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1. Introduction

Abstract. This paper proposes a new method for automatic generation of test cases using
model-based testing. As test model, class and state diagrams are used and constraints are
expressed using Object Constraint Language (OCL). First, the state machine is converted
into a mathematical representation in AMPL (A Mathematical Programming Language).
Then, using a search algorithm and based upon coverage criteria, the abstract paths are
selected from state machine. Second, using symbolic execution, the generated abstract
path along with the constraints on this path is converted into the data of generated
mathematical model. Third, the generated mathematical problem is solved with solvers
that have interface with AMPL, and the test data are produced for each abstract test
case. Finally, the generated test data and abstract paths are transformed into executable
test cases. All-Transitions and All-States coverage criteria are used for conducting the
search algorithm as well as the criteria to evaluate the quality of the generated test cases.
To validate the work, by utilizing various solvers, the test cases are generated for various
problems. The proposed technique is implemented as a tool, named MoBaTeG. The tool
shows good result in terms of test case generation execution time, test goals satisfaction
rate, source code instructions coverage, and boundary values generation.

(© 2017 Sharif University of Technology. All rights reserved.

The basis of all model driven approaches is model

Given the complexity of today’s computer systems,
modeling is considered as a necessity, particularly
in software engineering. Unlike traditional software
development processes that focus on the code, in Model
Driven Development (MDD), the main artifact is the
model that drives the process. The final goal of MDD
is to automatically build software from the model [1].
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transformation [2]. This means that the model with
high level of abstraction is converted into another
model with lower level of abstraction and, eventually,
it is converted into code. Model transformation is the
distinguishing factor between the traditional and the
MDD approaches.

Software testing is one of the important parts
of any software development process. Approximately,
50% of the project budget is spent on software test-
ing [3]. Traditional testing is performed by a tester
using manual approaches. Testing software systems in
traditional manner is complex, time consuming, and
error prone [4]. One of the systematic approaches to
test case generation is Model-Based Testing (MBT).
In MBT, the conformance of the System Under Test
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(SUT) to the test model is evaluated. The test model
can be created using one of the modeling languages,
UML, automata, and petri net, to name a few [5].

In this work, a new method is presented for
automatic generation of test cases using MBT tech-
niques. In this approach, UML class diagram is used
for modeling the static dimension of the system and
UML state machine is used for modeling the dynamic
behavior of the system. Constraints of the system
are expressed using OCL. The OCL constraints can
be used for defining the guards of state machine’s
transitions, state machine’s state invariants, and the
pre- and post-conditions of class diagram’s operations.
The operations can be used as the effect of UML
state machine’s transitions. The proposed method is
comprised of several steps. First, the state machine is
converted into a mathematical representation in AMPL
(A Mathematical Programming Language (AMPL)).
In this step, the model of AMPL is generated using
some model transformations. Then, with a forward
and depth-first search algorithm and based upon All-
Transitions or All-States coverage criteria, the abstract
paths from state machine are selected. Second, using
symbolic execution, the generated abstract path and
its element constraints are converted into the data of
generated mathematical model. Third, the generated
mathematical problem is solved with the state of the
art and powerful solvers that have interface with AMPL
and the test data are produced for each abstract test
case. Finally, the generated test data and abstract
paths are transformed into executable Java unit test.

It should be noted that each solver implements
one (some) specific algorithm(s) or heuristic(s). These
algorithms can be different in different solvers. Hence,
each solver can solve only one (some) specific type(s)
of problems. Mo-BaTeG can solve different types of
problems using various solvers. Kurth [6] listed some
of the AMPL solvers and the problem types they could
solve. The following are examples of such solvers:
Cplex, Minos, Gecode, Jacop, and Couenne.

In this work, All-Transitions and All-States cov-
erage criteria are used to conduct the search algorithm
as well as the criteria for evaluating the quality of
the generated test cases. In order to increase error
detection power of the algorithm, the boundary value
analysis is used for boundary test data generation. In
this research, by utilizing various solvers, the test cases
are generated for various problems, e.g., linear, non-
linear, decidable, and undecidable, that are defined by
OCL constraints in the test model.

This paper is organized as follows. Section 2
covers the related works in the context of MBT and
automatically generated test cases. Abstract test
case generation using different algorithms as well as
test data generation using different technologies will
be discussed in this section. Section 3 describes

the proposed approach for automatic generation of
test cases as well as algorithm, data structures, and
meta-model for building the tool called MoBaTeG
(Model-Based Test Generator). MoBaTeG is devel-
oped based upon ParTeG (Both tools are available in
http://parteg.sourceforge.net). In Section 4, we eval-
uate our proposed approach via several case studies.
Also, MoBaTeG is compared with ParTeG. Section 5
contains the conclusion, in which we review the contri-
butions of this research and address the future works
and threats to validity.

2. Related works

This section addresses the related works in the domain
of automatic generation of test cases. Utting [5]
categorized different approaches of MBT based upon
several criteria, as indicated in Figure 1. His taxonomy
was based on the modeling language that was used
for building the test model, different algorithms and
techniques that were used for test case generation, and
the ways that the test cases were executed against
SUT. These criteria have been shown in Figure 1 as
three main branches of taxonomy. Since our research is
focused on test generation, we only consider the second
branch in the figure.

As illustrated in Figure 1, the “Test Generation”
branch has two sub-branches. The first one (“Test
Selection Criteria”) categorizes the coverage criteria,
which are used as the basis for the selection of abstract
test cases. The second one (“Technology”) categorizes
several technologies for concrete test data generation.

In the following sections, first, we describe the
related works about abstract test case generations in
Section 2.1. Then, the related works about concrete
test data generation will be described in Section 2.2.
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Finally, the differences of our tool, MoBaTeG, with two
other tools are mentioned in Section 2.3.

2.1. Abstract test case generation

The coverage criteria are used for conducting search
algorithm as well as for evaluating the quality of
generated test cases. After selecting a coverage cri-
terion for test case generation, the abstract test case
generation algorithm will be executed, which will try
to satisfy the determined coverage criterion. Also,
the coverage criteria satisfaction rate determines the
quality of generated test cases by our approach.

