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Abstract. This paper proposed a practical approach to reliability analysis of a vertical cut
in unsaturated soil. This approach extends the application of the conditional random �eld
to unsaturated soil. A real case study of a vertical cut was considered, and three boreholes
were drilled to investigate the subsurface layers. The Sequential Gaussian Simulation (SGS)
was used to generate a conditional random �eld considering the possible uctuation of
soil properties between known data. The undersampled parameters were estimated by
the cokriging method, while the kriging method was used to estimate other stochastic
parameters. In order to verify the e�ciency of simulations, it was checked that all data were
reproduced at their locations and the input semivariogram model was reproduced within
acceptable uctuations. To predict the unsaturated soil behavior, the Soil Water Retention
Curve (SWRC) was estimated by the physico-empirical method with the aim of determining
suction stress for �nite element stability analysis. The vertical cut was analyzed with and
without considering suction. It was concluded that considering unsaturated condition shifts
the mean of safety factor from unsafe to safe ranges. It was illustrated that the number
of known data a�ected the construction of conditional random �elds and led to di�erent
probability levels of failure.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

The stability of vertical excavations in soil is an impor-
tant issue in geotechnical engineering and has become
a common challenge amongst both theoreticians and
practitioners. Excavations are typically carried out
above the groundwater table, where the soils are
unsaturated. In unsaturated soils, textural properties
can a�ect the stability of excavations almost as much
as mechanical properties. The soil properties involved
in stability analysis imply many uncertainties though.
The degree of uncertainty is inuenced by both the lack

*. Corresponding author.
E-mail addresses: A.gholampour@sutech.ac.ir (A.
Gholampour); Johari@sutech.ac.ir (A. Johari)

doi: 10.24200/sci.2017.4571

of knowledge and the inherent spatial variability of the
subsoil.

The importance of spatial correlation and local
averaging of statistical geotechnical properties has been
recognized by some investigators [1]. Starting in the
early 90s, a new technique called Random Finite Ele-
ment Method (RFEM) was developed for probabilistic
geotechnical engineering [2]. In this method, uncondi-
tional random �eld theory is combined with the Finite
Element Method (FEM), and only the statistics of
limited site investigation data, such as means, standard
deviations, and autocorrelation distances, are utilized
in calculations.

By using random �eld methodology, the inu-
ence of spatial variability of soil properties on the
stability problems has been investigated for di�erent
soil conditions. For example, Gri�ths and Fenton [3]
studied the probability of failure of a cohesive slope. It
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was concluded that simpli�ed probabilistic analysis, in
which spatial variability was ignored due to assuming
perfect correlation, could lead to unconservative esti-
mates of the probability of failure. Szynakiewicz et
al. [4] investigated the stability of drained slope within
both deterministic and probabilistic contexts. Their
results corresponded to the fact that how the spatial
variability of the respective properties could a�ect the
probability of failure in a probabilistic slope analysis.

The uncertainties of hydraulic property param-
eters for unsaturated soils and their e�ects on the
reliability of slopes under rainfall condition have also
been studied by a number of researchers. For example,
Chong et al. [5] considered the e�ect of the uncertainty
of each parameter in the SWRC and the permeabil-
ity function on the safety factor of unsaturated soil
slopes using Monte Carlo Simulation (MCS). Tung and
Chan [6] performed a probabilistic analysis of rainfall
in�ltration and slope stability considering uncertainties
in SWRCs. Arnold and Hicks [7,8] analyzed the e�ect
of spatial variability of matric suction on unsaturated
slope stability under steady-state conditions. In all
previous studies, the unsaturated soil behavior was
modeled by solving equations based on ow laws for air
and water phases during the in�ltration or evaporation
process. However, there is no accurate approach for
calculating suction in a static equilibrium condition,
especially when the water table is far below the surface.

In spite of great achievements in the context
of reliability analysis for spatially variable soils, the
traditional unconditional random �eld uses only the
statistics such as mean, standard deviation, and auto-
correlation distance of limited site investigation data
and discards the actual data. Site investigation data
generally exist in an engineering project, even though
the amount of data may not be excessive. These
data reect the true values of the soil properties at
certain locations, which should remain invariant in each
random �eld simulation. Neglecting the known data
increases the simulation variance of random �elds and
can result in an unconservative design, representing a
waste of site investigation e�ort. On the other hand,
the conditional approach takes full advantage of the
available data which, in turn, minimizes the level of
uncertainty.

Stability analysis based on the conditional ran-
dom �eld has not received enough attention in the
literature, and only few studies have addressed it. Kim
and Sitar [9] investigated the e�ect of a speci�c number
of cored samples on the probability of slope failure. Liu
et al. [10] evaluated the reliability of a slope in spatially
variable soils while considering the known data at par-
ticular locations. Although they both used conditional
simulation in stability analysis, cross-correlation was
not considered in their studies, meaning that only
univariate interpolation was carried out in random �eld

simulation. Besides, in both studies, a homogenous soil
slope was analyzed by the limit equilibrium method,
discarding the soil saturated/unsaturated conditions.

The main aim of this paper is to present a prac-
tical approach to reliability analysis of an unsaturated
vertical cut using SGS. The analyses were carried out
by a coded program to determine the e�ect of spa-
tial variability of soil properties through geostatistical
methods, which are powerful tools for estimating the
soil property values in non-sampled areas. For this
purpose, a real unsaturated vertical cut was considered
under a static equilibrium condition, and the SWRC
estimation's parameters and the main mechanical soils'
properties were inserted between the known data based
on geostatistical techniques. First, stability analysis
was performed deterministically and, then, extended
to probabilistic context. Eventually, the probability
density function (pdf) of Factor of Safety (FS) was
obtained; then, the probability of failure and reliability
index were determined. In order to assess the e�ects of
soil suction in reliability analysis, vertical cut stability
was conducted with and without considering suction,
and the cumulative distribution functions (cdf) of these
two di�erent conditions were compared. In another
part of this paper, the e�ect of the number of boreholes
on reliability analysis was investigated, and di�erent
cases were studied.

