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Abstract. This paper presents numerical solution of Richards' equation for water
ow through unsaturated porous media. Di�erential Quadrature Method (DQM) is
employed for the �rst time to solve the governing equations in two-dimensional space.
The moisture content-based Richards' equation is considered. This equation is known as a
highly nonlinear partial di�erential equation due to strong nonlinearity between hydraulic
conductivity (and di�usivity) and moisture content. In order to investigate the robustness
of DQM in dealing with such strong nonlinearities, two popular constitutive models, i.e.
White and Broadbrige (1988) and Van Genuchten (1980), are investigated for the 2D case.
The analytical solution based on Brooks and Coley model in a special 1D case is used to
compare the results with those of DQM. For the 2D case, the study also demonstrates that
DQM with considerably smaller number of grid points gives excellent results which are in
close agreement with other numerical techniques such as multi-grid approach reported in
the literature.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Prediction of uid in�ltration, such as water and pollu-
tants, into unsaturated soil is of paramount importance
in many �elds. Transient ow in unsaturated zone is
usually described using Richards' equation. Richards'
equation is derived from combination of Darcy's equa-
tion and mass conservation law. Generally, Richards'
equation may be written in three di�erent forms, i.e.
pressure-based in which pressure head, h, is consid-
ered as the dependent variable (h-form), moisture-
content-based in which water content, �, is taken
as the dependent variable (�-form), and mixed form.
Richards' equation is a nonlinear parabolic partial
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di�erential equation. Because of strong nonlinearity of
the equation, analytical solutions are merely available
for very special cases (e.g. [1-5]); hence, numerical
approaches are preferable.

The most popular numerical approach to the
simulation of saturated and unsaturated water ows
in vadose zone is the �nite di�erence method, (e.g.
[6-10]). The �nite-element method has been already
employed to solve the governing equations for 1D and
2D ows through porous media (e.g., [11-14]). Recent
studies show that �nite volume method is also e�ective
in discretization of Richards' equation (e.g. [15-19]).
In addition to the aforementioned methods, other nu-
merical approaches, such as multigrid method [20] and
Backward Di�erentiation Formula (BDF), combined
with exponential time integration approach, [21] have
been developed for the simulation of unsaturated ow.

As an alternative numerical approach, Di�erential
Quadrature Method (DQM) is a very e�ective tool to
solve linear and nonlinear partial di�erential equations.
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As reported by Shu (2000) [22], DQM can also give very
accurate numerical results using smaller number of grid
points, hence requiring relatively low computational
e�ort.

DQM has been already used to solve some prob-
lems in geo-science such as seepage analysis, dynamic
behavior of uid-saturated porous media, and consoli-
dation (e.g. [23-25]). The review of related literature
shows that in spite of its inherent capacity, DQM has
not been utilized so far to simulate unsaturated water
ow through porous media.

This paper aims to apply DQM for the �rst time
to solve Richards' equation in two-dimensional space.
Moisture-content-based equations are utilized for this
purpose. In order to investigate the e�ectiveness of the
method in dealing with highly nonlinear partial dif-
ferential equations, two di�erent constitutive models,
including White and Broadbridge (1988) [26] and Van
Genuchten (1980) [27], are studied. A smaller system
of nonlinear equations, which arises after discretization
of the equations, allows for the application of compu-
tationally e�ective iterative methods using DQM. In
this study, instead of using computationally expensive
Jacobian-based methods such as standard Newton-
Raphson, a simple and e�ective iterative numerical
method is proposed. A special case of the proposed
2D model in one-dimensional space is also presented
in the results. 1D models are usually important
since analytical solutions are available for comparison
purposes. For the 2D case, two examples in �ve test
cases are considered to investigate the e�ectiveness
of the scheme. The results are in close agreement
with those obtained by multigrid (MG) [20] approach
previously published in the literature.

2. Governing equations

In this section, governing equations of the ow through
unsaturated porous media in two-dimensional space
are introduced. To complete the model, constitutive
relations are also presented. The 1D model is a
special case of the 2D model and is briey presented
in Section 4.