WeiBlleder [7] proposed several coverage criteria
that were based on data flow and model structure. In
his proposed approach, each coverage criterion would
be converted into some test goals. Then, the search
algorithm would be used to satisfy the generated
test goals. The search algorithm traversed the state
machine’s transitions with backward approach and con-
sidered guard conditions to satisfy them. Since brute
force search of searching space was impossible, the
data flow-based approach was employed for conducting
backward search algorithm towards data definitions.
The proposed approach was implemented as a free and
open source tool called ParTeG.

We propose a forward search algorithm based
upon state machine for abstract test case generation
and test goals satisfaction. In our forward search
algorithm, we traverse state machine in a forward
manner and, in each state, check the satisfaction of
unsatisfied test goals. In other words, our algorithm
is run once and for each found path, it tries to satisfy
the test goals. The backward search that is proposed
in [7] is run once for each test goal. Furthermore,
our proposed algorithm can support composite states
and different ways through which the system can enter
the composite state or exit it. However, some of the
re-searchers proposed some approaches that did not
consider composite state and only considered restricted
parts of state machine, or did one additional step for
flattening state machine before the execution of test
case generation algorithm. We do not flatten state
machines.

In [8,9], some of the searching graph algorithms
are introduced as a technique for finding proper test
cases. Kurth [6] used depth- and breadth-first search
for abstract test case generation from UML activity
diagram. Also, he introduced two parameterized ter-
mination conditions to ensure the termination of search
algorithms. The user could identify the maximum
amount of test cases to be generated as well as the
maximum depth of model to be searched by search
algorithms. He did not use coverage criteria and test
goals for conducting search algorithm. We design and
implement a depth-first search algorithm with forward
approach on UML state machine. Furthermore, we

use structural-based coverage criteria to conduct the
search algorithm. The proposed search algorithm tries
to satisfy test goals that are related to the selected
coverage criteria.

2.2. Concrete test data generation

As indicated in the “Technology” branch in Figure 1,
several technologies can be used for test data gen-
eration: random test data generation from feasible
set, search-based test data generation, model checking,
symbolic execution, theorem proving, and constraint
solving. Random selection of test data cannot be
considered as a proper method for test data generation,
because it may not satisfy all the constraints within
abstract path and the generated test data may be of
low quality. However, it can be used for comparison
with other approaches.

WeiBlleder and Sokenou [10] proposed a data-
oriented approach for generating test data. In this
approach, they used abstract interpretation and cat-
egorized input data in several parts based on the
data domain. Then, the boundary value of each
part would be selected as test data. In contrast to
data partitioning for boundary test data generation,
we use mathematical optimization for boundary value
analysis. Also, we use symbolic execution for test
data generation in contrast to data-oriented test data
generation.

Ali et al. [11] defined some fitness functions based
on OCL and generated test data using search algo-
rithms. They used genetic algorithm and implemented
their approach as an OCL-based constraint solver.
However, up to this date, this solver has not been
made publicly available. Malburg and Fraser [12] used
a mixed approach. They used genetic algorithm for
improving test data; also, for conducting genetic algo-
rithm, they used special mutation operators performing
dynamic symbolic execution. Their approach focused
on white-box testing using the program’s source code.
Also, PEX [13] from Microsoft® could be used for
white-box unit test. It used dynamic symbolic exe-
cution based on source code. Furthermore, for solving
path conditions, it used a constraint solver. We use
static symbolic execution and do not need source code
for test case generation. Hence, our tool can also be
used for black-box testing.

Krieger and Knapp [14] proposed a technique
for converting OCL constraints into Boolean formulae
and specified some states of system that could satisfy
the constraints using SAT solvers. We use AMPL
programming language and model OCL constraints in
AMPL. Hence, our approach is not limited to one
special heuristic or solver, and we are able to use several
heuristics and solvers that have interface with AMPL.
Each solver is able to solve one or some special types
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of problems. We are able to solve different types of
problems using different solvers.

In [6], Kurth proposed an algorithm for converting
activity diagram, control flow path, and OCL con-
straints into mathematical model in AMPL modeling
language. After generating AMPL model, the test
data would be generated using solvers. His proposed
approach was implemented as an open source tool
called AcT (Activity Tester).

We use AMPL and solver-based technique, too.
The difference between our work and [6] is that we
use state machine as input model; however, in [6],
activity diagram was used as test model. In [6], the
OCL constraints could be used for defining the guard
of control flows and post-conditions of each activity.
In our work, OCL constraints can be used for defining
the guard of transitions, pre- or post-conditions of class
diagram’s operations (these operations can be used as
the effect of state machine’s transitions), and states
invariants. The semantics of these constraints are
different from those used in [6]. Hence, the algorithm
for converting them into AMPL is also different.

2.3. Summary

To summarize the properties of our tool, MoBaTeG,
versus ParTeG [7] and AcT [6], we have prepared
Table 1. In this table, three tools are compared from
five aspects: test model, coverage criteria, abstract test
case generation algorithm, test data generation, and
boundary value analysis.

3. MoBaTeG: Model-Based Test Generator

In Model-Based Testing (MBT), after building the
model, it will be used for test generation. Usually,
the modeling is done in a manual process by modeler
or tester using a modeling tool. Afterwards, the test

cases will be generated automatically from test model
using a model-based test generation tool. In this paper,
the test generation problem is converted into a mathe-
matical representation in AMPL language. Then, with
a forward and depth-first search algorithm and based
upon All-Transitions or All-States coverage criteria,
the abstract paths from state machine are selected.
Second, using symbolic execution, the generated ab-
stract path and its element constraints are converted
into the data of generated mathematical model. Third,
the generated mathematical problem is solved with the
state of the art and powerful solvers that have interface
with AMPL and the test data are produced for each
abstract test case. Finally, the generated test data
and abstract paths are transformed into executable
test cases. The overview of our approach is shown in
Figure 2. There are four steps in this figure that will
be described in Sections 3.1 to 3.4, respectively.

3.1. Normalization
This step accepts UML model as input and generates
test case graph as out-put. The goal of this part
is checking the correctness of OCL constraints. If
all constraints are syntactically correct and supported
by our approach, the abstract syntax tree will be
generated for them. Also, we copy the required parts
of UML input model and related OCL constraints in
an internal structure, called test case graph. Then, we
use this structure for test case generation and forget
input UML model. Also, in this part, we transform
the coverage criteria into test goals. All of these tasks
are performed using ParTeG tool. It should be noted
that we have modified internal structure of this tool in
some parts so that it is able to support our approach’s
requirements. Partial meta-model of the test case
graph is indicated in Figure 3.