2. Modeling of unsaturated condition

An optimized design of many geotechnical problems,
such as vertical cuts above water table, is based on
the shear strength of unsaturated soil. Unsaturated
soil's shear strength may be determined directly in
the laboratory [11,12] or indirectly by the developed
models. The indirect methods can be categorized
into two major groups; in the �rst group, the models
were developed by considering two independent state
variables, namely suction, Su, and mean net stress, P .
The model proposed by Fredlund et al. [13] as given
below falls in this category.

� = c0 + Su tan'b + P tan'0; (1)

where � is the shear strength, 'b is the angle of
shearing resistance with respect to suction, and c0 and
'0 are e�ective cohesion and e�ective friction angle,
respectively.

The second group includes e�ective stress-based
methods. In these methods, the shear strength is
simply expressed in terms of the e�ective stress by:

�f = c0 + �0 tan'0; (2)

where �0 is the e�ective normal stress. In unsaturated
soils, all mechanical aspects such as volume change
and shear strength are governed by e�ective stress. A
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wide variety of attempts have been made to develop
a concept for e�ective stress in unsaturated soil [14-
16]. Among all these studies, Bishop [17] formulation,
which is widely cited and is basically the expanded form
of Terzaghi's classical e�ective stress theory, was used
in this paper, too. The equation is given by:

�0 = (� � ua) + �(ua � uw); (3)

where � is the total stress, ua is the pore air pressure,
and uw is the pore water pressure. The term (ua�uw)
is called matric suction, and � represents the e�ective
stress parameter.

There is still an ongoing discussion regarding the
de�nition of �; since it cannot be measured directly.
Amongst numerous existing empirical equations [18-
20], the one proposed by Vanapalli et al. [21] in most
cases has shown an appropriate estimate of the e�ective
stress parameter. The equation is presented as follows:

� =
�w � �r
�s � �r ; (4)

where �w is the water content in the considered matric
suction, �s is the saturated water content, and �r is
the residual water content. According to Eq. (3),
it is clear that the calculation of � and (ua � uw)
is the main task in determining unsaturated soils'
e�ective stress. While � can be determined by di�erent
proposed models such as the model of Vanapalli et
al. [21], the determination of soil suction depends on
water ow state in unsaturated soils.

2.1. Estimation of suction using
physico-empirical method

When there is a ow in unsaturated soil, water and air
tend to follow a relatively tortuous ow pass during the
in�ltration or evaporation process. In this condition,
the suction head in di�erent soil depths is computed by
solving equations based on ow laws for air and water
phases. Scientists have developed a good comprehen-
sion of the role of ow laws in saturated/unsaturated
stability problems [22-24]. In this situation, rainfall
and runo� play an important role in modeling and
analysis. Hence, a great deal of research has been
assigned to the prediction of daily or annual rainfall
and runo� [25-27].

On the other hand, when there is no considerable
ow of water from the ground surface and also the air
ow is very insigni�cant in the unsaturated area, the
pore water pressures will be negative. This negative
pore water pressure head, which is conventionally
known as the matric suction, causes the shear strength
to increase.

When the hydraulic head is zero within the soil
pro�le (i.e., static equilibrium condition), there is an
alternative approach to estimating the matric suction

by virtue of using SWRC. The soil water retention
curve represents the amount of water contained in
the pores at a given soil suction, and it is a key
factor in the prediction of unsaturated soils behavior.
There are several methods presented to obtain the
SWRC for the particular soil. However, high time-
consumption and excessive cost associated with labora-
tory and �eld procedures encourage researchers to use
empirical methods. There is also much more essential
information available to use in these techniques.

The empirical methods can be categorized into
four major groups. In the �rst group, water content at
each suction value correlates with speci�c soil prop-
erties such as D10 (sieve size for 10% passing) and
porosity. This process generally requires a regression
analysis followed by a curve �tting procedure [28].
The second group includes methods that correlate
parameters of an analytical equation with basic soil
properties such as Grain Size Distribution (GSD) and
dry density using regression analysis [29]. The third
group is based on physic-empirical modeling of SWRC.
This approach converts the GSD into a Pore Size Distri-
bution (PSD), which in turn is related to a distribution
of water content and associated pore pressure [30-32].
Arti�cial intelligence methods, such as neural network
and genetic programming, and other machine learning
methods fall into the fourth group [33-34].

Among physico-empirical methods [30-32], the
model of Arya et al. [35] dominated the unsaturated
zone application. This method is implemented in
this study due to its reasonable predictive ability and
more available textural input data. In the following,
pertinent aspects of the model are reviewed.

At the outset, the GSD data �t the unimodal
equation of Fredlund et al. [36] to obtain a continuous
curve. The mathematical equation can be used as
the basis for the analysis associated with estimating
the SWRC, and a method is provided for representing
the entire curve between measured data points. The
equation is given by:

Pp(d) =
1

In
�
exp(1) +

�agr
d

�ngr�mgr8><>:1�
24 In

�
1 + dr

d

�
In
�

1 + dr
dm

�357
9>=>; ; (5)

where Pp(d) is the percent passing of particular grain
size, d; agr, ngr, and mgr are the �tting parameters
corresponding to the initial break, the maximum slope,
and the curvature of the grain size curve, respectively;
dr is the parameter related to the amount of �nes in
soil; and dm is the diameter of the minimum allowable
size particle.