2.1. Richards' equation
Water ow in unsaturated soil is governed by Richards'
equation. In this study, it is convenient to write the
moisture-content form of this equation for homoge-
neous and isotropic soils as the normalized form, as
in the following [20]:

@u
@t
�r:(D(u)ru) +

@K(u)
@z

= 0; (1)

where x and z are spatial coordinates such that 0 �
x � Lx; 0 � z � Lz. The spatial coordinates can also
be normalized by Lx and Lz to fall within the range

[0,1]. Vertical coordinate, z, is considered to be pos-
itive downward. Moreover, D (L2=T ) is the hydraulic
di�usivity, K (L=T ) is the hydraulic conductivity, and
u (x; z; t) is relative water content de�ned as follows:

u =
� � �r
�s � �r ; (2)

where water content, �(L3=L3), is de�ned within the
range � 2 [�r; �s] in which �r (L3=L3) and �s (L3=L3)
are the residual and saturated water contents, respec-
tively. Eq. (1) in two-dimensional space can be written
as follows:
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2.2. Constitutive relations
For problem closure, some functional relationships
between hydraulic conductivity and relative moisture
content as well as between hydraulic di�usivity and
relative water content should be established. In this
study, two popular models, i.e. White and Broadbridge
(1988) [26] and Van Genuchten (1980) [27], are inves-
tigated depending on the problem being solved.

2.2.1. White and Broadbridge model
White and Broadbridge (1988) [26] proposed the fol-
lowing relationships for hydraulic conductivity and
di�usivity:

K(u) =
(c� 1)u2

(c� u)
; c 2 (1;1); (4)

D(u) =
c� (c� 1)

(c� u)2 ; c 2 (1;1); (5)

where c is the model parameter.

2.2.2. Van Genuchten model
In Van Genuchten (1980) [27] model, the relationships
concerning hydraulic conductivity and di�usivity are
de�ned as follows:

K(u) =
Ks

�s � �r
p
u
h
1� �1� u 1

m

�mi2
; (6)

D(u) =
(1�m)Ks

�m(�s � �r)u
1
2� 1

m"�
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m

��m
+
�

1� u 1
m

�m � 2

#
; (7)

where Ks(L=T ) is saturated conductivity, m = 1�1=n,
and �(L�1) and n are shape parameters of the model.
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3. Numerical solution approach

The main objective of this study is to employ Di�er-
ential Quadrature Method (DQM) for the �rst time to
solve the governing equations described in the previous
section. Di�erential quadrature method is a numer-
ical approach to the solution of partial di�erential
equations. It is known as an e�cient method for
both initial and boundary value problems, requiring
remarkably small number of grid points. This method
was �rst introduced by Bellman et al. (1972) [28]. In
discretization method, the derivative of function, f(x),
with respect to x for any grid point, xi, is de�ned as a
linear sum of function values in the entire �eld along a
mesh line as:

fx (xi) =
df
dx

����
x=xi

=
NX
j=1

aijf(xj); (8)

for i; j = 1; 2; : : : ; N;

where N is the number of grid points along a mesh line,
and aij represents the weighting coe�cients. In DQM,
the second-order derivative is written as follows:

fxx (xi) =
d2f
dx2

����
x=xi

=
NX
j=1

bijf (xj) ; (9)

for i; j = 1; 2; : : : ; N;

where bij represents the weighting coe�cients for
second-order derivative.

Two basic ideas in DQM are: i) computation of
weighting coe�cients; and ii) selection of spacing for
grid points along a mesh line. There exist various meth-
ods to determine the weighting coe�cients in DQM. In
this study, Polynomial-based Di�erential Quadrature
(PDQ) is adopted. Based on PDQ, weighting coe�-
cients for the �rst-order derivative (aij) and second-
order derivative (bij) are obtained as follows [22]:

aij =
M (1)(xi)

(xi � xj)M (1) (xj)
; for j 6= i; (10)

aii = �
NX
j=1

aij ; for j = i; (11)

where M (1)(xi) and M (1)(xj) are:

M (1) (xi) =
NY

j=1;j 6=i
(xi � xj); (12)

M (1) (xj) =
NY

j=1;j 6=i
(xj � xi); (13)

bij = 2aij
�
aii � 1

xi � xj
�
; for j 6= i; (14)

bii = �
NX

j=1;j 6=i
bij ; for j = i: (15)

It is worth pointing out that the location of grid points
is crucial in DQM. Equally spaced grid points often
yield very poor results and may destroy the numerical
scheme. Herein, the position of each grid point in
direction x or z is calculated using Chebyshev-Gauss-
Lobatto method:

xi =
1
2

"
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� Lx; (16a)
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2
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Nz � 1

�#
� Lz; (16b)

where Nx and Nz represent the total number of grid
points in x and z directions, respectively. Obviously,
the total number of nodes Nt in the grid is Nt = Nx �
Nz.