The properties of TCGTransition class are those

Table 1. Comparing MoBaTeG with ParTeG [7] and AcT [6].

ParTeG

AcT MoBaTeG

TM e "hi
Test model UML state machine

and class diagram

. - Structural-based and
Coverage criteria
data flow-based

Abstract test case
Backward search

generation algorithm
Abstract interpretation

Test data generation

Boundary value analysis Data partitioning

UML activity

and class diagram

No use

Backward and forward search

Symbolic execution

Mathematical optimization

UML state machine

and class diagram

Structural-based

Forward search

Symbolic execution

Mathematical optimization
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Figure 3. Partial test case graph meta-model (adapted from [7]).

properties that are added to the test case graph meta-
model in this paper. Note that ParTeG does not
support several pre- or post-conditions. However,
in this approach, we support several pre- or post-
conditions for each transition. The guard constraint
of UML state machine transition and pre-condition(s)
of the operation that are called in the effect of that
transition, if exists, are converted into transition pre-
condition(s) in the test case graph. Also, the post-
condition(s) of the operation that is called in the effect
of UML state machine transition, if exists, is (are)
converted into transition post-condition(s) in the test
case graph.

In the proposed approach, Integer, Real, and
Boolean data types are sup-ported. Also, we support if-
then-else statements for defining OCL constraints. Ta-
ble 2 shows the supported operations in this approach.

3.2. Mathematical programmaing

In this step, we transform input model to mathematical
representation in AMPL. This part accepts test case
graph as input and generates AMPL model. In this
section we describe the transformation of test case
generation problem into mathematical and constraint
satisfaction problem. As illustrated in Figure 2, this
part consists of model variable to AMPL variable
transformation, the pre-conditions of state machine’s
transition to AMPL constraints transformation, the
post-conditions of state machine’s transition to AMPL
constraints transformation, continuity constraints ad-
dition to AMPL model, and state invariant to AMPL

Table 2. Supported operations for defining OCL
constraints.

Mathematical operations —, +, *, /

Relational operations < <= >, >, =, <>

Boolean operations and, or, not, Xor, Implies

constraint transformation. Each of these steps is
described in the following sections.

3.2.1. Transforming test model variables to AMPL
variables

In this step, all of the test model’s variables involved
in defining the OCL constraints are identified. For this
purpose, we design and implement one model visitor
that extracts all variables and parameters that are used
in OCL constraints, and then, these variables will be
transformed into AMPL variables.

The data structure that is used for holding vari-
ables is shown in Figure 4. The model visitor gets
test case graph, traverses all transitions, and visits all
states of it. If model visitor finds any constraints in
any of these elements, it extracts the constraint and
gives it to comnstraint visitor. The constraint visitor
accesses atomic elements of constraints by traversing
the abstract syntax tree of constraints with regard to
constraint type. Then, with checking of these atomic
elements, it recognizes the parameters and variables

<<enumeration>>
« TCGBasicVariableType

; = Integer
=| TCGVarlabIe —IReal
= name : EString — Boolean
= isParameter : EBoolean
o usage : TCGVariableUsage
= initialValue : EString <<enumeration>>
o type : EString “ TCGVariableUsage
@ equal(EObject) : EBoolean - inParameter
= outParameter
— inoutParameter
= returnParameter
- field
= localVariable

Figure 4. The data structure for storing data (from [6]).



3138 A. Rezaee and B. Zamani/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 3132-3147

and copies them into the data structure shown in
Figure 4.

After determining the system’s parameters and
variables, it is necessary to convert them into AMPL.
In the AMPL model, the type of each variable can be
Integer, Real, or Boolean. The type of AMPL variables
is Real by default. We need to define upper and lower
bounds for Integer and Real variables. We set lower
and upper bounds of these variables to —10000 and
+10000, respectively. Without defining any bound for
data types, some solvers cannot find correct answer to
the problem in hand. Furthermore, we consider 0 and 1
for lower and upper bounds of Boolean data type that
are equivalent to “false” and “true,” respectively.

Since a variable can have different values in each
level of execution, we define them as an array of
variables with constant length, i.e. “pathlength,” in
AMPL. The “pathlength” is a parameter that is used
in this paper for specifying the number of execution
levels in one abstract path. This parameter is defined
in model section of AMPL and its value is determined
in data section of AMPL. If the “isParameter” property
of TCGVariable is “true,” then TCGVariable is a
parameter. In this case, the value of TCGVariable is
constant during execution, so we define it as a single
variable.

3.2.2. Transforming pre-conditions of state machine
transitions into AMPL

For each transition in state machine that has at least
one pre-condition, we define one activation set with a
random name and copy this name in “PreSetName”
property of current transition. The activation set
specifies in which level of execution the pre-condition
must be considered. The activation set is defined in
AMPL model as a subset of 0, ..., Pathlength. The
activation set is empty by default.

The pre-conditions of current transition are de-
fined as an indexed set of constraints on activation
set. In AMPL, it is necessary for constraint to have
a unique name. We use a random name with “_pre”
sufix and one number that is specified with one counter
as the name of each pre-condition. Also, we use
constraint visitor for traversing abstract syntax tree
of each pre-condition and extract pre-condition as
string from related abstract syntax tree. For each
atomic constraint in abstract syntax tree, if the atomic
constraint is a parameter constraint, we only need to
copy the name of this parameter in AMPL model.
If the atomic constraint is a variable, we need to
specify the index of variable. For this purpose, if
the variable has not “@pre” label, we need to access
the value of the variable in current level of execution,
and if the variable has “@pre” label, we need to
access the value of variable in the previous level of
execution.

3.2.3. Transforming post-conditions of state machine
transitions into AMPL

The transformation of transitions’ post-conditions is

similar to the transformation of pre-conditions. The

only difference is that for some transitions, we need

to add continuity constraint. Adding continuity con-

straints is described in the next section.

