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solutions to Korteweg-de Vries equation with power law nonlinearity. The stability and
error analyses were also carried out for these waves. Additionally, conservation laws were
studied numerically.

© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

The dynamics of shallow water waves has been an
active research area during the past several decades. In
this context, there are several models that govern this
wave 
ow. A few of these commonly studied models
are Boussinesq equation [1], Kawahara equation [2],
Peregrine equation [3], Benjamin-Bona-Mahoney equa-
tion [4], and several others [5-8]. This paper studies
the model with the aid of Korteweg-de Vries (KdV)
equation. In order to keep this on a generalized setting,
power law nonlinearity is considered; note that the
KdV equation and modi�ed KdV equation become
special cases.

There are several analytical and numerical
schemes that are applied to understand the shal-
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low water wave phenomena [9-13]. Some of
these algorithms are exp-function method, G0=G-
expansion scheme [14,15], method of undetermined
coe�cients, semi-inverse variational principle, Galerkin
method [16,17], Petrov-Galerkin method [18], colloca-
tion method [19-21], and several others [22-24]. Also,
the solutions to some fractional di�erential equations
have been discussed [25,26]. This paper studies power
law KdV equation by using collocation �nite element
method. The stability analysis as well as conservation
laws are both addressed.

The well-known Korteweg-de Vries (KdV) equa-
tion:

Ut + "UUx + �Uxxx = 0; (1)

where " and � are the nonlinear and dispersion co-
e�cients, respectively, is the generic model for the
study of weakly nonlinear long waves [27]. It arises
in physical systems, which involve a balance between
nonlinearity and dispersion at leading-order [28]. For
example, it describes surface waves of long wavelength
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and small amplitude on shallow water and internal
waves in a shallow density-strati�ed 
uid [28]. This
nonlinear wave equation has been studied extensively
by numerical methods [29-35].

The generalized KdV equation with power law
nonlinearity is given by:

Ut + "UpUx + �Uxxx = 0; (2)

with p 2 R. In particular, the case p = 1 leads to
the regular KdV equation (1). Here, the �rst term is
the evolution term, while the second term represents
the nonlinear term and the third term is the dispersion
term. As value of p increases, the solitary wave breaks
down. The solitary waves blow up at p = 4 [36,37].

In this paper, the collocation �nite element
method based on quintic B-spline functions is suc-
cessfully applied to the generalized KdV equation to
examine the motion of a single solitary wave whose
analytical solution is known. Also, evolution of solitons
is studied with Gaussian and undular bore initial
conditions.

2. Governing equation and quintic B-spline
basis functions

In this study, we consider the generalized Korteweg-
de Vries (gKdV) equation with the physical boundary
conditions U ! 0 as x ! �1, where " and �
are positive parameters and the subscripts x and t
denote the di�erentiation. To implement the numerical
method, solution domain is restricted to an interval
a � x � b: Boundary conditions will be selected from
the following homogeneous boundary conditions:

UN (a; t) = 0; UN (b; t) = 0;

(UN )x(a; t) = 0; (UN )x(b; t) = 0; t > 0; (3)

and the initial condition:

U(x; 0) = f(x) a � x � b: (4)

The quintic B-splines �m(x) (m = �2(1)N + 2) at
the knots xm are de�ned over the interval [a; b] by the
relationships [38] shown in Box I. The set of functions
f��2(x); ��1(x); �0(x); � � � ; �N+1(x); �N+2(x)g forms
a basis for functions de�ned over [a; b]. The approxi-
mate solution UN (x; t) to the exact solution U(x; t) is
given by:

UN (x; t) =
N+2X
j=�2

�j(x)�j(t); (6)

where �j(t) are time dependent parameters to be deter-
mined from the boundary and collocation conditions.
Each quintic B-spline covers six elements so that each
element [xm; xm+1] is covered by six splines. The values
of �m(x) and its derivative may be tabulated as in
Table 1.

Using trial function (Eq. (6)) and quintic B-
splines (Eq. (5)), the values of U , U 0, U 00, U 000 and U iv,
at the knots are determined in terms of the element
parameters �m by:

Um =U(xm) = �m�2 + 26�m�1 + 66�m + 26�m+1

+ �m+2;

U 0m =U 0(xm) =
5
h

(��m�2 � 10�m�1 + 10�m+1

+ �m+2);

�m(x)=
1
h5

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

(x� xm�3)5; [xm�3; xm�2]

(x� xm�3)5 � 6(x� xm�2)5; [xm�2; xm�1]

(x� xm�3)5 � 6(x� xm�2)5 + 15(x� xm�1)5; [xm�1; xm]

(x� xm�3)5 � 6(x� xm�2)5 + 15(x� xm�1)5 � 20(x� xm)5; [xm; xm+1]