To begin with the model of Arya et al. [35], the
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obtained GSD curve is divided into n size fractions,
and the solid mass in each fraction is assembled to form
a hypothetical, cubic close-packed structure consisting
of uniform size spherical particles. To determine the
water content associated with each fraction, �i, the
water-�lled pore volumes must be added successively
as follows:

�i = ('Sw)
iX

j=1

wi; i = 1; 2; :::; n; (6)

where wi is the fraction solid mass; Sw is the ratio of
the measured saturated water content to the theoretical
porosity; and ' is the total porosity that can be
calculated from void ratio (e) as follows:

' = e=(1 + e): (7)

On the other hand, the theoretical porosity can be
estimated by assembled pore volume. The pore volume
associated with the solid mass in the ith particle size
fraction (Vpi) is represented as a single cylindrical tube,
which can be calculated by:

Vpi = (wi=�p)e: (8)

To determine the head pressure value (hi) related
to each water content, the capillary equation can be
used as follows:

hi =
2cos�
�wgri

; (9)

where  is the surface tension at the air-water interface;
� is the contact angle; �w is the density of water; g
is the acceleration due to gravity; and ri is the pore
radius. For a natural soil, the pore radius is related to
particle radius by:

ri = 0:816Ri
q
en(1��)

i ; (10)

where Ri is the mean particle radius for the ith particle
fraction, � is the scaling factor, and ni is the number
of spherical particles that can be calculated for each
fraction of GSD as follows:

ni =
3wi

4��pR3
i
: (11)

After determining the SWRC, the suction value
at each point was obtained by corresponding water
content value. Then, the e�ective stress parameter (�)
was directly determined by Eq. (4) and the method
proposed by Zhai and Rahardjo [37] for determining
SWRC variables (e.g., saturated and residual water
contents). The SWRC variables can also be determined
by the graphical methods; however, these methods are
subjective and time consuming. In the end, the suction
stress was calculated as a product of suction value and
e�ective stress parameter and was substituted into the
shear strength of unsaturated soil.

3. Geostatistical analysis

The inherent variability of the soil parameters dictates
that the stability problems are of a probabilistic nature
rather than being deterministic. Moreover, in-situ
tests, in particular, provide a good characterization
of soil properties at the location where tests are
performed; however, inevitable uncertainty remains at
locations that are not examined.

As a solution, geostatistical approaches have been
applied in geotechnical engineering for assessing the
e�ect of uncertainties in geotechnical predictions and
quantifying the spatial variability of physical and me-
chanical soil properties. The purpose of using the
geostatistical technique is to provide the best univariate
and multivariate estimations of the soil properties
between the known data. The well-established kriging
method is used as a univariate geostatistical tool
to perform spatial interpolation between the known
borehole data. On the other hand, if the sample
properties are themselves correlated, then the cokriging
method is applied to perform multivariate analysis.

The geostatistical analysis is not complete unless
the degree of uctuation in variables between sample
points is assessed. For this purpose, conditional simula-
tion techniques, such as SGS, are used to estimate the
possible uctuation of the variables in the domain of
interest. In the following, required geostatistical con-
cepts are presented in order to conduct the sequential
Gaussian simulation.

3.1. Semivariogram analysis
The �rst step in the geostatistical analysis is to esti-
mate semivariogram. The semivariogram shows how
the dissimilarity between random functions Z(x) and
Z(x+ h) evolves with the separation of h. For a set of
data Z(xi); i = 1; 2; :::; the experimental semivariogram
is computed as follows:

jj(h) =
1

2Njj(h)

N(h)X
i=1

[Zj(xi)� Zj(xi + h)]2; (12)

where jj(h) is the experimental semivariogram, and
Njj(h) is the number of pairs of data points separated
by the particular lag vector, h.

In the multivariate geostatistical analysis, the
spatial structure of a pair of cross-correlated variables is
described by the cross-semivariogram. The experimen-
tal cross-semivariogram for random functions Zj(x)
and Zk(x) is computed using the following equation:

jk(h) =
1

2Njk(h)

N(h)X
i=1

f[Zj(xi)� Zj(xi + h)][Zk(xi)� Zk(xi + h)]g;
(13)
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Figure 1. The geometry for discretizing the lag into bins
by distance and direction.

where jk(h) is the experimental cross-semivariogram,
and Njk(h) is the number of pairs of data points,
separated by h, which have measured values of both
random functions Zj(x) and Zk(x).

To obtain experimental semivariogram contain-
ing directional information, the separations must be
grouped in terms of direction and distance. Figure 1
shows the geometry of the grouping. In the �gure, w
is the range of distances. The nominal lag distance is
represented by line OH of length h. A set of directions
is chosen, one of which includes v and the range of
directions, �, such that � = �=n, where n is the number
of directions and v progresses in steps of � from 0 to
�=(n � 1). Then, for a point xi at O with the second
point xi+h within the stippled zone, fZ(xi)�Z(xi+h)g
contributes to (h) = (h; v). More details about the
determination of experimental semivariograms can be
found in the study of Journel and Huijbregts [38].

The experimental semivariograms are replaced by
a �tted mathematical function as a model or approx-
imation of the theoretical semivariograms to have a
physical meaning. This mathematical function can
be described with three terms: a nugget e�ect `C0',
a sill `S', and a range `A'. These parameters are
obtained through the �tting process. There are many
algorithms in the literature, such as nonlinear least
squares algorithm, for �tting the authorized model to
the experimental semivariogram [39].

3.2. Kriging and cokriging interpolation
Interpolation is the estimation of values in an area for
points that have not actually been sampled. There
are many di�erent interpolation techniques, ranging
from simple linear techniques that average the values
of nearby sampled points to more complex techniques,
such as kriging or cokriging, which are used in the
average weights based on the distance to nearby sample
points and the degree of autocorrelation for those
distances.

The kriging method was developed during the

1960s and 1970s [40,41]. In this technique, interpo-
lation estimates are based on values at neighboring
locations plus knowledge about the underlying spatial
relationships in a dataset. Semivariograms provide
knowledge about the underlying relationships. The
application of this interpolation technique produces the
best, linear unbiased estimate of the random function
between the known data.