3.2.4. Adding continuity constraints to AMPL model
In transition’s pre-conditions, the values of variables
are determined based upon the current execution level.
If the transition has some post-conditions, the execu-
tion level of algorithm increases by one unit and the
constraint must be evaluated based upon the values of
variables in the new level of execution, except when
the variable has “@pre” label. For each variable that
participates in the post-conditions and does not have
“@pre” label, a new value must be set so that all
constraints in the current execution level are evaluated
as “true.” If some of the model variables do not
participate in describing the post-conditions, or all the
participated variables have “@pre” label, we need to
add continuity constraint for them. The continuity
constraint says that the variable must hold its previous
value. For example, for variable “x”, the continuity
constraint is “c=x@pre” in OCL language. The AMPL
equivalent to this constraint is “z[i]] = =z[i — 1]”.
Each continuity constraint is defined as an indexed
constraint on the activation set of transition’s post-
conditions (“PostSetName”). To ensure the uniqueness
of constraint’s name, we use “PostSetName” property
of current transition with “_post” sufix and a number
that is specified with a counter.

3.2.5. Transforming states invariant into AMPL
constraints

In UML state machine, each state can have a state
invariant. While the system is in one state, the state
invariant must be “true.” For converting state invari-
ant into AMPL constraint, the implemented algorithm
gets test case graph as input and meets all states. If the
state is instance of “TCGRealNode,” it can have state
invariant. If the “TCGRealNode” has a state invariant,
this constraint is transformed into AMPL constraint.
If the state does not have name, one random name is
assigned to it. This name will be used for the name of
state invariant’s activation set. Then, the constraint is
defined as an indexed set on activation set. The name
of the constraint is built by adding the “_invariant”
suflix to the name of the state.

3.3. Abstract test cases and concrete test data
generation

Abstract test cases are some paths in the test model

that are selected according to some specific criteria.

We use structural coverage criteria for conducting

test generation algorithm. After the test goals are
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generated according to these coverage criteria using
ParTeG, we use one depth-first and forward search
algorithm to extract abstract path from test model.
Fach abstract path satisfies at least one test goal. The
search algorithm that is designed and implemented in
this paper starts the execution from the initial state
of the state machine and traverses state machine’s
transitions in depth using forward search approach.
By visiting each state, the algorithm checks whether
any of the test goals can be satisfied according to the
abstract path or not. Furthermore, the satisfiability of
constraint within path is checked. For this purpose,
the current abstract path is converted into AMPL
data using symbolic execution. Then, we try to
solve the AMPL model using different state of the art
and powerful solvers that have interface with AMPL.
If the solver cannot solve the constraint within the
abstract path, that path is recognized as an “Infeasible
Path,” and the search algorithm must do backtrack and
continue the execution in another unvisited path. If the
solver can solve all the constraints within the path, the
search algorithm can continue execution in that path
in depth. Furthermore, if this abstract path can satisfy
at least one test goal that is not satisfied yet, the data
generated by the solver will be used as test data.

To ensure that the algorithm terminates and is
not trapped in an infinite loop, the algorithm uses some
fuel as search limit. The fuel determines how many
transitions the algorithm is allowed to traverse. If the
fuel of algorithm is finished in some state, the search
algorithm does backtrack and continues the execution
in another unvisited path. For each backtrack, the fuel
of algorithm is increased by one unit.

The search algorithm supports composite states
and different ways that the system can enter composite
state or exit it. We consider three different ways for
entering the composite state as well as exiting it. In
the following, the three ways for entering the composite
state have been described.

1. The target state of transition is an entry point
and with another transition, the system enters a
composite state;

2. The target state of transition is a composite state

and after that, the system must continue the
execution for each initial state of composite state’s
regions;

3. The source of transition is outside and the target of
transition is inside the composite state.

Also, three ways for exiting composite state are as
follows:

1. The target state of transition is exit point and by
another transition, the system exits the composite
state;

2. The target state of transition is final state of the
composite state and after that, the system must
continue the execution for each transition for which
the composite state is source state.

3. The source of transition is inside and the target of
transition is outside the composite state.

We consider and moderate all of these ways for entering
or exiting the composite state. We describe three
features of our algorithm for abstract path and test
data generation in the next three sections.

3.8.1. Infeasible path detection

One of the important features of the presented algo-
rithm is the capability of infeasible path detection.
The infeasible path means that there is not any data
for satisfying all of the constraints within the abstract
path. For example, if the abstract path contains a > 12
and a < 5 as constraints and there is not any post-
condition between these two constraints that change
the value of a, these constraints cannot be satisfied;
thus, this abstract path is recognized as “Infeasible
Path” and the search algorithm must do backtrack.
With detection of such paths and preventing search
algorithm to progress in these paths, most of the search
space can be eliminated, which leads to lower execution
time of the algorithm.

As an example, consider the state machine in
Figure 5, which includes an infeasible path indicated
by the red color. This path is infeasible since there
is not any test data to satisfy it. Each path needs to

[1P)

start with any value for variable “a” that is greater

StateMachineWithInfeasiblepath

Event1/
FunctionBehavior: Operation1

= l

_ {2} Operation1_PostCondition
E] sampleClass fa=3}

2 >= 12] State1
. Stated)

Event2 /

State, ]
[Eg + a:Integer [1] ,’_
& + Operation1() Operation2
5 T Operation2() ——— 'a' has not changed
FunctionBehavior: Operationz\@ [a<=5]
J

Figure 5. Feasible and infeasible paths.
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than or equal to 12. With this value, the transition
from “State0” to “Statel” can be satisfied. If “Event1”
occurs, the third transition of green path will be
satisfied and “Operationl” will be run as an effect of
transition. Calling “Operationl” will set variable “a”
to 3 based upon post condition of “Operationl”. How-
ever, the occurrence of “Event2” leads to traversing the
third transition of the red path and results in calling
“Operation2”. In this case, the value of variable “a”
has not changed. The guard condition of the fourth
transition in both paths (red and green) is defined as
“a <= 5. In the third transition of the green path,
the value of variable “a” is set to 3. Hence, the fourth
transition can be satisfied. On the other side, the third
transition of the red path does not lead to change in
the value of variable “a” and it keeps its previous value
(e >= 12). Therefore, the guard condition of the
fourth transition cannot be satisfied. This is why the
red path is an infeasible path.