(x� xm�3)5 � 6(x� xm�2)5 + 15(x� xm�1)5 � 20(x� xm)5 + 15(x� xm+1)5; [xm+1; xm+2]

(x� xm�3)5 � 6(x� xm�2)5 + 15(x� xm�1)5 � 20(x� xm)5 + 15(x� xm+1)5

� 6(x� xm+2)5; [xm+2; xm+3]

0: elsewhere

(5)

Box I
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Table 1. Quintic B-spline function and its derivatives at nodes xm.

x xm�3 xm�2 xm�1 xm xm+1 xm+2 xm+3

�m(x) 0 1 26 66 26 1 0
h�0m(x) 0 -5 -50 0 50 5 0
h2�00m(x) 0 20 40 -120 40 20 0
h3�000m(x) 0 -60 120 0 -120 60 0
h4�ivm(x) 0 120 -480 720 -480 120 0

U 00m =U 00(xm) =
20
h2 (�m�2 + 2�m�1 � 6�m

+ 2�m+1 + �m+2);

U 000m =U 000(xm) =
60
h3 (��m�2 + 2�m�1 � 2�m+1

+ �m+2);

U ivm =U iv(xm) =
120
h4 (�m�2 � 4�m�1 + 6�m

� 4�m+1 + �m+2); (7)

where the symbols 0, 00, 000, and iv denote the �rst,
second, third, and fourth di�erentiation with respect
to x, respectively. The splines �m(x) and their
four principal derivatives vanish outside the interval
[xm�3; xm+3].

3. Collocation �nite element method

Using the nodal values of Um and its spatial derivatives
given by Eq. (7) in Eq. (2), the following general form of
the solution approach is obtained for the linearization
technique:

_�m�2 + 26 _�m�1 + 66 _�m + 26 _�m+1 + _�m+2

+
5"Zm
h

(��m�2�10�m�1+10�m+1+�m+2)

+
60�
h3 (��m�2+2�m�1�2�m+1+�m+2)=0; (8)

where:

Zm =Upm = (�m�2 + 26�m�1 + 66�m + 26�m+1

+ �m+2)p; (9)

and \." indicates derivative with respect to t. For the
linearization technique, the term Up in non-linear term
UpUx is taken as Eq. (9) by assuming that the quantity
Up is locally constant.

If time parameters �i and their time derivatives
_�i in Eq. (8) are discretized by the Crank-Nicolson
formula and usual �nite di�erence approximation, re-
spectively:

�i =
�n+1
i + �ni

2
; _�i =

�n+1
i � �ni

�t
: (10)

We obtain a recurrence relationship between two time
levels n and n+ 1 relating two unknown parameters in
�n+1
i and �ni for i = m� 2;m� 1; � � � ;m+ 1;m+ 2:


1�n+1
m�2 + 
2�n+1

m�1 + 
3�n+1
m + 
4�n+1

m+1 + 
5�n+1
m+2

=
5�nm�2 + 
4�nm�1 + 
3�nm + 
2�nm+1

+ 
1�nm+2; (11)

where:


1 = [1� EZm �M ];


2 = [26� 10EZm + 2M ];


3 = [66];


4 = [26 + 10EZm � 2M ];


5 = [1 + EZm +M ];

m = 0; 1; � � � ; N;

E =
5

2h
"�t; M =

30
h3��t: (12)

The system (11) consists of (N + 1) linear
equations including (N + 5) unknown parameters
(��2; ��1; � � � ; �N+1; �N+2)T . To obtain a unique solu-
tion to this system, we need four additional constraints.
They are obtained from the boundary conditions and
can be used to eliminate ��2, ��1 and �N+1, �N+2 from
the system in Eq. (11), which later becomes a matrix
equation for the N + 1 unknowns d = (�0; �1; � � � ; �N )T
of the form:

Adn+1 = Bdn: (13)

The matrices A and B are pentagonal (N+1)�(N+1)
and can be solved by using the pentagonal algorithm.
However, two or three inner iterations are implemented
for the term �n� = �n + 1

2 (�n� �n�1) at each time step
to cope with the non-linearity caused by Zm. Before
the solution process begins iteratively, the initial vector
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d0 = (�0; �1; � � � ; �N�1; �N ) must be determined by
using the initial condition and the following derivatives
at the boundary conditions:

UN (x; 0) = U(xm; 0); m = 0; 1; 2; � � � ; N;
(UN )x(a; 0) = 0; (UN )x(b; 0) = 0;

(UN )xx(a; 0) = 0; (UN )xx(b; 0) = 0: (14)

Thus, we have the following matrix form of the initial
vector d0:

Wd0 = C; (15)

where:

W =

2666666666664

54 60 6
25:25 67:50 26:25 1

1 26 66 26 1
1 26 66 26

. . .
1 26

1

1

66 26 1
26:25 67:50 25:25

6 60 54

377777777775
; (16)

d0 = (�0; �1; � � � ; �N�1; �N ); (17)

and:

C=[U(x0; 0); U(x1; 0); � � � ; U(xN�1; 0); U(xN ; 0)]T :
(18)

This matrix system can be solved be e�ciently by using
a variant of Thomas algorithm.