Depending on the properties of the random func-
tion and various degrees of stationarity assumed, sim-
ple, ordinary, and universal methods can be used. In
this paper, the global means of variables are assumed
to be unknown. Hence, the ordinary kriging method
was performed to interpolate variables between the
known data. For an unknown �eld point, x0, ordinary
Kriging estimator, Z�(x0), based on the known data
Z(xi); i = 1; 2; :::; N; is de�ned as the linear unbiased
estimator:

Z�(x0) =
NX
i=1

�iZ(xi); (14)

where  is the ordinary kriging coe�cient, which is
determined by solving the ordinary kriging system as
follows:

�� = : (15)

The unknown and right-hand side of Eq. (15) are given,
respectively, by the following:

� =

2666664
�1
�1
...
�N
�OK

3777775 ; (16)

 =

2666664
(x0; x1)
(x0; x2)

...
(x0; xN )

1

3777775 ; (17)

where �OK is the Lagrangian parameter, and
(x0; xi); i = 1; 2; ::; N is the semivariogram between
unknown point x0 and data point xi. The ordinary
Kriging matrix system is de�ned by:

� =

2666664
(x1; x1) (x1; x2) � � � (x1; xN ) 1
(x2; x1) (x2; x2) � � � (x2; xN ) 1

...
...

. . .
...

...
(xN ; x1) (xN ; x2) � � � (xN ; xN ) 1

1 1 � � � 1 0

3777775 ;(18)
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where (xi; xj); i; j = 1; 2; ::; N , are the semivariograms
between N data points. The estimation variance of
ordinary kriging is:

�2
OK = �OK � (x0; x0) +

NX
i=1

�i(xi; x0): (19)

Cokriging is the multivariate extension of krig-
ing to several variables whereby several variables are
estimated jointly, utilizing the best linear unbiased
estimator. Cokriging is applied in situations where
there is a cross-correlation between regionalized vari-
ables, and one or more of the regionalized variables are
undersampled.

Undersampling means that the main variable to
be estimated is sampled less intensely than the others,
usually, at a subset of the sampling points. In this
case, the spatial correlation between the other variables
and their relation to the main variable add information
that is lacking with regard to the main variable alone.
Between correlated variables V , the linear ordinary
cokriging estimator for variable u at an unknown �eld
point x0 is as follows [42]:

Z�u(x0) =
VX
l=1

nlX
i=1

�ilZi(xi); (20)

where Z� and Z are, respectively, denoted by the esti-
mated and measured values of the considered variable.
Subscript i represents nl locations, in which variable
l is measured; �il represents the cokriging weights,
which are determined by solving the ordinary cokriging
system as in the following:

UY = D: (21)

Here, for two variables, u and v, the cokriging system
is presented in the matrix form:266666666666666664

1 0
1 0

�uu �uv
...

...
1 0
0 1
0 1

�vu �vv
...

...
0 1

1 1 : : : 1 0 0 : : : 0 0 0
0 0 : : : 0 1 1 : : : 1 0 0

377777777777777775

266666666666666664

�1u
�2u

...
�nuu
�1v
�2v

...
�nvv
�u
�v

377777777777777775

2666666666666664

buu

buv

1
0

3777777777777775
; (22)

where �u and �v are Lagrange multipliers. �uv
denotes a matrix of semivariograms (including cross-
semivariograms where u 6= v) between sampling points
in a neighborhood. For example, if there are nu places
in which variable u is measured and nv places where �
is measured, the order of the matrix is nu � nv:

�uv =26664
vu(x1; x1) uv(x1; x2) : : : uv(x1; xnv )
uv(x2; x1) uv(x2; x2) : : : uv(x2; xnv )

...
...

. . .
...

uv(xnu ; x1) uv(xnu ; x2) : : : uv(xnu ; xnv )

37775 ;(23)

The vectors of semivariograms and cross-semi- vari-
ograms for variable u are denoted by buu and buv,
respectively, in the following matrix form:

buu =

26664
uu(x1; x0)
uu(x2; x0)

...
uu(xnu ; x0)

37775 ; buv =

26664
uv(x1; x0)
uv(x1; x0)

...
uv(xnv ; x0)

37775 ;(24)

where uu and uv are the direct and cross semivari-
ograms, respectively. The minimized cokriging estima-
tion variance is:

�2
CK =

VX
l=1

nlX
j=1

�jl(xj ; x0) + �u � uu(x0; x0): (25)

There are other interpolation methods such as In-
verse Distance Weighting (IDW) and Normal Distance
Weighting (NDW), in which interpolation estimates are
made based on values at nearby locations and weighted
only by distance from the interpolation location. How-
ever, neither IDW nor NDW makes assumptions about
spatial relationships.

3.3. Sequential Gaussian simulation
The values obtained by the kriging or cokriging system
are predicted with minimized estimation variance and,
therefore, show lower uctuation than the actual,
unknown values [38]. Hence, conditional simulation
models are used to reproduce the actual statistics,
maintain the texture of the variation, and take prece-
dence over local accuracy. Unconditional simulation
is simply the application of the general Monte Carlo
technique whereby values are created with a particular
covariance or semivariogram functions. However, in
conditional simulation, in addition to creating possible
values of random variables elsewhere, the generator
must return the data values to known places.

Conditional simulation techniques can be cate-
gorized into direct and indirect approaches. Indirect
approaches are based on unconditional simulation,
which is transformed to the conditional ones [43].
These approaches are used when the mean and variance
are known and constant over the region of interest.
However, direct approaches, such as SGS, are used
when the mean and variance are unknown or variable.
In this study, it was assumed that the mean does
not stabilize and the variance always increases over
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increasingly large domains, which opened up a wider
�eld of application. Hence, the SGS method was
implemented to perform conditional simulations.

The sequential Gaussian simulation is the most
straightforward algorithm for generating a realization
of a multivariate Gaussian �eld. In this technique,
each variable is simulated sequentially according to
its normal conditional cumulative distribution function
(ccdf) through a kriging or cokriging estimation sys-
tem. The basic conditional sequential simulation steps
are mentioned as follows [40]:

1. De�ne a random path which meets all nodes of the
grid in each realization;

2. De�ne a search ellipsoid for each grid node to �nd
the adjacent known data;

3. Use kriging/cokriging with a semivariogram model
to determine the mean and variance of ccdf;

4. Draw a value from the ccdf of the random variable;
5. Add this new value to the initial conditioning

dataset;
6. Repeat until all nodes are simulated.

As is discussed by Dowd [44], the SGS method
has several advantages including automatic handling

of anisotropies, data conditioning, and fast computer
implementation since an e�cient kriging/cokriging al-
gorithm with a moving neighborhood search capability
is all that is required.