If it is impossible to satisfy a path, all of the
extensions of that path will be infeasible, too. With
increase in the depth of search path, the number
of detected abstract paths will grow exponentially.
For one large state machine that each state has two
outgoing transitions and the depth of state machine is
20, the total number of abstract paths will be 1048576.
If one abstract path with length 6 is recognized as an
infeasible path, 16384 abstract paths will be removed
from the search space. Thus, with “Infeasible Path
Detection” feature of search algorithm, we can get rid
of searching for many useless paths.

3.3.2. Warm start

Warm start is one of the features of AMPL program-
ming language and most of its solvers. If a problem
has been solved several times and in each execution
different data are used, the knowledge that is gained
in previous executions can be utilized and the problem
is solved faster; this feature is called “Warm Start.”
When using “Warm Start” feature, the AMPL model
must be fixed and the AMPL data must change in
each execution. We do this with transforming state
machine to AMPL model and for each abstract path,
we generate AMPL data using symbolic execution.
Therefore, the AMPL model will be fixed and the
AMPL data will be reset in each execution.

Also, if the solver has been changed between the
executions or the solver cannot gain any knowledge
from previous executions, AMPL saves the last solu-
tion. Many of the algorithms can use last solution
as a starting point. Furthermore, in this paper, by
utilizing depth-first search algorithm, the newly found
abstract path is extension of the last found path in
most cases. Hence, the previous solution can be very
useful because the new path only has a few additional
constraints compared to the last found path.

3.53.83. Boundary value analysis

Any data that satisfy all of the constraints within
abstract path can be used as test data. However, data
that are at the boundary of feasible set can be more
useful than other data inside this set. Therefore, we use
boundary value analysis for boundary data generation
in our work.

If all constraints of test model are linear, using
simplex algorithm leads to automatic generation of
boundary values. Simplex algorithm is one of the
famous algorithms, which is used by many solvers that
solve linear problems. However, if some of the con-
straints of test model are non-linear and the problem
does not include any objective function, as soon as the
solver finds a solution, it will return the solution. This
solution does not guarantee the generation of boundary
test data. Hence, we use one proper objective function
that leads to boundary data generation before calling
the solver.

3.4. Unait test generation

As described in Section 3.3, the abstract paths are
generated according to coverage criteria and the test
data are generated for each abstract path using AMPL
programming language and related solvers. The gen-
erated abstract test cases as well as concrete test data
are stored in data structures. Figure 6 shows this data
structure.

As shown in Figure 6, a test suite may contain
zero or more test cases and each test case contains one
abstract path as well as zero or more variables with
their values. Furthermore, each abstract path contains
several transitions. FEach transition has one target state
and may have several pre- and post-conditions. Also,
each transition may or may not have some events with
or without some parameters. Furthermore, each state
may or may not have one state invariant. Test suite
is associated with SUT, which has two properties that
specify the class and package on which the test must be
executed. Finally, the function that handles the events
is specified in SUT class.

4. Evaluation of MoBaTeG

The proposed approach for test case generation is
implemented as an Eclipse-based and open source tool,
named MoBaTeG, using Java programming language.
We use five case studies for evaluating the MoBaTeG
tool.  Using different solvers is one of the main
advantages of our work. The evaluation framework
is described in Section 4.1, and the evaluation of
MoBaTeG is given in Section 4.2.

4.1. FEvaluation framework

We have evaluated MoBaTeG from different aspects
using five case studies. All of the evaluations have
been executed on a computer with Intel® core™ 2
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Figure 6. Unit test meta-model.

Duo processor, 4 GB memory, and the 64-bit version
of Microsoft® Windows 7 operating system. In the fol-
lowing sections, we will describe the evaluation criteria.

4.1.1. Test case generation execution time

The test case generation execution time is one of the
main criteria for automatic testing of software systems.
Lower test case generation execution time can decrease
test case generation cost. The execution time of the
presented approach depends upon two main criteria,
including the required time for solving a problem and
the number of problems to be solved.

Test case generation execution time is calculated
by different solvers. Test case generation algorithm will
be executed 20 times for each coverage criterion and
for each solver. Then, the average test case generation
execution time will be calculated.

4.1.2. Test goals satisfaction rate

The coverage criteria can be used as the main criteria
for evaluating the quality of generated test cases, i.e.
the percentage of test goals satisfaction using different
solvers will be used for evaluating the quality of gen-
erated test cases. We have used two kinds of coverage
criteria, All-Transitions and All-States.

The quality of generated test cases that will be
evaluated by this criterion depends upon the algorithm
that is designed for abstract test case generation,
the algorithm for transforming test case generation
problem into mathematical problem, and the ability of
the used solver for solving the generated mathematical
problem.

4.1.8. The coverage of source code instructions

The coverage of source code instructions is another
criterion that can be used for evaluating the quality
of generated test cases. Higher coverage of source code

instructions indicates that the quality of generated test
cases is better. EclEmma [15] is used for calculating the
coverage of generated test cases against source code.
EclEmma is a tool for calculating the coverage of Java
source code. In this evaluation criterion, source code
instructions refer to Java Bytecode instructions.

4.1.4. Comparing with ParTeG

ParTeG is the only available MBT tool that uses UML
class diagram and UML state machine annotated with
OCL constraints as test model. Hence, we will compare
our tool MoBaTeG with ParTeG. The comparison
between MoBaTeG and ParTeG will be done based on
“Test Case Generation Execution Time,” “Test Goals
Satisfaction Rate,” and “The Coverage of Source Code
Instructions” criteria.

4.1.5. Boundary value analysis

Generating boundary values will increase the quality of
generated test cases and fault detection power of such
test cases. Hence, the boundary values of generated
test data will be evaluated.

4.1.6. Using different problems

A good solution must be able to solve different prob-
lems in terms of complexity. Therefore, ability of
the proposed approach for test case generation will
be evaluated using five different problems, which differ
in terms of complexity. We will use linear and non-
linear problems as well as decidable and undecidable
problems.

4.2. Case studies

Five case studies have been used in this section for eval-
uating our tool, Mo-BaTeG. The first two problems are
two versions of a triangle classifier. The classifier gets
three numbers as the sizes of triangle’s edges. Then, it
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classifies the triangle under one of the titles: “invalid,”
“scalene,” “isosceles,” and “equilateral.” For modeling
the first problem (version one of the classifier), we do
not use any Boolean operator in the definition of OCL
constraints. For the second problem (version two of the
classifier), we use a Boolean operator in the definition
of OCL constraints.