4. Stability analysis

The stability analysis is based on the Von Neumann
theory. The growth factor � of the error in a typical
mode of amplitude �n is:

�nm = �neimkh; (19)

where k is the mode number and h, the element size,
is determined by linearization of the numerical scheme.
Substituting the Fourier mode (Eq. (19)) into Eq. (11)
gives the following equality:


1�n+1ei(m�2)kh + 
2�n+1ei(m�1)kh + 
3�n+1eimkh

+ 
4�n+1ei(m+1)kh + 
5�n+1ei(m+2)kh

=
5�nei(m�2)kh + 
4�nei(m�1)kh + 
3�neimkh

+ 
2�nei(m+1)kh + 
1�nei(m+2)kh: (20)

Now, if Euler's formula:

eikh = cos(kh) + i sin(kh); (21)

is used in Eq. (20) and this equation is simpli�ed, we
get the following growth factor:

� =
a� ib
a+ ib

; (22)

which gives:

a = 
3 + (
2 + 
4) cos(kh) + (
1 + 
5) cos(2kh);

b = (
4 � 
2) sin(kh) + (
5 � 
1) sin(2kh); (23)

where:


1 = [1� EZm �M ];


2 = [26� 10EZm + 2M ];


3 = [66];


4 = [26 + 10EZm � 2M ];


5 = [1 + EZm +M ];

m = 0; 1; � � � ; N;

E =
5

2h
"�t; M =

30
h3��t: (24)

The modulus of � is 1 and therefore, the linearized
scheme is unconditionally stable.

5. Error analysis

The e�ciency and acceptability of a numerical scheme
depend on its stability and rate of convergence. In
this study, we approximated the model problem using
piecewise polynomials for spatial approximations with
collocation approach and a method of lines for the
temporal approximation. Here, we aim for a short
discussion about the accuracy of the above-mentioned
space time scheme without formal proof. For a detailed
analysis and discussion about this issue, the readers can
refer to Bochev and Gunzburger [39] and the references
therein. Here, we use some constants Ci � 0, which are
not necessarily the same in all the cases.

Polynomials play an important role in numerical
integrations and analysis [37,40]. Global polynomial
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interpolations can be used to integrate the solutions
to di�erential equations when the unknown curves are
considered to be very smooth. However, there are
many practical situations in engineering and physical
problems that the solutions are not su�ciently smooth
to support global polynomial approximation. In these
cases, piecewise polynomial interpolations play an
important role and work very well to integrate the
solutions. One of the main bene�ts of using polynomial
basis functions is that they have smooth curves. In
general, if we have k + 1 data points, then there is
exactly one polynomial of degree at most k passing
through the data points and the error in the interpo-
lating polynomial is proportional to the power of the
distance between the data points. A detailed discussion
about the polynomial approximation and least squares
piecewise polynomials approximations can be found
in [37,39,40]. Moreover, the main bene�t of using
collocation scheme is that it gives super-convergence
pointwise approximation. Compared with the Galerkin
inner product approach, the collocation approach does
not require an extra integral for evaluation. Thus,
this approach is simpler and more e�cient to compute
solutions.

Let Hr(
) be the space of r times di�erentiable
functions and k:kr be the standard Hr(
) norm. Let
vh be an approximation to a function v(x) 2 Hr(
)
in 
. Let h be the distance between the grids and

 = [i
i, where 
i = [xi; xi+1], xi+1 = xi + h. We
observe [37,40,41] that:

kv(x)�vh(x)k�C�xk+1kvkk+1; 1 � k < r; (25)

and vh stands for interpolation by piecewise polynomi-
als of degree r (considering 
 = [i
i). This error is
preserved by the Galerkin �nite element approximation
as well [40].

It can be easily observed [39,40] that if wh is a
suitable B-spline de�ned by a polynomial of degree less
than or equal to k, then:

kw(x)�wh(x)k�C�xl+1kwkl+1; 1 � l < k; (26)

for any w 2 Hk(
). In this study, we use quintic B-
splines for space integration. Thus, from the above
discussion, one sees that we obtain anO(�x6) accuracy
for the spatial approximation in L2(
) norm, because
for time, we use the Crank-Nicolson scheme, which is
of O(�t2) accuracy in L2([0; T ]) norm for some T > 0,
followed by a forward di�erence scheme, which is of
O(�t) accuracy in L2([0; T ]) norm for some T > 0 [40].
Therefore, we obtain the error bound as:

ku(x; t)� uh(x; t)k � C1�x6 + C2�t2 + C3�t

= C1�x6 + C2�t; (27)

for suitable C1 � 0 and C2 � 0.
In addition, the convergence order of Crank-

Nicolson method for the temporal variable is quadratic.
The development of stability and higher order conver-
gence scheme according to time variable is subject of
the further investigations.