4. Implementation procedure of reliability
analysis

In the previous sections, the methodologies for estimat-
ing the suction and generating conditional simulations
were introduced. The main focus in this section
is on the practical implementation of the proposed
reliability analysis for a vertical cut in unsaturated
soil. The implementation procedure is schematically
shown in Figure 2. In general, the whole procedure
consists of three parts repeated by the application of
the general Monte Carlo technique: generation of the
conditional random �elds, estimation of shear strength,
and implementation of stability analysis. A detailed
description of the proposed reliability analysis is given
as follows:

Step 1. Collect the measured data and discretize the
domain into �nite elements in which the mesh involves
the known data of boreholes (the same mesh was used
for conditional simulation and �nite element analysis);

Figure 2. Flowchart of reliability analysis of the vertical cut in unsaturated soils.
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Step 2. Generate conditional random �elds using
SGS for textural properties (clay content, �ne-grained
content, gravel content, water content, and bulk den-
sity) and also mechanical properties (cohesion, friction
angle, and unit weight) of the soil;

Step 3. For each element:

a) Fit a continuous function to the GSD data (i.e.,
clay content, �ned-grained content, and gravel
content);

b) Estimate the SWRC from GSD using bulk density
value;

c) Determine the suction stress by SWRC and water
content value;

d) Calculate the e�ective stress using the determined
suction stress and total stress;

e) Calculate the shear strength by cohesion and
friction angle values.

Step 4. Perform �nite element strength reduction
analysis to obtain the corresponding FS;

Step 5. Repeat Steps 2 to 4 as many as the number
of simulations to calculate the probability of failure of
vertical cut using MCS.

5. Case study

In this section, a case study of a vertical cut in
the unsaturated soil is presented to investigate the
e�ciency of the proposed approach and veri�cation of
the coded program. At �rst, the stability analysis was
performed deterministically using FEM without con-
sidering unsaturated condition. Then, the probabilistic
analysis of the unsaturated vertical cut was conducted
by considering uncertainties.

5.1. Site location and geotechnical soil
properties

The stability analysis of a vertical cut requires the
de�nition of domain geometry, water table level, and
shear strength parameters. In this research, these data
were prepared based on site investigation.

The site is in Shiraz City in Fars Province of Iran,
located in an urban area on satellite overview, as can
be seen in Figure 3. The main reason for selecting
the site was that the vertical cut mostly consisted of
�ne-grained soil. In this type of soil, suction plays
a more signi�cant role in the stability analysis of soil
systems. Moreover, the site consists of two types with
quite di�erent soil properties, which could challenge the
e�ciency and application of the proposed approach in
non-homogeneous soils.

To explore the subsurface layers, three boreholes

Figure 3. Satellite overview of site location.

Figure 4. Boreholes arrangement plan.

were drilled to the depth of 16 m from the natural
ground surface. The boreholes arrangement and the
ground elevation are presented in Figure 4. For each
borehole, the �eld test (i.e., Standard Penetration Test,
SPT) and laboratory tests (i.e., grain size analysis,
Atterberg limits tests, and so on) were performed. The
borehole database is given in Tables 1 to 3. The
groundwater was not observed after drilling to the
depth of 16 m.

In this case study, bulk samples of soil were taken
from every two meters of boreholes, and the grain
size analysis, bulk density, and the Atterberg limits
were determined for all samples. The shear strength
parameters were determined scatteredly in di�erent
depths, though. Based on the test results, subsurface
formation generally consists of two types of soil texture:
coarse-grained soil and �ne-grained soil. The coarse-
grained soil consisted of poorly graded gravel with silt,
and sand (GP-GM) was observed on the surface to a
depth of 2 m (Layer 1) and also within the depth of
14 m to 16 m (Layer 3). On the other hand, �ne-
grained soil, which generally consisted of low plasticity
clay (CL), was observed within the depth of 2 m
to 14 m between coarse-grained layers (Layers 1 and
2). The recommended soil properties for deterministic
analysis are summarized in Table 4. A constant value
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Table 1. Soil properties from BH.1.

Depth SPT
Water
content

Bulk
density

Friction
angle

Cohesion
(kN/m2)

Gravel
content

Clay
content

Fine-grained
content

(%) (gr/cm3) (deg.) (%) (%) (%)

2 > 50 3.22 1.75 37.00 8.00 58.07 0.00 14.84
4 9 14.80 1.55 { { 0.00 22.00 77.50
6 9 15.93 1.56 21.00 17.00 0.00 21.00 75.40
8 10 18.45 1.57 { { 0.00 20.00 81.87
10 11 17.72 1.60 23.00 19.00 0.00 19.00 76.06
12 13 16.52 1.59 { { 0.00 19.50 74.59
14 > 50 11.71 1.80 34.00 9.00 33.03 0.00 19.60
16 > 50 7.32 1.84 { { 33.96 0.00 20.06

Table 2. Soil properties from BH.2.

Depth SPT
Water
content

Bulk
density

Friction
angle

Cohesion
(kN/m2)

Gravel
content

Clay
content

Fine-grained
content

(%) (gr/cm3) (deg.) (%) (%) (%)

2 > 50 2.36 1.74 { { 62.82 0.00 17.53
4 8 13.00 1.59 21.00 17.00 2.00 19.00 70.00
6 9 14.18 1.60 { { 0.00 19.00 77.45
8 9 16.23 1.62 22.00 21.00 0.00 20.00 78.91
10 10 17.01 1.62 { { 0.00 20.00 82.57
12 15 16.68 1.63 24.00 20.00 0.00 20.00 76.42
14 19 15.34 1.65 { { 0.00 20.00 79.72
16 > 50 8.07 1.82 { { 55.49 0.00 11.59

Table 3. Soil properties from BH.3.

