
Scientia Iranica A (2017) 24(6), 2762{2775

Sharif University of Technology
Scientia Iranica

Transactions A: Civil Engineering
www.scientiairanica.com

Modal analysis of two-dimensional beams using parallel
�nite-element method

S. Heydari and S. Asil Gharebaghi�

Civil Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran.

Received 14 December 2015; received in revised form 31 May 2016; accepted 8 August 2016

KEYWORDS
Eigenvalue problem;
Parallel processing;
FEM;
CSR matrix
compression;
Davidson algorithm;
Modi�ed checkered
method.

Abstract. Modal analysis is the process of determining the natural frequencies and
mode shapes of structures. In practical problems, modal analysis may be repeated many
times, resulting in a huge quantity of computations. Although parallel processing technique
can reduce the analysis time, civil engineers rarely implement it because it requires high
programming skills as well as designing parallel algorithms. In the present paper, the
Davidson algorithm is adopted for parallel modal analysis of two-dimensional beams. More
precisely, the parallel version of the Davidson algorithm is implemented from scratch. A
new proposed method, which is called \Modi�ed Checkered Method" (MCM), is introduced,
and four versions of the algorithm are implemented. Two out of four versions use row-
wise and MCM in combination with Compressed Sparse row Algorithm, while the others
utilize the previously mentioned methods without matrix compression. It is shown that the
speedup increases when the main matrix of the standard form of eigenvalue problem is not
compressed. Moreover, the speedup will increase in comparison to the row-wise division
method when MCM is used. It is notable that the implemented Parallel Finite-Element
source code is capable of being used in companion with a wide variety of �nite elements.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Modal analysis has turned into an important tool
in determination, improvement, and optimization of
the intrinsic dynamic characteristics of various types
of structures. Intrinsic dynamic characteristics of a
structure are its natural frequencies and modal shapes.
Natural frequencies and modal shapes are calculated
using eigenvalues and eigenvectors, respectively. The
set of an eigenvalue and its associated eigenvector is
called an eigenpair. The dynamical behavior of the
structure can be mathematically expressed using these
characteristics. Modal analysis results are also useful

*. Corresponding author. Tel.: +98 21 88779473
E-mail addresses: soroush16@gmail.com (S. Heydari);
asil@kntu.ac.ir (S. Asil Gharebaghi)

doi: 10.24200/sci.2017.4529

in structure design. The dynamical response of the
structure under any imposed load could be calculated
using the results of modal analysis. Thus, modal
analysis is an important step in understanding the
behavior of a structure. For instance, Garinei [1]
studied the vibrations of a simple beam under the
impact of harmonically moving loads. In addition, the
analysis of vibrations of a bridge using modal analysis
is another example of the studies done in this �eld [2].

Conventionally, computer programs are written
in a serial manner. The commands of an algorithm
in this manner are executed sequentially and on one
single processor, only. More precisely, in serial mode,
only one command can be executed at a speci�c
time, and the next command has to be executed
after the previous command. Therefore, a complex
algorithm turns into many commands, which wait to
be executed in an ordered queue. On the other hand,
in parallel processing, several processors are exploited

S. Heydari and S. Asil Gharebaghi/Scientia Iranica, Transactions A: Civil Engineering 24 (2017) 2762{2775 2763

simultaneously. In this manner, the main algorithm
is divided into as many independent sub-algorithms as
possible. After division into independent parts, each
part is assigned to a separate processor. Eventually,
by simultaneous execution of these independent parts,
the parallel program will be executed in a short time.
The amount of shortening of the time is a function of
the ratio of the independent parts of the algorithm to
all of it and the architecture used in parallel processing.
Considering that every processor needs to communicate
with at least one other processor, if the amount of
the information transferred between the processors
increases excessively, a notable portion of time will be
consumed for handling the tra�c and decreasing the
performance of analysis using parallel processing.

Calculating the eigenvalues of the matrix, which
is formed using sti�ness and mass matrices of the
structure, is one of the most important and costly
steps in performing modal analysis. Practically, there
exists a variety of solving methods based on the type
of the algorithm used for calculating the eigenpairs
and the parallelization method of this algorithm. A
study of this sort is conducted in [3], where modal
analysis is performed by dividing the problem into some
subdomains using Component Mode Synthesis (CMS)
technique in �nite-element theory; subsequently, each
element of the �nite-element mesh is assigned to a
separate processor. In the aforementioned study, the
Jacobi algorithm is used for modal analysis. According
to the numerical results of this study, using the CMS
method increases the speedup of the parallelization,
but the duration of the overall processing also increases
signi�cantly. In fact, in this method, there will be
a need for calculating the inverse of some parts of
the main matrix, which in turn highly increases the
computational complexity. For instance, in numerical
results section of the previously mentioned work, modal
analysis of a cantilever beam with 50306 degrees of free-
dom was studied. The analysis has taken 4419 seconds,
with 3113 seconds (about 70%) taken to execute the
commands of the CMS algorithm. In [4], Davidson
algorithm and parallel power method algorithm are
used for solving a critical calculation problem, i.e. a
problem related to the calculation of eigenvalues and
eigenvectors in atomic reactors. Unlike what is usual
in civil engineering, there are some of the greatest
eigenvalues that are demanded in eigenvalue problems
like the one in [4]. In the above study, a comparison be-
tween parallel power method and Davidson algorithms
has led to this conclusion that Davidson algorithm gives
better results in terms of execution time and precision.

A two-dimensional beam has in�nite Degrees Of
Freedom (DOF). The number of DOFs can become
limited using discretization and �nite-element method,
and thus the problem can be solved numerically. The
more degrees of freedom are considered, the more

accurate the solution will be. However, using more
degrees of freedom results in a longer computation
time. Using parallel processing together with modal
analysis suggests many advantages, e.g. speeding up
the computations and the possibility of using decen-
tralized systematic and hardware resources. Therefore,
parallel processing helps to analyze problems that are
more complex in a short time. Performing parallel anal-
ysis needs the serial algorithm to have parallelization
potential. Fortunately, the costly steps of Davidson
algorithm have this advantage. Additionally, this
algorithm is able to compute a limited number of the
smallest eigenpairs. In this study, CMS technique is not
used to reduce the overall processing time, but instead,
various techniques of sharing the elements of a matrix
between processors are investigated to measure their
performance together with Davidson algorithm.