6. Numerical simulations

Numerical results of the gKdV equation are obtained
for two problems: the motion of single solitary wave,
evolution of solitons with Gaussian and undular bore
initial conditions. We use the error norm L2 that is
de�ned as:

L2 =


U exact�UN

2 '

vuuth
NX
j=1

��U exact
j �(UN )j

��2;
(28)

and the error norm L1:

L1 =


U exact � UN

1 ' max

j

��U exact
j � (UN )j

�� ;
j = 1; 2; � � � ; N; (29)

to calculate the di�erence between analytical and
numerical solutions at some speci�ed times. The
generalized KdV equation (Eq. (2)) possesses only
three invariants by:

I1 =
Z b

a
Udx ' h

NX
j=1

Unj ;

I2 =
Z b

a
U2dx ' h

NX
j=1

(Unj )2;

I3 =
Z b

a

�
Up+2 � �(p+ 1)(p+ 2)

2"
(Ux)2

�
dx

' h
NX
j=1

�
(Unj )p+2 � �(p+ 1)(p+ 2)

2"
(Ux)2

j

�
; (30)

which correspond to conversation laws. In the simu-
lation of solitary wave motion, the invariants I1, I2,
and I3 are monitored to check the conversation of the
numerical algorithm.

6.1. The motion of single solitary wave
The single solitary wave solution of the gKdV equation
(Eq. (2)) considered by the boundary conditions U ! 0
as x! �1 is given by:

U(x; t) = Asech
2
p [k(x� ct)]; (31)

where A = [ c(p+1)(p+2)
2" ]

1
p and k = p

2

q
c
� [36]. Note

that, c, ", �, and p are arbitrary constants. The initial
condition is:



T. Ak et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 2582{2597 2587

U(x; 0) = Asech
2
p (kx): (32)

To show the motion of the single solitary wave solution
numerically, let " = 1, � = 4:84 � 10�4, c = 0:3, and
x� [0; 2]. Now, we consider the following cases.

6.1.1. Case I
For p = 1, parameters are chosen as " = 1, � = 4:84�
10�4, c = 0:3, h = 0:01, and �t = 0:005 to correspond
with those in the earlier studies. For these parameters,
the single solitary wave has the amplitude = 0:9. The
conserved quantities and error norms, L2 and L1, are
shown at selected times up to time t = 3. The obtained
results are tabulated in Table 2. It can be seen from
Table 2 that the error norms L2 and L1 are small
enough and the invariants are nearly unchanged during
the process time. It is observed in the tables that
percentages of relative changes of I1, I2, and I3 are
6:33�10�4, 3:41�10�7, and 7:53� 10�7, respectively.
Table 2 represents a comparison of the values of the
invariants and error norms obtained by the present
method with earlier results. Numerical solution of
single solitary wave is plotted at selected times from
t = 0 to t = 3 in Figure 1.

6.1.2. Case II
For p = 2, parameters " = 1, � = 4:84 � 10�4,
and c = 0:3 are considered to examine the quantities
of the invariants and error norms for di�erent space
steps (h) and time steps (�t). The single solitary
wave has the amplitude = 1:34164. The calculated
values are presented in Table 3. As can be seen in
Table 3, the error norms L2 and L1 are reasonably
small and the invariants remain almost constant as
the time increases. The agreement between numerical
and analytical solutions is excellent. Table 3 shows a
comparison of the values of the invariants and error

Figure 1. Motion of single solitary wave for p = 1, " = 1,
� = 4:84� 10�4; c = 0:3, h = 0:01, and �t = 0:005.

norms for di�erent space and time steps. The motion
of single solitary wave is depicted with " = 1, � =
4:84 � 10�4, c = 0:3, h = 0:01, and �t = 0:005 at
selected times in Figure 2.