Depth SPT
Water
content

Bulk
density

Friction
angle

Cohesion
(kN/m2)

Gravel
content

Clay
content

Fine-grained
content

(%) (gr/cm3) (deg.) (%) (%) (%)

2 > 50 3.01 1.80 39.00 8.50 60.00 0.00 15.00
4 8 12.70 1.57 { { 11.00 17.00 77.80
6 9 14.78 1.64 23.00 26.00 0.00 20.00 82.52
8 8 17.21 1.65 { { 0.00 21.00 84.65
10 13 17.69 1.65 22.00 19.00 0.00 19.00 71.03
12 14 16.87 1.67 { { 0.00 20.00 78.12
14 17 17.03 1.70 { 0.00 22.00 80.79
16 > 50 6.14 1.90 36.00 9.00 67.84 0.00 21.57

Table 4. Recommended soil properties for deterministic analysis.

Layer Soil
type

Friction
angle Cohesion

Unite
weight

Modulus of
elasticity

Poisson's
ratio

(deg.) (kPa) (kN/m2) (kPa)

1 GP-GM 35 8 21 90000 0.25
2 CL 23 21 19 30000 0.35
3 GP-GM 35 8 22 95000 0.25
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of 2.65 gr/cm3 was considered for particle density for
both deterministic and probabilistic analyses.

5.2. Computer programs and deterministic
analysis

A �nite-element-based program was coded in MAT-
LAB to calculate the safety factor of the vertical
cut. The program is used for a two-dimensional (2D),
plane strain condition using an eight-node quadrilateral
element of elastic visco-plastic soil with Mohr-Coulomb
failure criterion and a non-associated ow rule. The
FS for the vertical cut is de�ned through the division
of the original shear strength parameters by strength
reduction factors. The model initially consisted of 1600
elements, which have eight nodes and each node has
two degrees of freedom in the horizontal and vertical di-
rections. The boundary conditions are de�ned by fully
restraining the bottom side and horizontally restraining
the left and right sides of the soil domain. To model
the vertical cut, 240 elements were removed in the
excavation area; thus, a �nite element model with 1360
elements was used in stability analysis. The general
conditions of the vertical cut, such as model geometry,
depth of layers, and boreholes location, are shown in
Figure 5; the related �nite element discretization with
boundary conditions is presented in Figure 6.

The stability analysis was performed determin-
istically, and the safety factor of 0.95 was obtained
for the vertical cut without considering suction in soil.
Deformed mesh with magni�ed displacement and the
maximum shear strain of the soil are shown in Figures 7

Figure 5. Vertical cut geometry and borehole location.

Figure 6. Finite element discretization.

and 8, respectively. According to the results, the
mechanism is a single-wedge failure with a straight slip
surface that starts from the bottom of excavation.

To illustrate the application of suction estima-
tion approach, two samples were selected in di�erent
layers, as shown in Figure 5 (Samples A and B).
Sample A is located in Layer 1 with coarse-grained
soil properties, while Sample B is located in Layer
2 with �ne-grained properties. The suction at each
element was determined by its SWRC (as explained in
Section 1). The SWRC was obtained by PSD through
successive summation of pore volumes while PSD itself
had been determined by grain size distributions [35].
The grain size distributions and the related SWRC
for two samples are presented in Figures 9 and 10,
respectively.

Figure 7. Deformed mesh of the vertical cut.

Figure 8. Maximum shear strain of the vertical cut.

Figure 9. GSD for two samples from BH.2.
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Figure 10. Determined SWRC for two samples from
BH.2.

The suction was estimated at samples' locations
using obtained SWRC and measured water content as
presented in Table 5. In general, higher �ne-grained
content leads to a higher water retaining ability. The
�ne-grained soil in Sample A was able to hold much
more water at a given potential compared to that in
Sample B. This is because of the �ne pores and the
uniform pore size distribution in �ne-grained soils with
clay that can hold much more water tenaciously than
the relatively large pores in coarse-grained soils. The
at shape of the retention curve for the coarse-grained
soil indicates that once the water is drained from the
large pores, only a small amount of water will be
present [45].

5.3. Geostatistical analysis of the case study
To conduct the probabilistic analysis of the unsat-
urated vertical cut, the uncertainties of SWRC and
textural soil properties were considered. To that end,
the SWRC estimation's parameters (i.e., bulk density,
water content, clay, �ne-grained content, and gravel
content) and the main mechanical soils' properties

(i.e., unit weight, cohesion, and friction angle) were
interpolated between the known data through SGS and
corresponding semivariograms. The particle density,
Poisson's ratio, and modulus of elasticity were con-
sidered for deterministic parameters because of their
simplicity and small variation over the domain of
interest.

In this study, four anisotropic models (i.e., linear,
spherical, exponential, and Gaussian) were examined
to obtain the best �tting of semivariograms. For
this purpose, two statistics were provided to aid the
interpolation of model output. The �rst one is Residual
Sums of Squares (RSS) that provides an exact measure
of how well the model �ts the semivariogram data; the
lower the reduced sums of squares are, the better the
model �ts.

The second one is the coe�cient of determina-
tion (R2), which provides an indication of how well
the model �ts the semivariogram data. Based on
these statistics, the exponential model was selected
for stochastic parameters because of its accuracy and
numerical robustness. For instance, the model's pa-
rameters and statistics of bulk density semivariogram
are given in Table 6.

The exponential anisotropic model approaches
the sill gradually. However, the model and the sill never
actually converge. The formula used for this model is:

(h) = C0 + C(1� exp(�h=A)); (26)

where C is the structural variance (C = S � C0), h is
the lag distance, and A is calculated by the following
equation:

A =
q
A2

1 cos 2(� � �) +A2
2 sin 2(� � �): (27)

In Eq. (27), A1 and A2 are the range parameters
for the major and minor axes, respectively; � is the
angle between pairs; and � is the angle of maximum

Table 5. Estimation of suction in two samples from di�erent layers.

Depth (m) Water content (%) Estimated suction (kPa)

Sample A 2.0 2.36 20.0

Sample B 6.0 14.18 300.0

Table 6. Di�erent semivariogram model parameters for clay content data.