For spatial and temporal discretizations of
Eq. (3), by direct di�erentiating of Eq. (3), this
equation is �rst rewritten as follows:
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@z
: (17)

A �rst-order �nite di�erence scheme is used for tempo-
ral discretization of the LHS of Eq. (17):

@u
@t

����
z=zi

=
un+1
i � uni

�t
; (18)

where superscript n denotes the time, and �t is the
time step.

The other terms are discretized using DQM as
follows:
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k : (25)

Substituting Eqs. (18)-(25) into Eq. (17), the following
discretized form is obtained:
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Rearranging Eq. (26) gives:
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In this equation, i and k represent the locations of
nodes in x and z directions, respectively. In its matrix
form, the system of Eq. (27) can be written as follows:h

M(u)n+1
i
Nt�Nt

�
Un+1	

Nt�1 = fUngNt�1; (28)

where M represents Nt �Nt coe�cient matrix and U
denotes the vector of unknown variables. Obviously,
matrix M entails DQM coe�cients aij and bij , hy-
draulic and di�usivity conductivity as well as time step

�t. The RHS of Eq. (28) is known from the previous
time step.

Any standard numerical method, such as Newton-
Raphson, can be used to solve the system of nonlinear
Eq. (28). Some iterative methods, such as modi�ed
Picard iterations, have been already employed to solve
the nonlinear system of equations arising from dis-
cretization of Richards' equation [29]. In an attempt to
avoid Picard/Newton iterations, Jancu et al. employed
a nonlinear Multi Grid (MG) approach to solving
2D Richards' equation. Their method was based
on second-order accurate time discretization combined
with a second-order accurate �nite di�erence spatial
discretization. One of the main advantages of DQM,
compared with other numerical methods, is that a
coarser grid with fewer grid points can be used to
achieve the same accuracy in the results. Numerical
examples show that the order of matrix M is small
compared with the coe�cient matrices resulting in
discretization of equations with other iterative nu-
merical methods such as nonlinear multigrid (MG)
method. This permits a simpler iterative method to
be used, eliminating time-consuming computation of
the Jacobian matrix required in Newton's method.
The current method, as Eq. (26) reveals, is based
on a �rst-order accurate time discretization combined
with DQM for spatial discretization. The resulting
equations can be iteratively solved via the following
approach. Eq. (28) is rewritten as follows:h
M(u)n+1;m

i
Nt�Nt

�
Un+1;m+1	

Nt�1 =fUngNt�1; (29)

where m denotes iteration number.
To solve the system of Eq. (29), �rst, the numbers

of grid points in each direction are chosen and the
locations of grid points are calculated using Eq. (16).
By using the location of grid points, the values of aij
and bij are calculated according to PDQ described in
this section. Secondly, m and n are set to 0, and
an initial guess U0 is assigned to U. Since the initial
U0 guess a�ects the convergence of the scheme in the
solution of nonlinear equations by iterative methods,
the initial conditions of the problem are used to assign
appropriate values to U0. Then, depending on the
constitutive model used, the values of hydraulic con-
ductivity and di�usivity for speci�ed U0 are calculated
(Eqs. (4)-(7)). Subsequently, the values of Un+1;m+1

for the next iteration can be obtained using Eq. (29):�
Un+1;m+1	 =

h
M(u)n+1;m

i�1fUng: (30)

The iterations continue until the di�erence be-
tween the norms of the two successive solutions is less
than a speci�ed error, ", that is:

abs(
Um+1� kUmk) � ": (31)
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In the current study, a value of " = 0:5 � 10�6 is
adopted. Once the iterations are completed, we march
in time and computations are accomplished for the next
time step in a similar fashion.

4. Numerical examples

In order to investigate the robustness of the aforemen-
tioned numerical scheme, both 1D and 2D problems
are solved. In the 1D case, the numerical solutions
can be compared with available analytical solutions.
For the 2D case, two problems, including �ve test
cases, are considered. Each problem employs a dif-
ferent constitutive model and consists of di�erent soil
types. Various types of boundary conditions, including
Dirichlet, Neumann, and Robin boundary conditions,
are also investigated. These test cases have been chosen
since they have been already solved numerically using
Multi Grid (MG) method by Juncu et al. (2010) [20].