6.1.3. Case III
For p = 3, parameters are taken to be " = 1, � =
4:84 � 10�4, and c = 0:3 to analyze the quantities of
the invariants and error norms for di�erent space steps
(h) and time steps (�t). In this case, the single solitary
wave has the amplitude = 1 :44225 . The conserved
quantities and error norms L2 and L1 are listed at
selected times until the time t = 3. As can be seen
in Table 4, the error norms L2 and L1 are sensibly
small and the quantities of the invariants remain almost
constant during the computer run. Table 4 displays a
comparison of the values of the invariants and error

Table 2. Comparison of invariants and error norms for single solitary wave with p = 1, " = 1, � = 4:84� 10�4, c = 0:3,
h = 0:01, and �t = 0:005 at 0 � x � 2.

t I1 I2 I3 L2 � 103 L1 � 103

0.0 0.144598 0.086759 0.046850 0.000000 0.000000
0.5 0.144601 0.086759 0.046850 0.044089 0.127200
1.0 0.144599 0.086759 0.046850 0.079487 0.238623
1.5 0.144599 0.086759 0.046850 0.114742 0.324535
2.0 0.144600 0.086759 0.046850 0.151352 0.419257
2.5 0.144599 0.086759 0.046850 0.187263 0.500722
3.0 0.144599 0.086759 0.046850 0.227130 0.619010
3.0 [30] 0.144597 0.086761 0.046852 0.038684 |
3.0 [31] 0.144601 0.086760 0.046850 | |
3.0 [32] 0.144600 0.086759 0.046850 0.387274 1.041563
3.0 [33] 0.144597 0.086759 0.046849 | 1.61
3.0 [34] 0.14460 0.086761 0.046876 | |
3.0 [35] 0.14460 0.08676 0.04685 | |
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Table 3. Comparison of invariants and error norms for single solitary wave with p = 2, " = 1, � = 4:84� 10�4, and
c = 0:3 at 0 � x � 2.

t L2 � 103 L1 � 103 I1 I2 I3

h = 0:01
�t = 0:005

0.0 0.000000 0.000000 0.169296 0.144599 0.086760
0.5 0.161944 0.574891 0.169300 0.144599 0.086760
1.0 0.318711 1.054684 0.169292 0.144599 0.086760
1.5 0.460453 1.582264 0.169294 0.144599 0.086760
2.0 0.607800 1.948279 0.169295 0.144599 0.086760
2.5 0.752947 2.376394 0.169297 0.144599 0.086760
3.0 0.912455 2.886583 0.169297 0.144599 0.086760

h = 0:005
�t = 0:0025

0.0 0.000000 0.000000 0.169296 0.144599 0.086759
0.5 0.063939 0.208079 0.169298 0.144599 0.086759
1.0 0.125994 0.397920 0.169297 0.144599 0.086759
1.5 0.188595 0.585358 0.169297 0.144599 0.086759
2.0 0.250310 0.769922 0.169297 0.144599 0.086759
2.5 0.313310 0.977050 0.169297 0.144599 0.086759
3.0 0.375889 1.158590 0.169297 0.144599 0.086759

h = 0:001
�t = 0:0005

0.0 0.000000 0.000000 0.169298 0.144601 0.086763
0.5 0.012709 0.034070 0.169300 0.144601 0.086763
1.0 0.020823 0.056822 0.169299 0.144601 0.086763
1.5 0.023853 0.069660 0.169299 0.144601 0.086763
2.0 0.058242 0.209984 0.169299 0.144601 0.086763
2.5 0.113519 0.380739 0.169299 0.144601 0.086763
3.0 0.168194 0.543238 0.169300 0.144601 0.086763

Figure 2. Motion of single solitary wave for p = 2, " = 1,
� = 4:84� 10�4, c = 0:3, h = 0:01, and �t = 0:005.

norms for di�erent space and time steps. In Figure 3,
the propagation of single solitary wave is illustrated
with " = 1, � = 4:84 � 10�4, c = 0:3, h = 0:01,
and �t = 0:005 at selected times from t = 0 to
t = 3.

Finally, for p = 1, 2, and 3, errors distributions at
time t = 3 are depicted in Figure 4 to show the errors

Figure 3. Motion of single solitary wave for p = 3, " = 1,
� = 4:84� 10�4, c = 0:3, h = 0:01, and �t = 0:005.

between the analytical and numerical results over the
problem domain. Also, the invariants and error norms
are examined in Table 5 for di�erent values of p.

In the light of all these studies, it is observed
that as the value of p increases, amplitude of the single
solitary waves, error norm, and relative changes of the
conserved quantities increase.
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Table 4. Comparison of invariants and error norms for single solitary wave with p = 3, " = 1, � = 4:84� 10�4, and
c = 0:3 at 0 � x � 2.

