References
1. Stergaard, L., Jespersen, S.N., Mouridsen, K., et al.
The role of the cerebral capillaries in acute ischemic
stroke: the extended penumbra model", Journal of
Cerebral Blood Flow & Metabolism, 33, pp. 635-648
(2013).
2. Wang, T. and Xing, Z.W. Erythrocyte hemodynamics
in stenotic microvessels: A numerical investigation",
Physical Review E, 88, pp. 1-9 (2013).
3. Dimakopoulos, Y., Kelesidis, G., Tsouka, S., Georgiou,
G.C., and Tsamopoulos, J. Hemodynamics in stenotic
vessels of small diameter under steady state conditions:
eect of viscoelasticity and migration of red blood
cells", Biorheology, 52, pp. 183-210 (2015).
4. Vahidkhah, K., Balogh, P., and Bagchi, P. Flow of red
blood cells in stenosed microvessels", Scientic Rep.,
6, pp. 1-15 (2016).
5. Jiang, X.M., Tong, W., and Zhongwen X. Simulation
study of hemodynamics of red blood cells in stenotic
microvessels", Advanced Materials Research, 647, pp.
321-324 (2013).
6. Xiao, L.L., Chen, S., Lin, C.S., and Liu, Y. Simulation
of a single red blood cell
owing through a microvessel
stenosis using dissipative particle dynamics",
Mol Cell Biomech., 11(1), pp. 67-85 (2014)
7. Yuan-Qing, X., Xiao-Ying, T., Fang-Bao, T., Yu-Hua,
P., Yong, X., and Yan-Jun, Z. IB-LBM simulation
of the haemocyte dynamics in a stenotic capillary",
Computer Methods in Biomechanics and Biomedical
Engineering, 17(9), pp. 978-985 (2014).
8. Yahaghi, E., et al., Estimation of contrast agent
concentration in intra-and extra-vascular spaces of
brain tissue", Mathematical Biosciences, 204, pp. 102-
118 (2006).
M. Alafzadeh et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 2561{2569 2569
9. Johnson, J.A. and Wilson, T.A. A model for capillary
exchange", Am. J. Physiol., 210, pp. 1299-1303
(1966).
10. Ye, S.S., Ng, Y.C., Tan, J., Leo, H.L., and Kim, S.
Two-dimensional strain-hardening membrane model
for large deformation behavior of multiple red blood
cells in high shear conditions", Theoretical Biology and
Medical Modelling, 11, pp. 11-19 (2014).
11. Guyton Arthur, C. and Hall, J.E., Textbook of Medical
Physiology, Elsevier Saunders (2006).
12. Yang, N. and Vafai, K. Modeling of low-density
lipoprotein (LDL) transport in the artery-eects of
hypertension", International Journal of Heat and Mass
Transfer, 49, pp. 850-867 (2006).
13. D'Humieres D., Generalized lattice Boltzmann
equations in rareed gas dynamics: theory and simulations",
Prog. Aeronaut. Astronaut, 159, pp. 450-458
(1992).
14. Liu, Q., He, Y.L., Li, Q., and Tao, W.Q. A multiplerelaxation-
time lattice Boltzmann Model for convection
heat transfer in porous media", International
Journal of Heat and Mass Transfer, 73, pp. 761-775.
15. Inammuro, T., Yoshino, M., Inoue, H., Mizuno, R.,
and Ogino F. A lattice Boltzmann method for a
binary miscible
uid mixture and its application to
a heat-transfer problem", Journal of Computational
Physics, 179, pp. 201-215 (2002).
16. Vafai, K., Porous Media Application in Biological
Systems and Biotechnology, Taylor & Francis Group
(2011).
17. Evans, E.A. and Fung, Y.C. Improved measurements
of the erythrocyte geometry", Microvasc. Res., 4, pp.
335-347 (1972).
18. Vahidkhah, K. and Fatouraee, N. Numerical simulation
of red blood cell Behavior in a stenosed arteriole
using the immersed boundary- Lattice Boltzmann
method", Int. J. Numer. Meth. Biomed. Engng., 28,
pp. 239-256 (2011).
19. He, X. and Zou, Q. Analysis and boundary condition
of the lattice Boltzmann BGK model with two velocity
components", Journal of Statistical Physics, 87, pp.
115-136 (1995).
20. Guo, Zh., Zhang, Ch., and Shi, B. An extrapolation
method for boundary conditions in lattice Boltzmann
method", Physics of Fluids, 14(6), pp. 2007-2010
(2002).
21. Wang, J., Wang, M., and Li, Zh. A lattice Boltzmann
algorithm for
uid-solid conjugate heat Transfer",
International Journal of Thermal Sciences, 46, pp.
228-234 (2007).
22. Filippova, O. and Hanel, D. Grid renement for
lattice- BGK models", J. Comput. Phys., 147, pp. 219-
228 (1998).
23. Xiong, W. and Zhang, J. Shear stress variation
induced by red blood cell Motion in microvessel",
Annals of Biomedical Engineering, 38(8), pp. 2649-
2659 (2010).