: (21)

5. Numerical validations

In this section, the numerical accuracy and applica-
bility of the proposed ISPH method are examined by
the laboratory measurements of dam-break ows in the
bumpy channel.

5.1. Dry bed with open end
5.1.1. Problem geometry and solution domain
In this case, the experimental data of Ozmen-Cagatay
et al. [26] are used. Dimensions of the channel and
reservoir are displayed in Figure 1. The bed is totally
dry before and after the obstacle, and there is an open
end boundary condition.

5.1.2. Qualitative description of the ow
After lifting the gate, the water wave propagates over
the bed. After about t = 0:9 s, the ow water hits
the obstacle. At t = 1:36 s, amount of water passes
the bump, while, at t = 2:8 s, the wave reection
of the bump is clearly observed. The water ow
and propagation of waves are shown in Figure 2 for
t = 0:22 s, t = 0:5 s, t = 0:9 s, t = 1:36 s, t = 2:8 s,
t = 3:3 s, t = 3:68 s, t = 4:74 s, and t = 5:72 s.
The good agreement exists between the present model
results and the experimental data.

5.1.3. Comparison of free surface pro�le with
experimental data

The free surface pro�les are shown in Figure 3, and the
results of the present model are compared with exper-
imental data of Ozmen-Cagatay et al. [26]. Of note,

Figure 1. The initial geometry of the bumpy channel
with dry bed [26].

Figure 2. The free surface pro�les and pressure �eld in
the present model and the experimental data of
Ozmen-Cagatay et al. [26] at di�erent times for bumpy
channel with dry bed.
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Figure 3. Comparison of the free surface pro�le between
the present model results and the experimental data of
Ozmen-Cagatay et al. [26] at di�erent dimensionless times:
(a) T = 15:16, (b) T = 17:54, (c) T = 20:67, (d)
T = 23:05, (e) T = 29:69, (f) T = 35:83, (g) T = 41:84,
and (h) T = 49:99.

the space and the level of water are dimensionless and
the time is multiplied by (g=ho)0:5; then, dimensionless
time, T = t(g=ho)0:5, is obtained (g and ho are gravity
acceleration and initial depth of water, respectively).
According to Figure 3, at T = 15:16 and T = 17:54
as well as on the top of the obstacle, the estimate of
water level of the numerical model is slightly higher
than that of the experimental data of Ozmen-Cagatay
et al. [26]. However, in both cases, the maximum of the
water depth occurred on the peak of the bump (bump is
a triangular obstacle shown in Figure 3). At T = 20:67,
from the �rst of the bed up to the end of the bump,
the numerical model slightly overestimates the water
level. From T = 20:67 up to T = 35:83, when the ow
wave reaches the bump, part of water is reected and
another part passes the bump. At T = 23:05 before
the obstacle, the free surface pro�le of the present
model is higher than that of the experimental data.
At T = 29:69 and T = 35:83, the water level at the
upstream of the bump is changeless in the numerical
model. At the time progress (T > 35:83), the water
level is maximum at the top of the bump. At T = 41:84
and T = 49:99, the results of the present model are in
good agreement with the experimental data.

5.1.4. Calculation of relative error
By comparing the results of the numerical model
with experimental data, relative error is calculated as
follows:

Error(%)=
jXComputational�XEx perimentalj

XExperimental
�100:

(22)

The result is shown in Table 1.

5.1.5. Water level variation over time
The locations of stations P1, P2, P3, P4, P5, and P6
are shown in Figure 4. Dimensionless level of water
over time is compared with experimental data at these
points. This comparison is displayed in Figure 5. The
plots are depicted for 9.5 seconds.

After the sudden removal of the gate, a decline
and a rise in water level may occur for P1 and P2,
respectively, up to T = 5. From T = 5 to T = 40,
the water level changes a little at these points. After
the passing and reection of water wave of the bump
(T = 40), the water level declines gradually at P1 and
P2. When the wave front reaches P3, the water level
increases suddenly. The duration of the water level
being constant (T = 20 � 29) is shorter for P3 than
that for P1 and P2. At P4, P5, and P6, the water
level grows without being constant. The free surface
ow changes a little behind the negative wave. At this
time, the ow transmutes into the subcritical ow via
hydraulic jump and, then, passes the bump. In this
stage, the water levels remain constant in maximum
values, because inow and outow are in balance. At
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Table 1. Maximum of error calculated at di�erent dimensionless times shown in Figure 3.

T = t(g=ho)0:5 (h=h0)Experimental (h=h0)Computational x=h0 Maximum of error

15.16 0.619 0.640 7.621 3.39

17.54 0.163 0.190 12.310 14.210

20.67 0.507 0.558 6.130 10.059

23.05 0.790 0.838 6.731 6.075

29.69 0.610 0.541 3.490 11.311

35.83 0.520 0.580 1.411 11.538

41.84 0.325 0.290 9.320 10.769

49.99 0.574 0.540 0.747 5.923

Figure 4. The location of measurement stations.

T > 40, the water level declines in downstream, while
negative wave moves to the upstream. In general, the
good agreement exists between results of the present
model and the experimental data.

5.1.6. Calculation of relative error
As for Section 5.1.6, the relative error is calculated
using Eq. (26). Therefore, the result is shown in
Table 2.

5.2. Wet bed after obstacle with closed end
In this case, the experimental data of Soares Frazao et
al. [27] are selected for comparison. Initial domain and

dimensions are shown in Figure 6. There is a closed-
end boundary condition, and the bed is dry before the
bump and wet after it.