t L2 � 103 L1 � 103 I1 I2 I3

h = 0:01
�t = 0:005

0.0 0.000000 0.000000 0.162456 0.144101 0.061761
0.5 0.178756 0.692042 0.162463 0.144100 0.061758
1.0 0.234132 0.744727 0.162445 0.144100 0.061757
1.5 0.470967 1.328716 0.162442 0.144100 0.061756
2.0 0.502231 1.490645 0.162452 0.144099 0.061754
2.5 0.540347 1.721624 0.162451 0.144099 0.061752
3.0 0.554489 1.937605 0.162460 0.144097 0.061749

h = 0:005
�t = 0:0025

0.0 0.000000 0.000000 0.162456 0.144101 0.061758
0.5 0.174879 0.613433 0.162458 0.144101 0.061758
1.0 0.367348 1.257014 0.162458 0.144101 0.061758
1.5 0.567146 1.912527 0.162458 0.144101 0.061758
2.0 0.769779 2.589902 0.162458 0.144101 0.061758
2.5 0.973379 3.255744 0.162456 0.144101 0.061758
3.0 1.180900 3.939972 0.162456 0.144101 0.061758

h = 0:001
�t = 0:0005

0.0 0.000000 0.000000 0.162458 0.144103 0.061763
0.5 0.032541 0.107203 0.162460 0.144103 0.061763
1.0 0.073624 0.248928 0.162458 0.144103 0.061763
1.5 0.116540 0.388806 0.162458 0.144103 0.061763
2.0 0.192098 0.667439 0.162458 0.144103 0.061763
2.5 0.292241 1.003527 0.162459 0.144103 0.061763
3.0 0.396268 1.348702 0.162460 0.144103 0.061763

Figure 4. Errors for " = 1, � = 4:84� 10�4, c = 0:3, h = 0:01, �t = 0:005, and di�erent values of p at t = 12:5.

6.2. Evolution of solitons
6.2.1. Gaussian initial condition
Evolution of a train of solitons of the gKdV equation
is studied using the Gaussian initial condition:

U(x; 0) = exp(�x2); (33)

and boundary condition:

U(�15; t) = U(15; t) = 0; t > 0; (34)

for various values of �. In this case, the behavior of
the solution depends on the value of �. The critical
value for the Gaussian initial condition used in some
simulations is �c = 0:0625 [29,42]. For � � �c, the

initial Gaussian breaks up into a number of solitons,
while the actual number depends on the size of �. For
�� �c, the Gaussian condition does not break up into
solitons, but exhibits rapidly oscillating wave packets.
Therefore, the values of � = 0:04, � = 0:01, and � =
0:001 are chosen for di�erent values of space step (h)
and time step (�t) at 0 6 t 6 12:5.

Numerical computations are done for di�erent
values of p. Nonlinearity e�ect is investigated in the
following three cases:

Case I. For p = 1, parameter " = 1 is chosen. The
numerical computations are done up to t = 12:5. The
values of the three invariants of motion for various
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Table 5. Invariants and error norms for single solitary wave with " = 1, � = 4:84� 10�4, c = 0:3, h = 0:01, and
�t = 0:005.

t L2 � 103 L1 � 103 I1 I2 I3

p = 1

0.0 0.000000 0.000000 0.144598 0.086759 0.046850
0.5 0.044089 0.127200 0.144601 0.086759 0.046850
1.0 0.079487 0.238623 0.144599 0.086759 0.046850
1.5 0.114742 0.324535 0.144599 0.086759 0.046850
2.0 0.151352 0.419257 0.144600 0.086759 0.046850
2.5 0.187263 0.500722 0.144599 0.086759 0.046850
3.0 0.227130 0.619010 0.144599 0.086759 0.046850

p = 2

0.0 0.000000 0.000000 0.169296 0.144599 0.086760
0.5 0.161944 0.574891 0.169300 0.144599 0.086760
1.0 0.318711 1.054684 0.169292 0.144599 0.086760
1.5 0.460453 1.582264 0.169294 0.144599 0.086760
2.0 0.607800 1.948279 0.169295 0.144599 0.086760
2.5 0.752947 2.376394 0.169297 0.144599 0.086760
3.0 0.912455 2.886583 0.169297 0.144599 0.086760

p = 3

0.0 0.000000 0.000000 0.162456 0.144101 0.061761
0.5 0.178756 0.692042 0.162463 0.144100 0.061758
1.0 0.234132 0.744727 0.162445 0.144100 0.061757
1.5 0.470967 1.328716 0.162442 0.144100 0.061756
2.0 0.502231 1.490645 0.162452 0.144099 0.061754
2.5 0.540347 1.721624 0.162451 0.144099 0.061752
3.0 0.554489 1.937605 0.162460 0.144097 0.061749

Table 6. Invariants for Gaussian initial condition with p = 1, " = 1, and c = 0:3 at �15 � x � 15.