Model Nugget Sill Range (major) Range (minor) RSS R2

Linear 0.005 0.031 38.68 38.67 5.48e-4 0.59

Spherical 0.004 0.030 52.61 52.06 5.48e-4 0.60

Gaussian 0.007 0.034 26.39 26.39 5.64e-4 0.61

Exponential 0.004 0.037 40.29 40.28 5.40e-4 0.66
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Figure 11. Anisotropic exponential semivariogram model
for bulk density.

variation, which is set perpendicular to the horizon
in soils. According to the model's parameters in
Table 6, the anisotropic exponential semivariogram for
bulk density in the vertical direction is presented in
Figure 11.

In the geostatistical analysis, it is important
to check whether a parameter is related to other
parameters, which is a prerequisite for deciding to use
kriging or cokriging technique. For this purpose, a
regression analysis was performed between all pairs of
stochastic parameters, and the correlation coe�cient
was calculated. There are various kinds of regression
techniques, such as linear, logistic, polynomial, and
stepwise techniques, available to make predictions. To
perform the regression analysis with a feasible amount
of computational e�ort, linear regression was used in
this study. As it is expected, the cohesion and friction
angle are highly correlated to �ne-grained content with
correlation coe�cients of 0.96 and �0:97, respectively.
Therefore, the cokriging method was used to estimate
these two parameters as the primary variables, and
�ne-grained content was considered as the secondary
variable. Other parameters were estimated by the
kriging method in the problem domain.

There is another reason for selecting the cokriging
method for soil strength parameters, as emphasized in
this paper, to make the reliability analysis more e�-
cient. As was mentioned before, the cohesion and the
friction angle are undersampled. The limited number
of shear strength tests is common in laboratories as
a result of time-consuming and excessive cost factors.
Hence, there are some missing values in the friction
angle and cohesion data at measurement points, as
can be seen in Tables 1 to 3. In this situation, only
the information about the undersampled variable is
cross-correlated, contained by the other variable. The
cokriging method uses this information to improve
interpolation estimates without having to sample the
primary variable more intensely.

Figure 12. Conditional random �eld for clay content (%).

Figure 13. Conditional random �eld for �ne-grained
content (%).

Figure 14. Conditional random �eld for gravel
content (%).

Figure 15. Conditional random �eld for bulk
density (gr/cm3).

In the next step, the conditional random �elds
were obtained by the SGS procedure. The conditional
random �elds for stochastic parameters in one real-
ization are shown in Figures 12 to 16. Figures 12
and 13 illustrate the variation of estimated clay and
�ne-grained content, which show high values in the
middle of the domain (Layer 2), while these parameters
reach their minimum at the top and bottom of the
domain (Layers 1 and 3). The results illustrate good



1226 A. Gholampour and A. Johari/Scientia Iranica, Transactions A: Civil Engineering 26 (2019) 1214{1231

Figure 16. Conditional random �eld for water
content (%).

Figure 17. Conditional random �eld for
cohesion (kN/m2).

agreement between estimated values and reported data
for boreholes (Tables 1 and 3). Figure 14 presents the
estimated gravel content. A good adjustment can be
seen between predicted gravel content and measured
values (Tables 1 and 3). Figures 15 and 16 show the
conditional random �elds for bulk density and water
content. The results indicate that the values with
higher water content are located in Layer 2 where the
soil with higher �ne-grained content can hold much
more water with respect to Layers 1 and 3. Given the
relationship between unit weight and both bulk density
and water content, the conditional random �eld for unit
weight was calculated.

The conditional random �elds for the cohesion
and the friction angle were obtained considering �ne-
grained content as the secondary variable and their
cross-semivariogram. It is worth mentioning that the
estimation of the cohesion and the friction angle is not
only based on the distance to nearby sample location
of these parameters, but also on the nearby sample
locations for �ne-grained content. This can provide
a more robust estimate of these two parameters at
unsampled locations when they are su�ciently corre-
lated with �ne-grained content. Figures 17 and 18
show that the values of the e�ective cohesion and the
e�ective friction angle stand in inverse relationship to
each other. According to Figures 12 to 18, it can
be followed that the SGS makes random �elds more
realistic.

5.4. Geostatistical simulation veri�cation
There are some basic checks that should be performed
on the geostatistical simulation results. For instance,

Figure 18. Conditional random �eld for friction
angel (deg.).

Figure 19. Cross plot of the original data and simulated
values for �ne-grained content.

all numerical simulations must reproduce data val-
ues at their locations, and the spatial continuity is
characterized by the semivariogram model [46]. To
verify that all data are reproduced at their locations,
a cross plot of the data and the simulated values
at the nearest elements were generated. Figure 19
shows the cross plot for a realization of �ne-grained
content between original data and simulated values.
Because the samples do not have the same coordinates
as central elements, the corresponding cross plot shows
slight deviations from the 45-degree line with a high
correlation of 0.97.

For the second basic check, the input semivari-
ogram model should be reproduced within an accept-
able uctuation range. For this purpose, the semivari-
ogram was calculated for multiple realizations and was
compared with the input model in the same directions.
Semivariogram reproduction depends on a number of
interrelated factors such as grid spacing, range of the
semivariogram model, size of the �eld, size of the
search neighborhood, and the number of conditioning
data [44]. To attenuate the e�ect of uctuations, 400
realizations were considered, and 400 corresponding
semivariograms were averaged. Figure 20 shows the
reproduction of the vertical semivariogram model for
�ne-grained content. It can be seen that there is a small
di�erence between the input model and the averaged
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Figure 20. Reproduction of semivariogram for
�ne-grained content.

semivariogram. This situation can be corrected such
that as the �eld becomes larger with regard to the
range, the number of data retained increases, and these
data span a larger range of distances [47].

6. Results and discussion

Factors of safety provide a quantitative indication of
stability analysis. A value of FS = 1:0 indicates that a
problem is on the boundary between stability and in-
stability. Because the quantities involved in computing
factors of safety are always uncertain to some degree,
computed values of FS are never absolutely precise.
Hence, larger factors of safety are required to ensure (or
be sure enough) that a vertical cut will be stable [48].
The reliability index (�) is an alternative measure of
safety, or reliability, which is uniquely related to the
probability of failure (Pf ). The value of � indicates
the number of standard deviations between FS = 1:0
(failure) and the most likely value for FS. Once the
shape of pdf is estimated, the reliability index can be
determined to assess the failure probability.