2. Parallel programs speedup and its limits

The speedup of a parallel program is expressed using
the ratio between processing time in serial mode and
processing time in the case of using np processors.
Generally, the speedup of a parallel program can also
be a function of the number of the processors. Speedup
can be expressed as Eq. (1):

Snp =
t0
tnp

: (1)

In this formula, Snp denotes the speedup of the
parallel program that uses np processors compared
to the program that uses one. t0 and tnp denote
processing times using one processor and np processors,
respectively.

In an ideal case, the speedup caused by paral-
lelization of an algorithm must be linear. The \ideal
case" means a case in which all parts of the algorithm
have the ability of parallelization and no data would
wait in queue to reach a speci�c node or processing
unit. In other words, no time should be wasted because
of the data tra�c between the processors. In the case
of ideality, processing time could be halved by doubling
the number of the processors. Although this case
would never happen, comparing the real speeds with
those of the ideal case could be helpful in determining
the e�ciency of the algorithms. As mentioned before,
parallelization ability in the main algorithm and high
tra�c between the processors are two main factors
which a�ect the limitation of the speedup caused by
parallelization.

On the one hand, although Eq. (1) suggests that
the speedup is linearly related to the number of the
processors, in practice and for most of the parallel
programs, it is approximately linear only for small
number of processors. In fact, when the number of

2764 S. Heydari and S. Asil Gharebaghi/Scientia Iranica, Transactions A: Civil Engineering 24 (2017) 2762{2775

processors grows up, the speedup approaches a con-
stant asymptote. In problems that do not require much
computational e�ort, parallel processing will not in-
crease solution speed, and even will lead to an increase
in process time. In such cases, the time consumed
for communication among the processors will dominate
and reduce the speedup caused by parallelization.

On the other hand, the speedup in the execution
of a parallel program, using a speci�c number of
processors, sometimes goes beyond the expected values.
This kind of speedup is called \super linear speedup".
The main causes of this condition are related to Central
Processing Unit (CPU) and its architecture as well as
parallelization algorithm. Based on a hardware point of
view, each CPU has a multiple layers of cache memory
called L1, L2, etc. having very high access speed
in comparison to Random Access Memory (RAM).
Therefore, if all the required data for each processor
could be totally placed in the cache memory of that
processor, each processor would not need to communi-
cate with other processors via RAM. As a result, the
speed of the computations would dramatically grow.
Moreover, one of the main methods for parallelization
of an algorithm, which can cause super linear speedup,
is \parallelism over data". The emergence of super
linear speedup in parallelism over data is often called
\caching e�ect". In this case, which usually takes
place in solving problems with rather low complexity
and amount of data, the amount of allocated data to
each processor is lessened by increasing the number
of the processors, which participate in the process.
Therefore, the data portion of each processor can be
completely placed in the cache memory portion of that
processor satisfying the above-mentioned condition. As
prescribed above, super linear speedup phenomenon
could happen under these conditions.

Branch-and-bound algorithms are the example of
parallel algorithms with speci�c properties, which may
result in super linear speedup. In some case, the
process, which is being executed by a processor over a
node of the domain, can a�ect the processing of other
processors over other nodes. In other words, the result
of one processor's work can decrease the workload of
other processors signi�cantly, again leading to super
linear speedup.

It should be noted that Amdahl's law may only
be applied when the resulting speedup in parallel
processing is not caused by the data being placed in
cache memory, the special conditions occurred in the
algorithm, or super linear speedup [5].

3. Hardware and software platforms

Parallel execution of the programs requires special
hardware and software platforms. Distributed and
shared memory systems are two examples of these

platforms. Since distributed systems are cheaper than
shared memory ones, these systems are of more use
nowadays [6]. Two elements of the used software
platforms are the operating system and a consistent
library for writing parallel programs. The operating
system, which is usually used for executing parallel
programs, is Linux. Microsoft Windows could also be
used as the operating system, but due to the signi�-
cant disadvantages of Microsoft Windows compared to
Linux, the former is not being used very frequently [7].
In the present study, Ubuntu operating system, which
is a Linux distribution, has been used. Besides, the
C++ programming language is used for implementing
the algorithms. Additionally, GCC is one of the
most powerful and free compilers available under Linux
operating system; therefore, it is chosen to compile the
source codes. Furthermore, MPI library, which enables
the developed software to use distributed memory, has
been deployed as the framework for producing parallel
program. Availability and being free of charge are
two main reasons for using the aforementioned software
combination.

4. Problem de�nition and assumptions

The problem that is being discussed in this study
is performing the modal analysis of two-dimensional
beams using parallel processing. During the analysis,
it is assumed that the modal analysis is linear. The
main part of the problem is to �nd eigenpairs of
the beam in a parallel manner. It is assumed that
the beam is made of materials which do not damp,
but it can have arbitrary dimensions and support
speci�cations. Here, the assumption is that the beam
acts like a cantilever, although its boundary conditions
can be arbitrary. Since the beam is assumed two-
dimensional, its thickness should be considered low
enough compared to its height and length. A two-
dimensional beam example, considered in this paper,
is shown in Figure 1.

5. Governing equations

The governing equation of free oscillation of undamped
Multiple-Degrees-Of-Freedom (MDOF) systems can be
written as follows [8]:

M �u+Ku = 0; (2)

Figure 1. Example of the studied problem.