p = 1 � = 0:04 � = 0:01 � = 0:001
t I1 I2 I3 I1 I2 I3 I1 I2 I3

0.0 1.772454 1.253314 0.872929 1.772454 1.253314 0.985727 1.772454 1.253314 1.019567
2.5 1.772484 1.253314 0.872921 1.772458 1.253324 0.985589 1.772452 1.253317 1.019561
5.0 1.772454 1.253315 0.872919 1.772419 1.253344 0.985538 1.772454 1.253319 1.019547
7.5 1.774643 1.253828 0.872915 1.772553 1.253363 0.985557 1.772458 1.253320 1.019547
10.0 1.774464 1.253579 0.872979 1.772360 1.253381 0.985579 1.772447 1.253321 1.019548
12.5 1.763884 1.257298 0.872872 1.772730 1.253429 0.985626 1.772452 1.253321 1.019549

h = 0:1 �t = 0:01 h = 0:1 �t = 0:01 h = 0:01 �t = 0:005

values of �, space step, and time step are presented
in Table 6. Also, Figure 5 illustrates the development
of the Gaussian initial condition into solitons at t =
12:5. As it is seen from Figure 5, a soliton and an
oscillating tail are drawn for � = 0:04. Three solitons
are found when � = 0:01. Nine solitons moving to
the right are observed for � = 0:001.

Case II. For p = 2, computations are performed
with " = 1 carried out from t = 0 to t = 12:5. In

Table 7, the values of the three invariants of motion
for di�erent values of �, space step, and time step are
tabulated. For � = 0:04, a soliton and an oscillating
tail are visualized. When � = 0:01, two solitons are
shown. For � = 0:001, six solitons moving to the right
are illustrated. These cases are shown in Figure 6 at
t = 12:5.

Case III. For p = 3, computations are accomplished
by taking the parameter " = 1 from t = 0 to
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Figure 5. Generated waves for p = 1, " = 1, and c = 0:3 at t = 12:5.

Figure 6. Generated waves for p = 2, " = 1, and c = 0:3 at t = 12:5.

Table 7. Invariants for Gaussian initial condition with p = 2, " = 1, and c = 0:3 at �15 � x � 15.

p = 2 � = 0:04 � = 0:01 � = 0:001

t I1 I2 I3 I1 I2 I3 I1 I2 I3

0.0 1.772454 1.253314 0.585431 1.772454 1.253314 0.811028 1.772455 1.253315 0.878707

2.5 1.772509 1.253315 0.585402 1.772453 1.253315 0.810976 1.772455 1.253314 0.878859

5.0 1.770902 1.254005 0.585309 1.772449 1.253315 0.810930 1.772453 1.253309 0.878865

7.5 1.782043 1.263829 0.583137 1.772450 1.253316 0.810927 1.772451 1.253303 0.878846

10.0 1.784649 1.263990 0.585781 1.772460 1.253321 0.810929 1.772449 1.253298 0.878826

12.5 1.743934 1.300404 0.573455 1.772538 1.253318 0.810930 1.772447 1.253292 0.878806

h = 0:1 �t = 0:01 h = 0:05 �t = 0:01 h = 0:01 �t = 0:005

t = 12:5. The values of the three invariants of motion
for various values of �, space step, and time step are
given in Table 8. For � = 0:04, a soliton and an
oscillating tail are formed. When � = 0:01, two
solitons are shown. For � = 0:001, �ve solitons
moving to the right are drawn. Also, Figure 7
displays the evolution of the solitons at t = 12:5.

Consequently, the initial perturbation breaks
up into a number of solitons in the course of time
depending on the chosen value of �. Thus, if the
value of � is decreased, then the number of solitons,
amplitude, and velocity increase with the same value
of p. Also, as p increases, the number of solitons
decreases at selected times.

6.2.2. Undular bore initial condition
As the last test problem, evolution of a train of solitons
of the gKdV equation are studied using the undular
bore initial condition:

U(x; 0) =
1
2
U0

�
1� tanh

� jxj � x0

d

��
; (35)

and boundary condition:

U(�50; t) = U(150; t) = 0; t > 0; (36)

leading to the production of a train of solitons de-
pending upon the value � of gKdV equation. The
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Table 8. Invariants for Gaussian initial condition with p = 3, " = 1, and c = 0:3 at �15 � x � 15.

p = 3 � = 0:04 � = 0:01 � = 0:001

t I1 I2 I3 I1 I2 I3 I1 I2 I3

0.0 1.772454 1.253314 0.291340 1.772454 1.253314 0.667334 1.772455 1.253315 0.780133

2.5 1.772324 1.253317 0.291287 1.772455 1.253314 0.667327 1.770654 1.247983 0.740775

5.0 1.769279 1.256297 0.290132 1.772449 1.253314 0.667303 1.766790 1.236789 0.663718

7.5 1.786485 1.276797 0.279958 1.772606 1.253325 0.667292 1.765355 1.232777 0.639189

10.0 1.791897 1.281378 0.287956 1.772004 1.253400 0.667229 1.764482 1.230370 0.625128

12.5 1.736617 1.326327 0.249125 1.772970 1.253375 0.667288 1.763848 1.228627 0.615232

h = 0:1 �t = 0:01 h = 0:025 �t = 0:005 h = 0:01 �t = 0:005

Figure 7. Generated waves for p = 3, " = 1, and c = 0:3 at t = 12:5.

undular bore re
ects the elevation of the water above
the equilibrium surface at time t = 0. The change
in water level of magnitude is centered on x = x0
and d measures the steepness of the change. The
smaller the value of d, the steeper is the slope. To
be consistent with the papers [27-30], the parameters
" = 0:2, � = 0:1, U0 = 1, x0 = 25, and d = 5 are
considered for di�erent values of p.