4.1. 1D case
For the nonlinear in�ltration problem, analytical so-
lutions are available for simpli�ed problems in the
1D case; such analytical solutions are valuable for
the veri�cation of numerical solutions. Asghari et
al. (2011) [30] proposed an analytical solution to 1D
Richards' equation based on exp-function. Here, a brief
review of the 1D model, which is a simpli�ed version of
our 2D model, is �rst presented, and then the results
of employing the proposed DQM approach in the 1D
case are compared with those of the aforementioned
analytical solution.

The one-dimensional version of Eq. (3) is:

@u
@t
� @
@z

�
D(u)

@u
@z

�
+
@K(u)
@z

= 0: (32)

To obtain the analytical solution in [30], the model of
Brooks and Corey [31] was used for soil parameters as
follows:
D(u) = D0(n+ 1)um; m � 0; (33)

K(u) = K0uk; k > 1; (34)

where D0, K0, k; n, and m are constants representing
soil properties.

For m = 0, k = 2, K0 = 0:5, and the following
initial conditions:

�(z; 0) =
1
2

�
1 + tan h(�z

4
)
�
: (35)

Asghari et al. [30] obtained the following analytical
solution:

�(z; t) =
1
2

�
1 + tan h(�z

4
+
t
8

)
�
: (36)

Figure 1 compares analytical solutions and DQM
numerical model at time t = 3 and t = 6. As a measure

Figure 1. Comparison of DQM results and analytical
solutions for 1D case at t = 3 and t = 6.

for the di�erences between model prediction and ana-
lytical solution, the standard Root-Mean-Square-Error
(RMSE) is adopted. Consequently, RMSE = 0:0436 at
time t = 3 hr and RMSE = 0:0671 at time t = 6 hr
are obtained. As the results show, the proposed DQM
yields very satisfactory results for the 1D case.

4.2. 2D case
For the two-dimensional case, two di�erent constitutive
models are considered. The aforementioned numerical
procedure has been used to �nd the saturation pro�les
in di�erent times. In all test cases, after ful�llment of
the stopping criteria, i.e. Eq. (31), the discrete norm
of the residuals is approximately 2:27�10�14, showing
that discrete nonlinear equations have been acceptably
satis�ed in each iteration. The problems are as follows.

4.2.1. Problem 1: White and Broadbridge model
In the �rst problem of the 2D case, the White and
Broadbridge constitutive model [26] in three soil types,
ranging from highly nonlinear to weakly nonlinear soil,
is investigated. For all cases, the problem is solved
by DQM using Nx = 21, and Nz = 40 grid points
in x and z directions, respectively. A �ner grid did
not cause any signi�cant improvement in the results.
Furthermore, time step �t = 0:01 hr is adopted.

The parameters' values as well as initial and
boundary conditions used to simulate the three cases
of this problem are as follows:

- Case 1. Highly nonlinear soil:

Lx = 1 m; Lz = 4 m; c = 1:01;

t = 0; u = 0; z = 0;

K (u)�D (u) :
@u
@z

= 2K (u) + 0 (x) ;
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Figure 2. Saturation pro�les for problem 1, Case 1
(highly nonlinear soil) using White and Broadbridge
model by DQM at (a) t = 1 hr and (b) t = 14:51 hr.

0(x) =

(
0:05; x < 0:25 or x > 0:75
0:0; 0:25 � x � 0:75

z = Lz; u = 0; x = 0; and

x = Lx;
@u
@x

= 0:

Figure 2(a) and (b) show saturation pro�les obtained
by DQM for water in�ltration in the highly nonlinear
soil at times t = 1 hr and t = 14:51 hr, respectively.
The �gures are in very close agreement with those
obtained by using MG [20]. It is worthy to point out
that MG converges to accurate results by employing
a 64 � 256 grid. However, DQM needs only a 21 �
40 grid to converge to the same results. Hence, a
much coarser grid is required for DQM which is more
e�ective with regard to computational cost.

- Case 2. Moderately nonlinear soil:

Figure 3. Saturation pro�les for problem 1, Case 2
(moderately nonlinear soil) using White and Broadbridge
model by DQM at t = 6 hr.