5.2.1. Qualitative description of the ow
The ow is described at t = 1:8 s, t = 3:0 s, t = 3:7 s,
and t = 8:4 s; images are shown in Figure 7.

When the gate opens, the ows move to the
downstream. After the water reaches the obstacle,
part of the wave crosses the bump, but another part
reects and moves to the upstream. After crossing the
bump, the ow reaches the pool of water. At this time
(t = 3:0 s), a positive front wave forms and travels to

Table 2. Maximum of error calculated for points speci�ed in Figure 5.

Points (h=h0)Experimental (h=h0)Computational T = t(g=ho)0:5 Maximum of error

P1 0.451 0.520 41.10 15.299

P2 0.632 0.560 40.00 11.392

P3 0.679 0.599 33.610 11.7

P4 0.819 0.729 23.110 12.345

P5 0.700 0.767 18.310 12.420

P6 0.609 0.680 29.800 11.658
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Figure 5. Comparison of the water level between the
present model results and the experimental data of
Ozmen-Cagatay et al. [26] for time evolution at
dimensionless distance: (a) X = �0:6, (b) X = 0:6, (c)
X = 3, (d) X = 6, (e) X = 7, and (f) X = 8.

the upstream. Then, this ow moves to the bed and
reaches the bump and is reected again (t = 3:7). At
t = 8:4 s, the water on the bump is balanced.

5.2.2. Comparison of the free surface pro�le with the
experimental data

In this section, a comparison of the free surface pro�le
with the experimental data is carried out. Then, the
results are shown in Figure 8 at t = 1:8 s, t = 3:0 s,
t = 3:7 s, and t = 8:4 s. In these times, the present
model reproduces good results.

Figure 6. Initial geometry of bumpy channel with wet
bed after obstacle [27].

Figure 7. Free surface pro�le and comparison between
the present model results and the experimental data of
Soares Frazao et al. [27] at di�erent times for a channel
with wet bed after the obstacle.
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Table 3. Maximum of error calculated at di�erent times shown in Figure 8.

t (s) ZExperimental (m) ZComputational (m) X (m) Maximum of error

1.8 0.022 0.025 4.912 13.636
3.0 0.048 0.054 5.130 12.50
3.7 0.082 0.069 3.87 14.606
8.4 0.067 0.059 3.63 11.940

Figure 8. Comparison of water surface pro�les between
the present model results and the experimental data of
Soares Frazao et al. [27] at di�erent times.

5.2.3. Calculation of relative error
The calculation of error is the same as in section 5.1.4
and 5.1.5 which is given in Table 3.

5.3. Rectangular obstacle
In this section, the liquid behavior, when facing the
rectangular obstacle, is investigated and compared with
that in the experimental data of Koshizuka et al. [28].
The initial geometry of this case is provided in Figure 9.
This �gure illustrates the experimental data and the
numerical results at t = 0:1, 0.2, 0.3, and 0.5 s; the
results of the numerical model are slightly di�erent
from those of the experimental data, since air fazing is
neglected in the numerical model. The good agreement
exists between the experimental data and the numerical
results.

6. Discussions

In the previous sections, the ood waves in the channel
with the di�erent boundary conditions were investi-

gated. Case one was a channel with dry bed and open
end. Dam break problem was studied in this channel.
Then, the free surface pro�le was compared with the
experimental data of Ozmen-Cagatay et al. [26]. The
results of this model were in very good agreement
with those of the experimental data. Therefore, the
maximum of relative error was calculated for di�erent
dimensionless times, showing good accuracy of the
numerical model. The second case was the channel
with the closed end and the bed after the obstacle
was considered wet. Then dam break waves were
investigated for this case. This problem was compared
with the experimental data of Soares Frazao et al. [27].
At the end of this part, the maximum of relative
error was computed for di�erent times. Through the
analysis of the results and maximum of error, it can be
found that the results of the present model have good
e�ciency for modeling the interference of waves. In the
third case, a channel with a rectangular obstacle was
considered. For this example, the results of the present
model are compared with the experimental data of
Kushizuka et al. [25]. For this case, ow of dam break
had acceptable accordance with the experimental data.

7. Conclusion

In this paper, a numerical modelling of ood waves in
a bumpy channel with di�erent boundary conditions
was developed. An ISPH Method was presented to
simulate ood waves in a bumpy channel with di�erent
boundary conditions. SPH is a Lagrangian particle
method that does not require a grid to simulate free
surface ows. Wave breaking is one of the phenomena
whose free surface is complicated. Therefore, particle
methods, such as ISPH method, represent a robust
tool for the modelling of this kind of free surface.
The method employs particles to discretize the Navier-
Stokes equations, and the interactions among particles
simulate the ows. Thus, the advection terms in
Navier-Stocks equations were calculated directly, thus
omitting numerical di�usion errors. In the present
model, a new technique was applied to determine den-
sity of the particles for the calculations. By employing
this technique, ISPH method became stable. The
numerical validation and veri�cation were performed
through experimental data to prove the capability of
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Figure 9. Free surface pro�le and comparison between the present model results and the experimental data of Kushizuka
et al. [28] at di�erent times for a channel with a rectangular obstacle.

the ISPH model to simulate ood waves interaction
in uneven beds with various boundary conditions.
Therefore, the results showed that the free surface ows
in the channels with di�erent boundary conditions were
simulated using ISPH method with high accuracy. On
the other side, the computed relative error indicates
this fact, too.
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