To perform the reliability analysis of the vertical
cut, the SGS steps are repeated for determining the pdf
of safety factor. Figure 21 shows a histogram based
on 5,000 solutions from the conditional simulation
together with a �tted normal function based on the
computed values of the mean and standard deviation.
Since the values of the stochastic parameters are
assumed to be normal, it seems reasonable to assume
that the pdf of FS is also normal. Although objective
goodness-of-�t tests can be performed, it is noted here
that the normal �t seems reasonable, in brief.

6.1. E�ects of unsaturated condition on PDF
In the next step, the e�ects of soil suction on reliability
analysis of the vertical cut were assessed. For this
purpose, the results of conditional simulation with and

Figure 21. The pdf of safety factor for unsaturated
vertical cut based on SGS.

Figure 22. Comparison of safety factor pdf by two
conditions.

without considering the suction stress were studied. In
the case without considering suction, 5000 conditional
�elds were generated for stochastic parameters (friction
angle, cohesion, and unit weight) in the MCS to
determine the pdf for FS. The comparison made
between the obtained pdf and the calculated pdf from
conditional simulation for the unsaturated vertical
cut is shown in Figure 22. It can be realized that
considering unsaturated condition shifts the mean of
pdf from unsafe to safe ranges and changes the sign of
reliability index from negative to positive. To compare
the failure probabilities of the two conditions, the
cumulative density functions (cdfs) of them are plotted
in Figure 23. According to this �gure, the probability
that the FS takes on a value equal to or less than
1.0 is 14% and 0.72% for unsaturated and saturated
conditions, respectively. This means that standard
deviation, reliability index, and probability of failure of
the saturated and unsaturated vertical cuts are given
in Table 7.
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Table 7. Statistical parameters of pdfs for saturated and unsaturated conditions.

Condition Mean Standard deviation Reliability index Probability of failure
(�) (�) (�) (Pf )

Saturated 0.90 0.17 -0.59 0.72
Unsaturated 1.20 0.18 1.11 0.14

Figure 23. Comparison of failure probability of the
vertical cut between the two conditions.

6.2. E�ects of the number of borehole on the
probability of failure

To assess the e�ect of the number of boreholes on
reliability analysis, probabilities of failures for seven
cases were determined. For this purpose, in each
case, speci�c numbers of boreholes were considered, as
presented in Table 8. Cases 1 to 3 include only one
of the boreholes; Cases 4 to 6 include data considering
two boreholes, and all data from three boreholes were
used in Case 7. Figure 24 shows the probability
of failures with regard to the cases determined by
the proposed conditional simulation technique for the
unsaturated vertical cut. As can be seen in this �gure,
the probability of failure considerably depends on the
layout and the number of boreholes. In other words,
the number of known data a�ects the construction
of conditional random �elds and inevitably leads to
di�erent probabilities of failure. Furthermore, as
expected, an increase in the number of known data
(the number of boreholes) results in more reliable safety
factors of the vertical cut. In line with the obtained
results shown in Figure 24, the extracted data from one
borehole alone cannot lead to a real failure probability
of the site.

Figure 24. E�ect of the number of boreholes on
probability of failure.

7. Conclusion

In this paper, the �nite element method was used in
conjugation with geostatistical techniques to perform
the reliability analysis of the vertical cut in unsaturated
soil. For this purpose, a program was coded in
MATLAB.

The soil texture and mechanical properties were
conditionally simulated between the known data by
using SGS. Since the soil strength parameters are
often undersampled, the cokriging method was used
to estimate cohesion and friction angle based on not
only the distance to the nearby sample location of these
parameters, but also the nearby sample locations for
�ne-grained content. Other stochastic parameters were
estimated by using the kriging method.

In order to predict the unsaturated soil behavior,
the SWRC was estimated by using physico-empirical
method to determine suction stress in e�ective stress
expression. After calculating the e�ective stress, it was
substituted into the shear strength formula to illustrate
the failure criteria for unsaturated stability analysis.

To assess the e�ects of soil suction, the reliability
analysis of the vertical cut was conducted with and
without considering suction and, then, the cdf of these

Table 8. The number of boreholes considered in the analysis.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

BH.1 BH.2 BH.3 BH.1 and BH.2 BH.2 and BH.3 BH.1 and BH.3 All



A. Gholampour and A. Johari/Scientia Iranica, Transactions A: Civil Engineering 26 (2019) 1214{1231 1229

two di�erent conditions was compared. It is concluded
that considering unsaturated condition shifts the mean
of pdf from the unsafe to the safe ranges and changes
the sign of reliability index from negative into positive.
In other words, discarding the unsaturated condition
leads to conservative stability design for vertical cuts.

In another part of this paper, the e�ect of the
number of boreholes on the reliability analysis was
investigated, and di�erent cases were studied. It is
illustrated that the probability of failure considerably
depends upon the layout and the number of boreholes.
In other words, the number of known data a�ects the
construction of conditional random �elds and leads
to di�erent probabilities of failure. Furthermore, it
is concluded that the data extracted from a borehole
alone cannot lead to a real failure probability of the
site.

The proposed approach provides a comprehensive
reliability analysis of unsaturated soil by using available
soil properties. Hence, this reliability approach could
be used in any unsaturated geotechnical problems such
as foundations, earth retaining structure, and slopes,
where the routine soil reports are available.

It is worth noting that the e�ects of stress
history, fabric, con�nement, and hysteresis were not
addressed in the prediction of unsaturated soil be-
havior. Moreover, the MCS was used in conjugation
with geostatistical techniques to perform the reliability
analysis. This numerical simulation is probably the
best available tool for evaluating uncertainty in model
predictions. However, high time-consumption and
massive computational cost are the limitations of this
model. Hence, further research is required to study
the application of the proposed approach by employing
more advanced methods for suction estimation and
numerical probability analysis.
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