S. Heydari and S. Asil Gharebaghi/Scientia Iranica, Transactions A: Civil Engineering 24 (2017) 2762{2775 2765

where K is the sti�ness matrix, M is the mass matrix,
and u is the displacement matrix of the structure. The
free oscillation of an undamped Multiple-Degrees-Of-
Freedom (MDOF) system can be expressed as follows:

u(t) =
NX
i=1

qi(t)�l; (3)

where �i is the ith mode shape function and qi(t)
is called time coordinate or brie
y the ith mode
coordinate, which is a function of time. N is the
number of the degrees of freedom. The time coordinate
functions are de�ned in Eq. (4):

qi(t) = Fi sin!lt+Gi cos!lt: (4)

In Eq. (4), Fi and Gi are integrating constants,
and !t is the natural resonance frequency. These
parameters can be determined using the boundary
conditions. The combination of Eqs. (3) and (4) results
in Eq. (5):

u(t) =
NX
i=1

�t (Fi sin!lt+Gi cos!lt) ; (5)

where !l and �l are unknown. By replacing u(t) from
Eq. (5) in Eq. (2), the following equation is derived:��!2

lM�l +K�l
�
qi(t) = 0: (6)

The acceptable answer to Eq. (6), which is not the
trivial answer u(t) = 0, is:

K�l = !2
iM�l: (7)

Useful numerical conclusions can be drawn from
the above equation. The given algebraic problem is
called matrix eigenvalue problem. Sometimes, it is
necessary to add \real" su�x to distinguish it from
complex eigenvalue problem. Sti�ness matrix K and
mass matrix M are known, and the unknown pa-
rameters of the problem are scalar !2

l and vector �l,
respectively. To make it similar to the classic solution,
Eq. (7) is rewritten as follows:�

K � !2
iM
�
�l = 0: (8)

The above equation could be interpreted as N homo-
geneous algebraic equations for determining N number
of �ls (i = 1; 2; :::; N). The nontrivial solution to the
above equation is:
det
�
K � !2

lM
�

= 0: (9)

Eq. (9) is a polynomial of degree N in !2
l , which

is called characteristic or frequency equation. For
practical structures in Civil Engineering, which have
enough support conditions for stability and cannot
have a rigid motion, matrix K is positive de�nite. Due
to the characteristics of sti�ness and mass matrices of
the structure, Eq. (9) hasN number of real and positive
roots for !2

l . However, this expression is not true for
structures like a
ying airplane [8].

6. Solving the problem

6.1. Mesh, sti�ness matrix, and mass matrix
generation

The �rst step of solving the problem is to discretize
or equivalently generate the Finite Element mesh of
the beam, shown in Figure 1. Four-node rectangular
plane stress element with eight degrees of freedom
has been used to discretize the domain. Since the
considered model does not contain any kind of geo-
metrical inhomogeneity, �nite-element mesh generation
for calculating eigenvalues and eigenvectors is easy and
e�cient in the case of using four-node rectangular
elements. Due to the points that will be given in
the next sections, especially in Modi�ed Checkered
Decomposition section, it is necessary to number the
nodes of the �nite-element mesh in such a way that
the nonzero elements of the resultant sparse matrix
be concentrated around the main diagonal. For this
reason, the numbering of the mentioned nodes is done
along the width of the beam.

Subsequently, sti�ness and mass matrices of the
structure are created using the same �nite-element
mesh. It should be noted that the mass matrix
has diagonalization ability. This ability results in
an e�cient use of memory, especially in large-scale
problems. In fact, after diagonalization, only the main
diagonal is stored in memory. Additionally, the inverse
of the mass matrix will be easy to calculate. In this
study, Hinton-Rock-Zienkiewicz (HRZ) scheme is used
for diagonalization. This scheme is presented in [9].

6.2. Standard form of the equations
The standard form means a form of the eigenvalue
problem, Av = �v, in which both sti�ness and mass
matrices are included in matrix A. In this way, the
eigenpairs of equation K� = !2M� will be determined
with less computational e�ort using matrix A. It is
noteworthy that most of the proposed algorithms for
solving eigenvalue problems try to solve the standard
form. This is very advantageous, especially in large-
scale problems. In fact, less memory will be needed
during the implementation of this form. Additionally,
when the eigenvalue solver algorithm deals with one
matrix instead of two, the computational e�ort reduces
signi�cantly. Moreover, iterative algorithms for cal-
culating eigenpairs of non-symmetric matrices usually
have slower convergence and more computational com-
plexity compared to the iterative algorithms for calcu-
lating eigenpairs of symmetric matrices. Fortunately,
because sti�ness and mass matrices are symmetric,
matrix A will be symmetric. Therefore, the main
characteristics of sti�ness and mass matrices will be
transported to matrix A, and this matrix will have real
eigenvalues. Eventually, the algorithms developed for
symmetric matrices can solve it.

2766 S. Heydari and S. Asil Gharebaghi/Scientia Iranica, Transactions A: Civil Engineering 24 (2017) 2762{2775

In this paper, the following equation is used for
calculating matrix A using sti�ness and mass matri-
ces [8]:

A = M�1=2KM�1=2: (10)

6.3. Standard matrix compression
By performing matrix compression and not storing
zero elements, besides the e�cient use of the available
memory, processing time could also be reduced notably
by reducing the number of operations, performed just
for nonzero elements. One of the most usual methods of
matrix compression is Compressed Sparse Row (CSR)
format. Another usual method is Symmetric Sparse
Skyline (SSS). As it can be indicated from the name
of this storing format, unlike CSR that is used for
storing general matrices, SSS method is employed only
for symmetric sparse matrices. One of the advantages
of this method over CSR is its more e�cient use of
memory. Explanation on compression using the two
mentioned methods can be found in [10].

If the SSS method is used in order to store matrix
A and a multiplication of A to a vector is desired, each
processor will not be capable of computing an indepen-
dent part of the answer. Therefore, at the end of the
multiplication, it is necessary to gather the outcomes
of all processors to make the correct answer of the
operation. Parallel function MPI Reduce in MPICH
library could be used for doing such an operation.
Unfortunately, using the mentioned function imposes
a signi�cant overhead on the parallel processing per-
formance. Additionally, the number of the executed
commands for doing a multiplication task using both
CSR and SSS methods is equal. Considering the
overhead of the SSS method, caused by MPI Reduce,
if the SSS method is used, the execution speed will
reduce compared to CSR. Therefore, despite all other
advantages of using SSS, CSR method is used in this
study.