The motivation for using triangle classifier with
and without Boolean Operations is that the generated
mathematical problems related to these two case stud-
ies are classified into two different kinds of problems in
terms of complexity. Generated mathematical problem
of “Triangle Classifier with Boolean Operations” is
a sample of Satisfiability Modulo Theories (SMT)
problems and the generated mathematical problem of
“Triangle Classifier without Boolean Operations” is a
sample of Integer Linear Programming (ILP) problems.
Fach of these problems needs different effort for solving.
Hence, generating test cases using these case studies in
our work shows the ability of our approach for solving
these two different kinds of problems.

The third problem models the behavior of an
air pump and shows the relationship between “air,”
“temperature,” “volume,” and “pressure.” Ideal gas
equation has been used for describing the relation

3 ExplodingTyres

between these variables. The class diagram and its
operations as pre- and post-condition(s) of this case
study are shown in Figure 7. The generated mathe-
matical problem related to this case study is a sample
of Mixed Integer Non-Linear Programming (MINLP)
problems.

The fourth problem models the behavior of an
ATM system. This case study contains 4 composite
states. 2 out of 4 composite states have entry point
pseudo state for entering the composite state. To
generate test data for ATM case study, a sample of
SMT problems needs to be solved.

The last problem models the behavior of
Continuous Casting Machine (CCM). CCM runs the
process whereby molten steel is solidified into a billet,
bloom, or slab.

Table 3 shows the specifications of our case
studies. The first two problems are samples of linear
and decidable problems. The third problem is neither
linear nor decidable. The fourth and fifth problems are
both linear and decidable. In the state machines of
case studies, the numbers of states are 17, 10, 20, 47,
and 25, respectively. Also, the numbers of transitions
are 30, 12, 21, 60, and 29, respectively. The test data
generation problem complexity for all of the generated

Q ExplodingTyresClass

[Eg + counter: Integer [1]

[EZ + tyreMelted: Boolean [1]
[E3 + tyreBursted: Boolean [1]
[Eg + temp: Real [1]

[E3 + pressure: Real [1]

Eg + n:Real [1]

[E3 + volume: Real [1]

Ca + pumpVolume: Real [1]

+ Pump()

]
@
& + Cool()

& + CheckTemperature()
¥ + CheckPressure()

@ + ReadyToPump()

+ Initialise( in counter: Integer, in volume: Real, in pumpVolume: Rea...

{2} PumpMethodPostCondition
{(pressure@pre*(volume@pre+pumpVolume@pre)*(volume@pre+pumpVolume@pre))=pressure*volume@pre*volume@pre}

{2} PumpMethodPostCondition
{(pressure*volume@pre)=((0.287058*n)*temp)}

{n=n@pre+(pressure@pre*(pumpVolume@pre))/(temp@pre*0.287058)}

{2} PumpMethodPostCondition

{7} CoolMethodPostCondition
{(pressure*volume@pre)=(0.287058*n@pre*temp)}

{2} CoolMethodPostCondition {2} CoolMethodPostCondition
{11*temp=((10*temp@pre)+300)}

{counter=counter@pre -1}

{tyreMelted = false} {tyreBursted = false}

{7} ReadyToPumpPostCondition 'j

{7} ReadyToPumpPostCond...

]

Figure 7. The class diagram and operations pre- and post-conditions.
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Table 3. Specifications of five case studies used for evaluating MoBaTeG.
” Problems Linear Decidable Number Numl.)e.r of Problem Probler.n Used data
of states transitions type complexity type
1 Triangle classﬂﬁ.e v without Yes Yes 17 30 ILP NP-hard Integer
Boolean operations
o Triangle classifier with Yes Yes 10 12 SMT NP-hard  Tnteger
Boolean operations
Integer,
3 Air pump No No 20 21 MINLP NP-hard  Real,
Boolean
4 ATM Yes Yes 47 60 SMT NP-hard ~ Lnteser
Boolean
5 CCM Yes Yes 25 29 ILP NP-hard ~ Lntegers
Boolean

mathematical problems related to case studies is NP-
Hard. In the first two problems, only Integer data type
is used. Whereas, the third problem uses three data
types in its model, namely, Integer, Real, and Boolean.
Finally, two problems use Integer and Boolean data
types for modeling.

4.2.1. Test case generation execution time
The average execution time of test case generation for
both MoBaTeG and ParTeG tools has been calculated
based on 20 executions. We consider All-Transitions
and All-States coverage criteria. The average of
execution times has been shown in Table 4. Two solvers
have been used for calculating the average execution
time using MoBaTeG tool for each problem.

For the first problem, the execution time of
ParTeG is better than that of both of the solvers

performed by MoBaTeG. In the next section, we will
see that for the first problem, ParTeG cannot generate
any test data. This is why the execution time of this
tool is low. For the second problem, the execution time
of ParTeG is significantly higher than that of MoBaTeG
for both solvers. In the class diagram of the third prob-
lem, there are some operations that have several post-
conditions. As mentioned in Section 3.1, ParTeG does
not support several pre- or post-conditions. Thus, for
this problem, ParTeG considers only one of the post-
conditions of each operation. Despite this, ParTeG
cannot generate any test case for the considered con-
straints. DBut, our tool, MoBaTeG, generates test
cases within appropriate execution time. Therefore,
this problem shows the superiority of MoBaTeG over
ParTeG.

In the fourth case study, we use GeCoDE and

Table 4. The test case generation execution time of MoBaTeG and ParTeG.

Execution time (ms)

Execution time (ms)

of MoBaTeG of ParTeG
# Problem Solver All All All All
States Transitions States Transitions
1 Triangle clasmﬁler without Lpsolve 312 329 171 241
Boolean operations Minos 307 363
9 Triangle clasmﬁ.er with GeCoDE 242 526 15484 15849
Boolean operations JaCoP 2019 2366
. Bonmin 8117 8291 Not Not
3 Air pump
Couenne 9537 11897 supported supported
4 ATM GeCoDE 1667 1739 Not Not
TlogCP 221 171 supported supported
! 44
5 CCM GeCoDE 1660 1655 Not Not,
JaCoP 28679 30207 supported supported
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TlogCP for solving mathematical problem and gener-
ating test data. ParTeG cannot generate any test
cases for this case study. When using All-State
coverage criteria, the execution time of MoBaTeG
using GeCoDE and IlogCP solvers is 1667 (ms) and
221 (ms), respectively. These values are 1739 (ms) and
171 (ms) when using All-Transitions coverage criteria,
respectively. Therefore, MoBaTeG generates test cases
in appropriate time.