Lx = 4 m; Lz = 8 m; c = 1:48;

t = 0; u = 0; z = 0;

K(u)�D(u):
@u
@z

= 2K(u) + 0(x);

0(x) =

(
0:0; x < 1 or x > 3
0:05; 1 < x < 3

z = Lz; u = 0; x = 0; and

x = Lx;
@u
@x

= 0:

Figure 3 shows saturation pro�les for water in�ltra-
tion in the moderately nonlinear soil obtained by
DQM at time t = 6 hr. Both MG [20] and DQM lead
to the same results. However, MG needs a 256�512
grid whereas a 21� 40 grid is su�cient for DQM.

- Case 3. Weakly nonlinear soil:

Lx = 1 m; Lz = 8 m; c = 1:48;

t = 0; u = 0; z = 0;

K(u)�D(u):
@u
@z

= 2K(u) + 0(x);

0(x) =

(
0:00; x � 0:25 or x � 0:75
0:05; 0:25 < x < 0:75

z = Lz; u = 0; x = 0; and

x = Lx;
@u
@x

= 0:

Figure 4 gives the results obtained by DQM at time
t = 1 hr for this case. Similar to previous cases,
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Figure 4. Saturation pro�les for problem 1, Case 3
(weakly nonlinear soil) using White and Broadbridge
model by DQM at t = 1 hr.

very satisfactory results are also obtained for this
case with a coarser mesh using DQM, compared with
MG [20].

4.2.2. Problem 2: Van Genuchten model
A more complicated constitutive model of Van
Genuchten (1980) [27] for two di�erent soils is studied
in this problem. In both cases, the problem is solved
by DQM, using Nx = 26, and Nz = 26 grid points in
each direction. Moreover, time step �t = 0:01 hr is
adopted.

The parameters values, initial and boundary con-
ditions used for this problem are as follows:

- Case 1. New Mexico soil:

Lx = 1 m; Lz = 1 m;

t = 0; u = 0:1; z = 0;

K(u)�D(u):
@u
@z

= 2K(u) + 0(x)

0(x) =

(
0:00; x � 0:25 or x � 0:75
0:003; 0:25 < x < 0:75

z = Lz; u = 0:1; x = 0; and

x = Lx;
@u
@x

= 0:

Other parameters for simulation are reported in
Table 1.

Table 1. Parameters used in problem 2 for two cases.

No. �r �s � n m Ks

Case 1 0.102 0.368 3.35 2 0.5 0.332083

Case 2 0.058 0.473 0.58 1.6745 0.40280 0.012825

Figure 5. Saturation pro�les for problem 2, Case 1 (New
Mexico soil) using Van Genuchten model by DQM at (a)
t = 4 hr and (b) t = 9:83 hr.

Figure 5(a) and (b) give the saturation pro�les
obtained by DQM at times t = 4 hr and t =
9:83 hr respectively, for this case. In spite of using a
complicated highly nonlinear constitutive model for
this test case, very satisfactory results are achieved,
suggesting the robustness of the scheme.

- Case 2. Travelling wave in silt:
Lx = 1 m; Lz = 1 m; t = 0; u = 0:1;

z = 0; u = 0:8; z = Lz; u = 0:1;

x = 0; and x = Lx;
@u
@x

= 0:

Other parameters for simulation are reported in
Table 1.

In Figure 6(a), (b), and (c), the saturation
pro�les for three di�erent times of t = 1 hr, t = 10
hr, and t = 30 hr, obtained by DQM are presented,
respectively. The agreement between the results
found by MG [20] is very satisfactory in this problem
as well.
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Figure 6. Saturation pro�les for problem 2, Case 2
(traveling wave in silt) using Van Genuchten model by
DQM at (a) t = 1 hr, (b) t = 10 hr, and (c) t = 30 hr.

5. Conclusion

In this study, numerical solution of water ow through
unsaturated porous media in two-dimensional space
was presented. For this purpose, the saturated form of
Richards' equation was solved by Di�erential Quadra-
ture Method (DQM). Two di�erent constitutive models
were incorporated into the governing equations in the
2D case. The simpli�ed 1D case was also presented,
and the results were compared with those of the
available analytical solutions. For the two-dimensional

case, two problems in �ve test cases were investigated.
The study shows that DQM requires fewer grid points,
compared with MG, which consequently leads to a very
smaller system of nonlinear equations. Therefore, in
terms of computational e�ort, more e�ective iterative
methods, rather than traditional Jacobian-based meth-
ods, can be employed to solve the resulting system
of equations. The results of using DQM with much
coarser grids showed excellent agreement with those
obtained by MG [20], indicating the capability of DQM
in dealing with highly nonlinear partial di�erential
equations.
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