6.4. Davidson algorithm
In most of the large-scale problems, iterative methods
are used for �nding a limited number of eigenpairs. One
of the most important families of iterative methods,
which are used for this end, are subspace methods. In
these methods, the main matrix is projected onto a
subspace. Then, the eigenpairs of this subspace are
calculated and used for computing the eigenpairs of
the main matrix. Davidson algorithm is a kind of
subspace algorithms. The main idea of this algorithm is
to increase the dimension of the subspace to calculate
a limited number of the desired eigenpairs. If there
exist speci�c eigenvectors in the subspace associated to
that iteration in one of the iterations of this algorithm,
eigenpairs of the main matrix could be calculated using
eigenpairs of that subspace [11].

Figure 2. Davidson algorithm.

Davidson algorithm's pseudocode is shown in
Figure 2. In this pseudocode, N denotes the number of
the desired eigenpairs and L is the maximum dimension
of the subspace which is set by the user at the beginning
of the procedure. The main steps of these algorithm are
numbered to evaluate parallelization potential. Based
on this numbering, each of the steps is explained
comprehensively in the following steps.

- Step 1: Subspace matrix creation. One of the most
resource-consuming steps of Davidson algorithm is
performing a matrix by vector multiplication to
produce subspace vector. Since the discussed matrix
in this step is the main matrix of the problem, it
could contain a large number of elements. Because
of the parallelization potential of the multiplication,
performing this multiplication in a parallel way is
one of the most important parallelization steps of
Davidson algorithm [12]. To perform this paralleliza-
tion using master-slave pattern, the main matrix
of the problem should �rst be properly distributed
between the processors of the grid.

Since the main matrix is used for multiplication
in all iterations of the problem, every processor
could be given its share of the main matrix before
running the algorithm. The vectors by which the
main matrix is multiplied will di�er in each iteration,
so the master processor should properly share these
vectors among the processors of the grid. Then,
each processor performs its share of matrix by
vector multiplication and sends the result to the
master processor. Eventually, the master processor
puts the results of the network's processors in the
right order and produces the resultant vector. It
should be noted that in this form of master-slave
parallelization, the master processor could also par-
ticipate in parallel multiplication, i.e. this processor
could have a share of the main matrix and help
solve the problem in addition to its main task of
sharing, receiving, and putting the vectors in the

S. Heydari and S. Asil Gharebaghi/Scientia Iranica, Transactions A: Civil Engineering 24 (2017) 2762{2775 2767

right order. This action will improve the e�ciency
of parallelization [12].

- Step 2: Subspace eigenpairs calculation. Since
the maximum dimension of the subspace is set to
be relatively low, the calculation of the eigenpairs
of each subspace could be done easily with low
computational e�ort and in a serial manner. Indeed,
executing this operation in a parallel manner would
not be e�ective. In this study, the maximum
dimension of the subspace is set to be 15; therefore,
serial QR algorithm is used in this step.

- Step 3: Ritz vector calculation. Ritz vector
is calculated by multiplying a matrix containing
eigenspace vectors, with dimensions limited to those
of the subspace and main matrix, by the eigenvectors
calculated from the subspace. Since the dimension of
the subspace is limited and considered low (here, it
is 15), the mentioned product is performed serially
and with low computational e�ort. In fact, paral-
lelization is not e�ective in this step.

- Step 4: Residual vector calculation. Like subspace
creation, in the calculation of the residual vector,
there exists a matrix by vector multiplication. In this
step, similar to what was previously mentioned, the
matrix by which the vector is multiplied is the main
matrix of the problem which could contain a large
number of elements. This matrix is shared among
the processors from the beginning. Nonetheless, the
vector by which the main matrix is multiplied will
di�er in each iteration; thus, in every iteration, it is
shared among the processors before multiplication,
and eventually, the master processor will help other
processors to calculate the resultant vector in a
parallel manner like in subspace matrix creation.

- Step 5: Correction vector calculation. If Jacobian
correction vector is used in Davidson algorithm,
the computational e�ort will be so low that par-
allelization cannot be e�ective. In fact, in this
step, calculation only includes the multiplication of a
vector by another vector. Actually, the �rst vector is
made by inversing the diagonal elements of a diag-
onal matrix. However, using the correction vector
is e�ective only when the main matrix is almost
diagonal; otherwise, the convergence of Davidson
algorithm will be very slow. Depending on the
problem's details, if general correction vector is used
in Davidson algorithm, this step can be considered
as a potential for parallelization of the algorithm. In
other words, when using general correction matrix,
the problem to solve is a system of equations, in
which the matrix of coe�cients is the main matrix
that can have a large number of elements. The
resultant vector is the following residual vector:

A� = r: (11)

In Eq. (11), A, �, and r denote the standard
matrix of the problem, the correction vector, and the
residual vector, respectively. Due to the conditions
of the problem studied in this paper, general correc-
tion vector is used. As a result, this step is one of the
most time-consuming parts of Davidson algorithm,
which also has the potential of parallelization [13].
For taking this step, Parallelized Preconditioned
Conjugate Gradient method (PPCG) is used when
solving the system of equations. This parallel
algorithm will be discussed later.

- Step 6: Orthogonalization of the subspace vectors.
This step is done using Gram-Schmidt algorithm.
The matrix, which is being orthogonalized in this
step, consists of vectors with the same dimension
as the main matrix. The number of these vectors
equals the maximum dimension of the subspace.
Since this number has to be relatively small, i.e. 15,
this step can be done easily in a serial manner and
parallelization is not e�cient.

6.5. Parallel preconditioned conjugate gradient
algorithm

Because of the problem's speci�cations, Jacobi precon-
ditioner matrix has been used. In this section, the
parallelization potentials of preconditioned conjugate
gradient algorithm are being discussed. These poten-
tials can be studied for the two following factors:

� Dot product of two vectors;
� Matrix by vector multiplication.

Using state-of-the-art processors, parallelization
of dot product is e�cient only when the vectors are pre-
viously stored in the slave processors. If this condition
holds, there will be no need for the master processor to
send data to the slaves; otherwise, parallelization will
increase data tra�c. As a result, the dot product of
two vectors has been done serially.

Considering the matrix by vector multiplication,
which shows up in two steps of each iteration of this
algorithm, the matrix that is multiplied by the vector
is the main matrix of the problem, shared among the
processors before running the algorithm because it will
be needed in other parts of the problem. Thus, the
master processor only has to share the vector among
the slave processors, and the multiplication can be
performed in a parallel way. Since the computational
e�ort of this multiplication grows by an increase in
the size of the system of equations, where performing
it in a parallel way can increase the speed of the
algorithm, this part of the multiplication algorithm has
been parallelized.