In the last case study, when using All-State
coverage criteria, the execution time of MoBaTeG
using GeCoDE and JaCoP solvers is 1660 (ms) and
28679 (ms), respectively. These values are 1655 (ms)
and 30207 (ms) when using All-Transitions coverage
criteria, respectively. ParTeG cannot generate any
test cases for this case study, too. The superiority
of MoBaTeG over ParTeG is again shown in this
evaluation.

4.2.2. Test goals satisfaction rate

Test goals satisfaction rate has been calculated for
both MoBaTeG and ParTeG tools as well as for
each problem and coverage criterion. This evaluation
reflects the power of the abstract test case generation
algorithm, the proposed algorithm for transforming
test case generation problem into mathematical ones,
and the solvers to solve the generated mathematical
problems.

The test goals satisfaction rate for all of the case
studies has been shown in Table 5. We have used two
solvers for solving each problem. The first problem is
solved by using MoBaTeG tool with both LpSolve and
Minos solvers. This evaluation shows 100% satisfaction
for both All-States and All-Transitions coverage crite-
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ria. However, these values for ParTeG tool are 12.5%
and 7.14%. For the second problem, when MoBaTeG
is used for test case generation and the selected solver
is GeCoDE, all of the test goals that are generated
using All-Transitions and All-States will be satisfied
(i-e., the result is 100%). However, using All-States and
All-Transitions coverage criteria for MoBaTeG with
JaCoP solver leads to 87.5% and 90.90% satisfaction,
respectively. These values are 100% and 90.90% for
ParTeG. In this problem, MoBaTeG and ParTeG have
similar behavior. While ParTeg cannot generate any
test cases for the third problem, MoBaTeG satisfies all
of the generated test goals for both coverage criteria
when using Couenne solver. The results for All-States
and All-Transitions coverage criteria for MoBaTeG tool
with Bonmin solver are 85.71% and 100%, respectively.
As we mentioned in Section 4.2.1, ParTeG cannot
generate any test cases for the fourth case study
(ATM). Therefore, the test goal satisfaction rate of
ParTeG is 0% for both of All-States and All-Transitions
coverage criteria. However, MoBaTeG satisfies 92% of
test goals using All-State coverage criteria with both
solvers. Test goal satisfaction rate of MoBaTeG when
using GeCoDE and IlogCP for All-Transition coverage
criteria is 79% and 20%, respectively. In the last
case study, using MoBaTeG tool with both GeCoDE
and JaCoP solvers results in 100% satisfaction for All-
States coverage criteria and 93.1% satisfaction for All-
Transitions coverage criteria. However, ParTeG cannot
generate any test cases.

4.2.8. The coverage of source code instructions
After the test cases have been generated, they are run
against source code and the source code instructions

Table 5. The test goals satisfaction rates of MoBaTeG and ParTeG.

Test goals satisfaction
rate of MoBaTeG

Test goals satisfaction
rate of ParTeG

# Problem Solver All- All- All- All-
States Transitions States Transitions
1 Triangle classifier without LpSolve 100% 100% 12.5% 714%
Boolean operations Minos 100% 100%
s . ol s 1 07
9 Triangle Clabblﬁ.el‘ with GeCroDE 100% 100% 100% 90.90%
Boolean operations JaCoP 87.5% 90.90%
) . Bonmin 85.71% 100% Not Not
3 Air pump
Couenne 100% 100% supported supported
4 ATM GeCoDE 92% 79% Not Not
TlogCP 92% 20% supported supported
5 COM GeCoDE  100% 93.1% Not Not
JaCoP 100% 93.1% supported supported
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Table 6. The coverage of source code instructions using MoBaTeG and ParTeG.

MoBaTeG ParTeG
## Problem All States All- Transitions All- States  All- Transitions
1 Triangle classifier without 102 out of 110 106 out of 110 15 out of 110 83 out of 110
Boolean operations 92.7% 96.4% 13.6% 75.5%
9 Triangle classifier with 138 out of 138 138 out of 138 138 out of 138 138 out of 138

Boolean operations 100%

209 out of 212

3 Air pump
98.6%

e oK
4 ATM 229 out of 258
88.8%
.
5  CCM 489 out of 582

84%

100% 100% 100%
212 out of 212 Not Not
100% supported supported
229 out of 258 Not Not
88.8% supported supported
558 out of 582 Not Not
95.9% supported supported

coverage will be calculated using “EclEmma” tool. The
results for “Coverage of Source Code Instructions” for
all case studies are shown in Table 6.

The source code of the first problem consists
of 110 instructions. When the test cases that are
generated using MoBaTeG with All-States coverage
criterion are run against source code, 102 out of
110 instructions are covered (92.7% coverage). The
value of this criterion when using ParTeG with All-
States coverage criterion is 15 out of 110 instructions
(13.6%). When All-Transitions coverage criterion is
used for generating test cases for the first problem,
106 out of 110 instructions are covered using MoBaTeG
(96.4%) and 83 out of 110 instructions are covered using
ParTeG (75.5% coverage). This problem shows the
superiority of MoBaTeG over ParTeG.

The second problem’s source code consists of 138
instructions. For both coverage criteria when using
each of the tools, the generated test cases cover all
instructions of the source code. Hence, in this problem,
both tools have the same behavior.

The third problem’s source code consists of 212
instructions. = When the generated test cases by
MoBaTeG and All-States coverage criterion are run
against source code, 209 out of 212 instructions are
covered (98.6% coverage). The result of using All-
Transitions coverage criterion and MoBaTeG is 100%.
As mentioned earlier, ParTeG cannot generate any test
cases for the third problem.

The fourth problem’s source code consists of 258
instructions. Running the generated test cases by
MoBaTeG against source code covers 229 out of 258
(88.8%) source code instructions. This value is equal
for both All-State and All-Transition coverage criteria.
Running the generated test cases by MoBaTeG against
the source code of the last problem results in 84% (489
out of 582) coverage for All-State coverage criterion

and 95.9% (558 out of 582) coverage for All-Transition
coverage criterion. As mentioned earlier, ParTeG
cannot generate any test cases for the fourth and fifth
problems.