Case I. For p = 1, parameters are taken to be
" = 0:2, � = 0:1, c = 0:3, h = 0:4, and �t = 0:05.
The program is run up to time t = 800. The
three computed invariants are presented in Table 9.
Figure 8 shows that the initial perturbation evolves
into a well-developed train of solitons.
Case II. For p = 2, parameters are chosen as " = 0:2,
� = 0:1, c = 0:3, h = 0:4, and �t = 0:05. Simulation
is done up to time t = 800. In Table 10, the values
of the three invariants of motion are reported. It is
seen from Figure 9 that as the simulation proceeds,
undulations begin to develop and grow.
Case III. For p = 3, parameters are taken as " =
0:2, � = 0:1, c = 0:3, h = 0:1, and �t = 0:05.
The program proceeds until time t = 800. The
obtained values of the three invariants are tabulated
in Table 11. The developed undular bore is simulated

in Figure 10 at selected times. It is observed from
the Figure 10 that train of solitons disintegrates at
t = 800.

As a result, as the value of p increases, train of the
solitons breaks down. In addition, relative changes of

Table 9. Invariants for undular bore initial condition
with p = 1, " = 0:2, � = 0:1, c = 0:3, h = 0:4, and
�t = 0:05 at �50 � x � 150.

t I1 I2 I3

0.0 50.000150 45.000479 42.300704

100 50.000975 45.000496 42.300465

200 49.995691 45.000979 42.299923

300 50.013786 45.002598 42.300566

400 50.020459 45.004304 42.301412

500 50.027740 45.010674 42.305288

600 50.009887 45.003685 42.300962

700 49.972813 45.002301 42.300189

800 49.937274 45.018632 42.310068
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Figure 8. Developed train of solitons with p = 1, " = 0:2, � = 0:1, c = 0:3, h = 0:4, and �t = 0:05 at selected times.

Table 10. Invariants for undular bore initial condition
with p = 2, " = 0:2, � = 0:1, c = 0:3, h = 0:4, and
�t = 0:05 at�50 � x � 150.

t I1 I2 I3

0.0 50.000150 45.000479 40.434264

100 50.002451 45.000654 40.431994

200 49.963562 45.028383 40.452606

300 50.033638 45.011934 40.445650

400 50.126260 45.207891 40.703052

500 50.093727 45.101218 40.576255

600 50.096516 45.168962 40.782710

700 50.072840 45.207062 40.759703

800 49.978259 45.064224 40.577790

Table 11. Invariants for undular bore initial condition
with p = 3, " = 0:2, � = 0:1, c = 0:3, h = 0:1, and
�t = 0:05 at �50 � x � 150.

t I1 I2 I3

0.0 50.000003 45.000355 38.917721

100 50.001965 45.000375 38.917742

200 49.952482 45.052395 38.950250

300 50.043566 45.018658 38.921126

400 50.153590 45.239066 39.122895

500 50.268269 46.035793 39.887225

600 50.138874 45.333503 39.183510

700 49.932806 44.998598 38.852286

800 45.104351 45.258168 -69.395007
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Figure 9. Developed train of solitons with p = 2, " = 0:2, � = 0:1, c = 0:3, h = 0:4, and �t = 0:05 at selected times.

the conserved quantities increase and the number of
solitons decreases.

7. Conclusion

This paper studied KdV equation with power law
nonlinearity to understand the dynamics of shallow
water waves. The numerical scheme implemented in
this paper was collocation �nite element approach. The
results gave way to meaningful simulations that were
of great value in this study. A few special cases for
power law nonlinearity were considered to illustrate
the scheme. It was shown that KdV equation with
power law nonlinearity failed to maintain stability for
a particular value of this parameter.

The results of this paper stand on a strong footing
for further research in future. The perturbation terms

need to be included for a complete study of shallow
water waves. These perturbations are inevitable and,
thus, cannot be ignored. Two layered shallow water
waves need to be considered as well. In this context,
Bona-Chen model and Gear-Grimshaw equations can
be studied. This will lead to several interesting
and important observations that will be of prime
importance in shallow water wave dynamics. This
numerical scheme will later be applied to other models
as enumerated earlier in this paper. The new results in
this direction will be a project of our future work and
will be communicated in due course.
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