6.6. Sharing the matrix among processors
For doing a parallel multiplication, the matrix involved
in multiplication should be shared among the proces-

2768 S. Heydari and S. Asil Gharebaghi/Scientia Iranica, Transactions A: Civil Engineering 24 (2017) 2762{2775

sors. The method of partitioning and sharing this
matrix has a signi�cant impact on the speedup of the
parallel program. In this paper, two methods, namely
row-wise and modi�ed checkered decomposition, have
been studied. There exist some other algorithms, e.g.
column-wise and checkered decomposition, which have
not been used due to their disadvantages, or because
they do not �t the problems studied in this paper.

6.6.1. Row-wise decomposition
In this method, which is represented in Figure 3, the
rows of the matrix are shared almost equally among the
processors. It is considered \almost equally" because
the number of the processors might not be an integer
factor of the dimension of the matrix. So, the following
formulas are used:

i1 = (cp� 1)� qr + 1

i2 =

(
cp� qr cp < np
cp� qr +mr cp = np

(12)

where:
i1 : The �rst number of the rows allocated

to each processor;
i2 : The last number of the rows allocated

to each processor;
cp : Number of the processor involved in

the equations;
np : Total number of the processors;
qr : The integer quotient of matrix

dimension and number of the
processors;

mr : Remainder of matrix dimension
divided by number of the processors.

To perform the parallel multiplication with this
method of sharing, the whole vector by which the
matrix is multiplied should be sent to all processors.

Figure 3. Row-wise sharing of matrix elements among
the processors.

Figure 4. Parallel multiplication in row-wise sharing of
the matrix.

Eventually, each processor will produce an independent
part of the resultant vector. This procedure is depicted
in Figure 4.

In the end, the resultant vectors of the processors
should just be put in the right order so that the overall
resultant vector is achieved.

6.6.2. Modi�ed checkered decomposition
In the present study, the original checkered decompo-
sition is altered so that the method can be parallelized
signi�cantly. In the original checkered method, the
whole matrix is divided into blocks, and the elements
of each block are sent to a processor. As Figure 5
represents, in parallel multiplication using checkered
decomposition, the vector is divided among the pro-
cessors of each row of the shared matrix. Each part of
the resultant vector of this multiplication is calculated
by adding the resultant vectors of the processors of each
row.

In �nite-element related problems, by taking some
measures in numbering of the �nite-element mesh, the
main matrix of the problem could be changed into
a well-de�ned form, such that its elements become
concentrated around the main diagonal. As a result,
in checkered sharing method where the whole matrix
is divided into blocks, one can only send the blocks

Figure 5. Sharing the elements among the processors and
performing parallel multiplication using original checkered
decomposition.

S. Heydari and S. Asil Gharebaghi/Scientia Iranica, Transactions A: Civil Engineering 24 (2017) 2762{2775 2769

which are on the main diagonal plus small parts which
are in the beginning and ending of a block to the
processors. The algorithm, which is implemented in
such a way in this paper is named Modi�ed Checkered
Decomposition. According to this method (Figure 6),
in parallel multiplication, each processor is given a part
of the vector with the same length as the dimension
of the main block, plus another part with a length
equal to the dimension of the small block next to the
main block. As a result, a part of the shared data
among the processors will be the same. In Figure 6,
the hatched parts of the vector depict common data
transferred to the surrounding blocks. As Figure 7
represents, in parallel multiplication using modi�ed
checkered sharing method, each processor produces
an independent part of the overall resultant vector.
The length of this vector is equal to the dimension
of the main block sent to the processor. Eventually,
the resultant vectors of each processor should be put
in right order so that the overall resultant vector is
created. Therefore, in modi�ed checkered sharing
method, despite checkered method, the vector is sent
to the processors only once, but with a small amount
of overlap, and di�erent parts of the resultant vector
are created by each processor independently.

Another advantage of the modi�ed checkered

Figure 6. Sharing the multiplicand vector among
processors using modi�ed checkered decomposition.

Figure 7. Multiplication using modi�ed checkered
decomposition.

decomposition over the original checkered version is the
better use of the available storage without employing
matrix compression methods. The di�erence between
modi�ed and original versions of the checkered method
is better understood by comparing Figures 5 and 7.

7. Numerical results

7.1. Problems' speci�cations, solving method
and employed system

In this section, the results of analyzing eight problems,
solved using the developed parallel program, are pre-
sented. The goal is to calculate the �rst four eigenpairs
of the beam in each problem using parallel processing
and to perform its modal analysis. All beams are
considered cantilever.

An example of such beams is shown in Figure 1.
The problems are solved by the following methods:

- Method A: No matrix compression is used in this
method. The matrices are shared among the proces-
sors using row-wise sharing method.

- Method B: No matrix compression is used in this
method. The matrices are shared among the proces-
sors using modi�ed checkered sharing method.

- Method C: CSR technique is used for matrix com-
pression. The matrices are shared among the pro-
cessors using row-wise sharing method.

- Method D: CSR technique is used for matrix com-
pression. The matrices are shared among the pro-
cessors using modi�ed checkered sharing method.

The speci�cations of the materials of the beam in
the problems are given in Tables 1 and 2.

7.2. Veri�cation of the results
Before interpreting the amount of speedup caused
by parallelization and in order to verify the results,

Table 1. Dimensional speci�cations and used materials.

Thickness
(m)

W
(m)

L
(m)

�
(kg

m3)
v E

(GPa)
0.025 0.2 2 7850 0.3 21

Table 2. Mesh speci�cations of the solved problems.

Problems No. of elements No. of DOF
A(612) 250 612
A(4832) 2250 4832
B(612) 250 612
B(4832) 2250 4832
C(8442) 4000 8442
C(51102) 25000 51102
D(8442) 4000 8442
D(51102) 25000 51102

2770 S. Heydari and S. Asil Gharebaghi/Scientia Iranica, Transactions A: Civil Engineering 24 (2017) 2762{2775

the �rst four natural frequencies calculated using the
parallel program are compared to the results of \spec"
function of Scilab, which is an open source software for
numerical computation. It should be noted that just
the main matrix is used as the argument for \spec"
function. The percentage of relative error, which is
shown in Tables 3-7 by the term \error", is calculated
using Eq. (13):

Error =
vScilab � vparallel

vScilab
� 100; (13)

Table 3. Veri�cation of the results for problems A(612)
and B(612).