4.2.4. Boundary value analysis

In this work, the boundary value analysis is performed
for boundary data generation. As mentioned in Sec-
tion 3.3.3, if all of the model’s constraints are linear,
using linear solvers can generate boundary test data.
But, if the model’s constraints are non-linear, using
proper objective function can generate boundary test
data.

As can be seen in Table 3, the first, second,
fourth, and fifth problems are linear. Hence, using the
proposed approach must generate boundary test data
automatically. The results of our experiments in this
section prove this claim. The third problem is non-
linear. Thus, we use a proper linear objective function
and send it to AMPL. Then, we check the generated
test data for some abstract paths. We see that all
generated test data are boundary data.

5. Conclusion

This paper proposed an algorithm for automatic gener-
ation of test cases from UML class diagrams and UML
state machines annotated with OCL constraints as well
as executable Java unit tests. The detailed elaboration
of tasks and subtasks for test case generation from
UML models is given in Section 3. The main part
of these tasks is the transformation of test model
and its constraints into the corresponding model in
a mathematical programming language, AMPL, and
using solvers for solving the model. Section 4 was
dedicated to evaluation of the proposed algorithm via
several case studies. In the following, we first review
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the contributions of this research and then discuss the
future works and threats to validity.

5.1. Contributions

In this paper, a new depth-first and forward search
algorithm is proposed, which is based on UML state
machine and aims at satisfying test goals that are
generated form coverage criteria. The abstract test
cases are generated using this search algorithm. The
proposed forward search algorithm is run once and
for each abstract path that is found, satisfaction of
unsatisfied test goals is checked. Instead, ParTeG runs
backward search one time for each test goal. For
example, for 20 test goals, ParTeG needs to run its
back-ward search 20 times, whilst MoBaTeG runs its
forward search algorithm only once.

MoBaTeG supports composite states and all the
possible ways for entering and exiting such states.
However, some other approaches do not support com-
posite states or they need to flatten state machines
before the execution of test case generation algorithm,
which is an extra task. Also, they may support only
some of the elements of UML state machine. As an
example, ParTeG does not support entry and exit point
pseudo states, while MoBaTeG supports these pseudo
states.

To prevent search algorithm from traversing in-
finite paths or getting trapped in loops that may
exist in the state machine, we consider fuel for our
search algorithm. This fuel is equal to the number
of transitions that the search algorithm is allowed to
traverse. If the fuel of algorithm is finished, it must
do backtrack and continue its search in another path
that it has not visited so far. With each backtrack, the
fuel of algorithm will be increased by one unit. This
feature of MoBaTeG prevents search algorithm from
getting trapped in infinite loops.

As another achievement of our approach, we
may refer to the solver-based algorithm for test data
generation from UML state machine and using sym-
bolic execution and constraint programming system.
Different kinds of problems, e.g., linear, non-linear,
and mixed integer non-linear, as well as satisfiability
modulo theories can be solved using the proposed
approach facilitated by the capability of using different
state of the art and powerful solvers.

In the proposed approach, we consider Boolean,
Integer, and Real data types. Also, we use early
detection of infeasible paths during the generation
of abstract test cases and remove infeasible paths
from searching space. Pruning search space leads to
improving execution time of search algorithm.

Furthermore, we can mention the boundary test
data generation that has higher fault detection rate.
The test data at the boundaries of feasible set are more
valuable than those within feasible set. On the other

hand, the coverage criteria are used for evaluating the
quality of generated test cases as well as the criteria for
conducting the search algorithm. Coverage criteria are
converted into test goals and the search algorithm tries
to satisfy them. Also, the satisfaction rate of these
test goals can be used for evaluating the quality of
generated test cases (higher test goals satisfaction rate
means higher test cases quality).

In Section 4, several evaluations are performed for
evaluating our approach. MoBaTeG shows good results
for all of the evaluation criteria. Also, we compared
our tool with ParTeG. The superiority of our tool has
been shown over ParTeG. But, it should be noted
that ParTeG supports several kinds of coverage criteria
that our tool does not support. For example, we
can refer to “Modified Condition/Decision Coverage”
that is focused on the isolated impact of each atomic
expression on the whole condition value [7].

Finally, we can mention that, as a result of our
study, MoBaTeG is attained as a free, open source,
and Eclipse-based tool.

5.2. Future work

In this paper, two coverage criteria have been used
for conducting search algorithms as well as evaluating
the quality of generated test cases. It is better to
counsider more coverage criteria for test case generation,
“Condition/Decision Coverage” and “All Transition
Pairs” to name a few.

Also, we plan to consider other kinds of unit tests
as the format of the output of generated test cases.
Hence, users can define output format of test cases
based on the programming language of implementa-
tion. The meta-model that is proposed for test case
generation can be used for this purpose.

We considered only some parts of OCL operations
and expressions. We plan to add other OCL opera-
tions and expressions to the proposed approach. For
example, we can mention set expressions. Another
idea is to consider some operations and functions
of AMPL that do not exist in OCL. But, we must
consider them during parsing constraints and abstract
syntax tree generation. Furthermore, we plan to
support “Enumerated” data type by using indexed set
of AMPL.

Several evaluations are carried out for evaluating
our approach using academic and industrial case stud-
ies. We plan to evaluate our approach on more complex
problems from industry in the future.

Finally, we plan to consider parallel state ma-
chines as well as history states for modeling dynamic
behavior of system.

5.2.1. Threats to validity
Threats to the proposed approach and its validity
are divided into internal and external threats. An
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internal threat is that for input models, the proposed
approach uses UML class diagram and UML state
machine annotated with OCL. While most of the
modelers are familiar with UML and can generate UML
models easily, it may be difficult for other people. To
mitigate this threat, several sample models have been
provided along with our tool. An external threat to this
study is the problem of generalizing the results. To
mitigate this threat, several academic and industrial
case studies with different levels of complexity are
carried out, but it may not be enough to argue that
the proposed approach can be used for any type of
software. Therefore, as mentioned in subsection 5.2,
the approach must be evaluated with more complex
problems from the industry.
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