Frequencies Parallel code Scilab Error (%)

!n1 83.28 83.27 0.01

!n2 499.36 499.36 0.00

!n3 1286.31 1286.31 0.00

!n4 1314.90 1314.90 0.00

Table 4. Veri�cation of the results for problems A(4832)
and B(4832).

Frequencies Parallel code Scilab Error (%)

!n1 82.55 82.55 0.00
!n2 495.18 495.18 0.00
!n3 1286.11 1286.11 0.00
!n4 1304.27 1304.28 0.00

Table 5. Veri�cation of the results for problems C(8442)
and D(8442).

Frequencies Parallel code Scilab Error (%)

!n1 82.51 82.51 0.00
!n2 494.94 494.94 0.00
!n3 1286.65 1286.09 0.04
!n4 1303.10 1303.65 0.04

Table 6. Veri�cation of the results for problems C(51102)
and D(51102).

Frequencies Parallel code Scilab Error (%)

!n1 82.48 82.46 0.02

!n2 494.66 494.66 0.00

!n3 1287.27 1286.06 0.09

!n4 1301.73 1302.93 0.09

Table 7. Veri�cation of maximum displacement for the
beam in problem D(51102).

Parallel code Scilab Error (%)

0.52 0.52 0.00

where VScilab is the outcome of Scilab and Vparallel is
the result of the developed parallel program.

7.3. Speedup results
The speedup diagrams with respect to the solution
method and degrees of freedom of each problem are
depicted in Figures 8-11.

As can be seen in Figure 8, the speedup reduces
drastically when the number of the involved processors
increases from 7 to 8 in problem A(612). The reason
for this reduction may be described by the use of two
views: hardware concepts and parallelism theory.

From hardware point of view, it should be noted
that the Intel-based CPUs, which have been used in
this research, support Turbo Boost Technology. Turbo
Boost Technology is a capability, which dynamically
changes the processors' processing speed. As an ex-
ample of how it works, when the process is executed
using one core of CPU and there is no energy issue

Figure 8. Speedup in Method A.

Figure 9. Speedup in Method B.

S. Heydari and S. Asil Gharebaghi/Scientia Iranica, Transactions A: Civil Engineering 24 (2017) 2762{2775 2771

Table 8. Theoretical speedup of Method A (row-wise without matrix compression).

Execution strategy Code segments pi si S

Serial
Sti�ness and mass matrix generation 0.34 1.00

Gram-Schmidt orthogonalization 0.03 1.00
Built-in solver 0.03 1.00 6.84

Parallel Parallel multiplication and subspace generation 0.77 8.00
Parallel PCG solver 98.83 7.00

Figure 10. Speedup in Method C.

Figure 11. Speedup in Method D.

and thermal problem, the processing speed of that core
reaches its maximum. If two cores are processing simul-
taneously, the speed of the cores increases, but each
speed may be less than the potential maximum speed,
which can be reached when a core works alone. In
the same way, when more processors are involved, the
speed of each core decreases to control the maximum
allowable temperature. Generally, in processors with
Turbo Boost capability, the frequency of each of the
involved cores may be reduced when more processors
get involved in order to deal with system overheat.

In problem A(612), since the number of degrees of
freedom is low, speedup limitation is mainly due to
Turbo Boost and not the communication tra�c among
the processors. Therefore, Turbo Boost e�ect becomes
more visible when more cores are involved in process.
In other words, by increasing the number of processors
from 7 to 8, Turbo boost has possibly reduced the
frequency of the cores to avoid overheating. The Turbo
Boost e�ect may be reduced in other examples with
a larger number of degrees of freedom or larger data
tra�c because there are some time intervals whose
cores are waiting to receive data from each other or
RAM. Subsequently, the cooling system is able to
control the heat: The more time is consumed in data
tra�c, the more idle time is assigned to each core
resulting in cooler CPUs.

The amount of speedup for A(612) problem is
presented in the next section. From Tables 8-11, it
can be seen that A(612) is experiencing super linear
speedup. From parallelism point of view, all points in
the diagram of problem A(612), which are between one
and eight cores, should not be compared with Amdahl's
law or non-super linear conditions. In this case, there
are some constant data and all cores need them. When
the number of cores increases, the cache of CPU is
divided into a larger number of CPUs. As a result,
when the number of cores increases, the portion of each
core decreases and they cannot contain all required
data. Consequently, at the last point, with eight cores,
all cores have to communicate via RAM resulting in
a decreased but real speedup. To summarize, the
speedup in the diagram of A(612) should not have
increased in such a way that a sudden fall be detected
in a non-super linear point (with eight cores).

7.4. The results of modal analysis
The response of the structure to various dynamic loads
can be calculated by the computed eigenpairs. As an
example, in problem D(51102), the beam displacement
under the impact of a 50 N.s impulse, with persistence
time of 0.05 s at 0.1 s after the hit, is questioned. This
impulse is depicted in Figure 12.

It should be noted that the mentioned impulse
is applied to the lower right corner of the beam in
Figure 1. In Figure 13, the displacement of the
beam under the impact of the impulse, at 0.1 s after

2772 S. Heydari and S. Asil Gharebaghi/Scientia Iranica, Transactions A: Civil Engineering 24 (2017) 2762{2775

Table 9. Theoretical speedup of Method C (row-wise with matrix compression).

Execution strategy Code segments pi si S

Serial
Sti�ness and mass matrix generation 0.05 1.00

Gram-Schmidt orthogonalization 0.98 1.00
Built-in solver 1.07 1.00 2.88

Parallel Parallel multiplication and subspace generation 0.44 4.00
Parallel PCG solver 97.46 3.00

Table 10. Theoretical speedup of Method D (MCM with matrix compression).

Execution strategy Code segments pi si S

Serial
Sti�ness and mass matrix generation 0.07 1.00

Gram-Schmidt orthogonalization 0.65 1.00
Built-in solver 0.67 1.00 2.92

Parallel Parallel multiplication and subspace generation 0.80 4.00
Parallel PCG solver 97.81 3.00

Table 11. Comparing maximum theoretical and practical
speedup values.

Approach A B C D

Practical 4.80 22.00 1.52 1.82
Theoretical (Amdahl's law) 6.84 N/A 2.88 2.92

Figure 12. Graph of the applied impulse.

the impulse, is depicted. Additionally, the vertical
displacement of this beam in evenly spaced points, with
0.5 m distance, is provided.

The results of the veri�cation of the developed
software are shown in Table 7. In this table, the vertical
displacement of the impulse point is compared to the
outcome of Scilab.

Figure 13. De
ection of the beam in problem D(51102)
at 0.1 s after applying the impulse.

8. Interpreting the results

8.1. Comparing the results with Amdahl's law
According to Amdahl's law, the theoretical speedup is
presented as follows:

S =
1

p1
s1 + p2

s2 + p3
s3 + :::

; (14)

where pi is the percentage of the ith code segment,
and the amount of speedup for the ith code segment is
equal to si. Tables 8-10 summarize the execution times
of serial and parallel code segments in terms of relative
parameters pi and si. According to these values, the
theoretical speedup is computed and presented in the
tables.

It is important to emphasize that Method B does
not use matrix compression and contains relatively
small degrees of freedom. Therefore, it is likely that
super linear speedup takes place in this case. There-
fore, comparing the results with those of theoretical
Amdahl's law may lead to incorrect results.

S. Heydari and S. Asil Gharebaghi/Scientia Iranica, Transactions A: Civil Engineering 24 (2017) 2762{2775 2773

Table 11 summarizes the maximum theoretical
and practical speedups for applicable methods.

As can be seen in Table 11, theoretical speedup
is larger than its practical counterpart. Amdahl's
law ignores all time intervals which are consumed
for sending and receiving messages and data among
all processors, real tra�c loads, mandatory operating
system services which increase system overhead, etc.
Therefore, the theoretical speedup is never achieved
unless a super linear speedup has been occurred.

In addition, Tables 8-10 show that the di�er-
ence between theoretical and practical speedups using
Method A is larger compared to those obtained by
Methods B and C. This indicates that in Method
A, the processors consume more time to send and
receive messages to or from each other in comparison
to Methods C and D. Here, practical measurements
indicate that Amdahl's law may be unable to predict
the real speedup because of its assumptions which are
made for simplifying the formula.

8.2. Discussion
First, the precision of the natural frequencies and
displacement calculated using parallel modal analysis
could be noted. According to the percentages of
relative error in Tables 3-7, the results are calculated
with good precision.

Considering the speedup of the analyses using
Method A, it is noteworthy that according to the
represented graphs, by increasing the number of de-
grees of freedom, the speedup becomes limited and
the maximum speedup occurs when using 5 and 7
processors. The reasoning is somehow related to the
way the multiplicand vectors are divided among the
processors. Since the mentioned vectors should be sent
to all of the processors completely in row-wise sharing
method, bigger problems will yield bigger dimension
for the shared vector. As a result, in large-scale
problems, communication tra�c among processors will
become signi�cant, which leads to a limitation in the
speedup. On the other hand, by increasing the involved
processors, the number of the vectors that should be
transferred grow; thus, maximum speedup occurs in a
small number of processors. According to the presented
graphs, by using Method B, the speedup moves beyond
the ideal speedup limit of parallel processing. It hap-
pens because the resulted speedup is related not only
to parallelization, but also to the modi�ed checkered
sharing method of the main matrix of the problem and

also due to ignoring blocks with zero elements which
are far from the main diagonal. The advantage of
this method over Method A is that there is no need
to send the complete multiplicand vectors to all of
the processors. In fact, each processor receives only
a share of the multiplicand vector, which is assigned
to its block. However, a part of these vectors will
have overlap due to the nonzero elements outside the
main diagonal blocks. This overlap could be limited by
generating a proper mesh of �nite elements. Therefore,
during the analysis, the grid of the processors will not
be congested by vectors of main dimension, and only
one vector with a small amount of overlap is distributed
among the processors. As a result, despite the analysis
using Method A, by adding degrees of freedom and
enlarging the problem, the speedup increases. As it can
be seen in Figures 10 and 11, the speedup of Methods D
and C is lower than that of Methods A and B. The main
reason for this is performing matrix compression. By
performing matrix compression, computational e�ort
and required data increase signi�cantly. The cause of
speedup rate reduction in the case of using Method C
can be explained by referring to what was men-
tioned about Method A. In Method C, the complete
multiplicand vector is distributed among processors.
Consequently, in large-scale problems, the data tra�c
among processors will be increased and the speedup
will be limited. On the other hand, the speedup of
Method D is higher than that of Method C. It seems
to happen due to using the Modi�ed Checkered method
and dividing the multiplicand vector among processors.
Therefore, the communication grid will be less crowded
in Method D compared to Method C, and the speedup
will increase. However, in Methods C and D, the
essence of the problem does not change by increasing
the number of the processors. Therefore, all of the
resulting speedup is due to parallelization, although
the amount of increase in the speedup is low. More
accurately, in Method D, the required time to analyze
the �ne mesh decreases approximately by 45% when
the number of processors increases; nevertheless, by
increasing the number of processors, the speedup does
not signi�cantly change in both �ne and course meshes.
A similar conclusion may be drawn from Figure 10 for
Method C. In fact, the results show that Methods C
and D do not have signi�cant capability of being paral-
lelized, at least by the use of the presented algorithms.

Moreover, in Tables 12 and 13, the percentages
of maximum decrease of processing time in problems

Table 12. Maximum decrease of processing time in problems solved using Methods A and B.

Method A B A B

No. of DOF 612 612 4832 4832

Maximum decrease of processing time 79.20% 88.92% 66.77% 95.45%

2774 S. Heydari and S. Asil Gharebaghi/Scientia Iranica, Transactions A: Civil Engineering 24 (2017) 2762{2775

Table 13. Maximum decrease of processing time in problems solved using Methods C and D.

Method C D C D

No. of DOF 18662 18662 51102 51102

Maximum decrease of processing time 19.10% 33.34% 34.02% 45.35%

without compression (A and B) and problems with
compression (C and D) are compared to each other.
Based on the mentioned results, it can be concluded
that regardless of using or not using matrix compres-
sion, modi�ed checkered sharing method, proposed in
this paper, results in a high amount of decrease in the
processing time. The reason for this advantage is the
decrease of the data tra�c among the processors in
the grid. In fact, despite row-wise sharing method,
in modi�ed checkered method, the multiplicand vector
is not completely shared among all of the processors.
Another advantage of the modi�ed checkered method
is its better use of the available storage without
employing matrix compression methods.

9. Conclusion

In the present study, the problem of modal analysis
of two-dimensional beams is performed using parallel
processing. The importance of the problem is due to
its application in the design of structures, especially
when the intrinsic dynamic characteristics of the model
change in each step of a trial-and-error design manner,
and it is required to have access to the accurate
eigenpairs in each iteration. In such a situation, a
modal analysis may be required to be performed several
times. Logically, it would be very e�cient if the
computation time of a modal analysis could be reduced.
As mentioned, Davidson method has been used in order
to implement the parallel program. In general, two
main types of approaches have been implemented. The
�rst type does not compress the main matrix of the
standard form of the eigenvalue problem, whereas the
second type uses CSR matrix compression. Each of
the above-mentioned types is divided into two versions.
The �rst version uses row-wise sharing method, while
the second version implements a modi�ed checkered
sharing model, which has been proposed in this paper.
The accuracy of all types and corresponding versions
has been veri�ed using Scilab built-in functions, which
is an open-source software for numerical computation.
The results of this study indicate that the combination
of modi�ed checkered method and parallel processing
could be used as a powerful tool for high performance
modal analysis. Although the presented method has
been applied only to a cantilever beam, the developed
�nite-element source code is capable of being applied
to a wide range of two-dimensional problems. Nev-

ertheless, in the present study, the domain has been
discretized using a structured mesh.

References

1. Garinei, A. \Vibrations of simple beam-like modelled
bridge under harmonic moving loads", International
Journal of Engineering Science, 44(11-12), pp. 778-
787 (2006).

2. Bozdaga, E., Sunbuloglua, E. and Ersoy, H. \Vibration
analysis of new Galata bridge experimental and nu-
merical results", Journal of Computers & Structures,
84(5-6), pp. 283-292 (2006).

3. Heng, B.C.P. and Mackie, R.I. \Parallel modal analysis
with concurrent distributed objects", Journal of Com-
puters & Structures, 88(23-24), pp. 1444-1458 (2010).

4. Subramanian, C., Van Criekingen, S., Heuveline, V.,
Nataf, F. and Hav�e, P. \The Davidson method as an
alternative to power iterations for criticality calcula-
tions", Journal of Annals of Nuclear Energy, 38(12),
pp. 2818-2823 (2011).

5. Nefedev, K.V. and Peretyatko, A.A. \Superlinear
speedup of parallel calculation of �nite number Ising
spins partition function", 3th International Conference
on High Performance Computing, 1, Kyiv, Ukraine,
pp. 231-243 (2013).

6. Baker, M. and Buyyaz, R. \Cluster computing at a
glance", in Computer Science, 1th Edn., pp. 9-13,
University of Portsmouth Press, Southsea, Hants, UK
(2006).

7. Al-Rayes, H.T. \Studying main di�erences between
linux & windows operating systems", International
Journal of Electrical and Computer Engineering,
12(4), pp. 25-31 (2004).

8. Chopra, A.K. \Dynamics of structures: Theory and
applications to earthquake engineering", in Civil En-
gineering and Engineering Mechanics, 4th Edn., pp.
440-478, University of California Press, Berkeley, Cal-
ifornia, USA (2004).

9. Chandrupatla, T.R. and Belegundu, A.D. \Introduc-
tion to Finite Element Methods in Engineering", in
Mathematics and Engineering, 4th Edn., pp. 113-121,
Pennsylvania State University Press, Pennsylvania,
USA (2012).

10. Batista, V.H.F., Ainsworth, G.O. and Ribeiro, F.L.B.
\Parallel structurally-symmetric sparse matrix-vector
products on multi-core processors", 3th International

S. Heydari and S. Asil Gharebaghi/Scientia Iranica, Transactions A: Civil Engineering 24 (2017) 2762{2775 2775

Conference on Parallel, Distributed, Grid and Cloud
Computing for Engineering, 1, P�ecs, Hungary, pp. 1-
22 (2013).

11. Feng, Y.T. \An integrated Davidson and multigrid
solution approach for very large scale symmetric
eigenvalue problems", Journal of Computer Methods
in Applied Mechanics and Engineering, 190(28), pp.
3543-3563 (2001).

12. Gim�enez, D., Jim�enez, C., Majado, M.J., Mar��n,
N. and Mart��n, A. \Solving eigenvalue problems on
networks of processors", Lecture Notes in Computer
Science (LNCS), 1573, pp. 58-99 (1999).

13. Xuanhua, F., Pu, C., Ruian, W. and Shifu, X. \Par-
allel computing study for the large-scale generalized
eigenvalue problems in modal analysis", Journal of
Mechanics and Astronomy, 57(3), pp. 477-489 (2014).

Biographies

Soroush Heydari was born in Ahwaz, Iran in 1990.
He earned his BSc (2012) from Shahid Chamran
University, Ahwaz, Iran, and MSc (2014) from K. N.
Toosi University of Technology, Tehran, Iran. He is
interested in Parallel Programming and accomplished
his thesis on Parallel Finite Element Method.

Saeed Asil Gharebaghi was born in Tehran, Iran,
in 1973. He earned his BSc (1996), MSc (1998), and
PhD (2007) from Sharif University of Technology,
Tehran, Iran. The applications of mathematics in Civil
Engineering as well as numerical simulations using a
wide variety of software products are his interests. He is
now a faculty member of Civil Engineering Department
in K. N. Toosi University of Technology, Tehran, Iran.

