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Abstract. In this paper, an e�cient approach is presented for �nding optimal domain
decomposition in conjunction with k-median method. Using the clique graph, the
connectivity properties of �nite-element meshes are represented. In order to divide the
nodes of the graph or the meshes of the �nite-element model into k subdomains, k-median
approach is employed. For optimal subdomaining, a recently developed metaheuristic
algorithm, called Global Sensitivity Analysis-Based (GSAB), is utilized. The performance
of the proposed method is investigated through three �nite-element models to minimize the
cost of the k-median problem. A comparison of the numerical results obtained using the
proposed method with those obtained by standard Colliding Bodies Optimization (CBO)
and Particle Swarm Optimization (PSO) algorithms indicates that the proposed technique
is capable of obtaining more promising solutions using less computational e�orts.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Parallel processing has been widely applied to large-
scale problems, such as the analysis of hydraulic sys-
tems, electrical networks, and �nite-element meshes.
The aim of a parallel algorithm is to decompose the
given domain of system into subdomains and analyse
each subdomain by a processor. The dependency
between substructures is resolved after completing the
study of individual substructures.

Some algorithms were developed for optimal do-
main decomposition of �nite-element models [1-6], and
some review papers on this topic are also available [7,8].
Finding the medians of a graph is an NP-hard combina-
torial optimization problem, and the exact solution to
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the problem is complex and highly time consuming for
graphs with a large number of nodes. Such algorithms
can be found in the works of [9-12]. Therefore, many
approximate algorithms are developed for �nding the
medians of a graph. The simplest approach to dealing
with domain decomposition is referred to as the k-
median method [7]. In this method, a graph is associ-
ated with the topological property of the �nite-element
models. Then, the optimal medians in the graph are
selected, such that the sum of the distances of nodes
to medians becomes optimum. Recently, methods
have been developed using metaheuristics, such as
Genetic algorithms [13,14], bionomic approaches [15],
ant colony [16,17], particle swarm optimization, and
colliding bodies optimization [18], for obtaining solu-
tions to the k-median problem.

As a newly developed metaheuristic algorithm,
the Global Sensitivity Analysis-Based (GSAB) algo-
rithm is introduced for the design of structural prob-
lems [19]. In this method, the search space of the op-
timization is determined using the sensitivity indicator
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of variables. Unlike many metaheuristic algorithms, in
which all the variables are simultaneously changed in
the optimization process, in this approach, the sensitive
variables of the solution iteratively change more rapidly
than the less sensitive ones in the search space. This
algorithm utilizes simple formulation and requires no
parameter tuning.

In this paper, an algorithm based on the k-median
concept is presented for optimal domain decomposi-
tion of �nite-element meshes with continuous variables
using the GSAB algorithm. Computer programs are
developed to perform this optimization, and three
numerical examples with di�erent domain shapes are
presented to demonstrate the e�ciency of the proposed
method.

2. Mathematical formulation of the median
problem

The aim of the k-median problem is to cut a node
set, N , into k-node Nk 2 N , such that the sum of
the distances of nodes to the median nodes becomes
minimum. The problem of k-median can be stated as
optimizing a function which decomposes domain G into
k subdomains, G1; G2; � � � ; Gk, where k is the number
of subdomains [20]. The objective function, which must
be minimized, is formulated as follows:

�0(Nk) =
X
j2N

vjd(Nk; j); (1)

where �0(Nk) is called out-transmission of nodes Nk;
Nk is the median node number; vj is the weight of the
node j; and d(Nk; j) is de�ned as follows:

d(Nk; j) = min[d(i0; j)] : (i0 2 Nk): (2)

Let i0 be the node of Nk which corresponds to the
minimum value of Eq. (1), and then node j is allocated
to i0. A shortest-route tree is rooted in each node for
obtaining the shortest distance between nodes [5].

In order to �nd the nodal numbers of the medians
of a graph, the coordinates of the medians are consid-
ered as the variables of the optimization process. Then,
the nearest nodes from this coordinate are selected as
the medians of the graph. Otherwise, if nodal numbers
are considered as optimization variables, due to the
high number of meshes in �nite-element models, the
search space becomes very large; secondly, discrete
variables should be used in the optimization process.
Therefore, in this work, the proposed optimization
algorithm is considered to use the continuous variables.

3. A global sensitivity analysis-based
algorithm

This section introduces a Global Sensitivity Analysis-
Based (GSAB) optimization algorithm, which is a

single solution search method. The proposed algorithm
is named as \Global Sensitivity Analysis (GSA)" be-
cause of determining the Sensitivity Indicator (SI) of
decision variables for guiding the search boundaries of
the algorithm.

The samples/populations of GSAB algorithm are
used for two purposes: estimating the SI of decision
variables and �nding the single-solution of the algo-
rithm. Since these samples are not updated iteratively,
the proposed GSBA is studied within the single-
solution metaheuristic category. The feasibility space
of samples in the GSAB algorithm is updated for
searching the optimal solution over several iterations.
In each iteration, the feasibility space is updated using
two values consisting of the sensitivity indicators and
the global best sample. It is assumed that the problem
is a minimization problem in RD. The notations used
are as follows:
St The sample matrix in the tth iteration,

St = [Xt
i ji = 1; 2; � � � ; N ];

Xt
i The position of sample vector i in

the tth iteration, Xt
i = fxtij jj =

1; 2; � � � ; Dg;
Xmin The minimum allowable values vector

of variables, Xmin = fxminj jj =
1; 2; � � � ; Dg;

Xmax The maximum allowable values vector
of variables, Xmax = fxmaxj jj =
1; 2; � � � ; Dg;

f(Xi) The �tness of vector i;

UBt The upper search boundary vector
of variables in the tth iteration,
UBt = fubtj jj = 1; 2; � � � ; Dg;

LBt The lower search boundary vector
of variables in the tth iteration,
LBt = flbtj jj = 1; 2; � � � ; Dg;

BW t The bandwidth of search space
of variables in the tth iteration,
BW t = fbwtj jj = 1; 2; � � � ; Dg;

SF t The scale factor of bandwidth of
search space in the tth iteration,
SF t = fsf tj jj = 1; 2; � � � ; Dg;

Sbest The global best sample (i.e., with
lower �tness), Sbest = fsbestj jj =
1; 2; � � � ; Dg;

R A random vector within [0,1].

3.1. Methodology
The following steps outline the main procedure to
implement the GSAB.

Step 1. Initialization: The initial positions of
samples are determined with random initialization in
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the search space:

X0
i =Xmin+R(Xmax�Xmin); i=1; 2; � � � ; N; (3)

where X0
i determines the initial value vector of the

ith sample, and N is the number of samples;
Step 2. Calculation of the sensitivity indices of
variables: In this step, the outputs (the objective
function of the optimization problem) are calculated
�rst. The sensitivity analysis is conducted next for
the generated samples, and the Sensitivity Indicators
(SIs) of variables are calculated.

The most well-known methods for calculat-
ing the variance-based sensitivity indicators are the
Monte Carlo simulations; however, these do not make
full use of each output model evaluation. In order
to calculate the variance-based sensitivity indicators
from the given data, the scatter plot partitioning
method can be utilized [21]. For this method, a
single set of samples su�ces to estimate all the
sensitivity indicators. For estimating the variance-
based sensitivity indices, suppose that there are N
points/samples fX1; � � � ; XNg and N model output
samples fy1; � � � ; yNg obtained using model y =
g(X). The variance of Y can be calculated by sample
variance V (y). For the sample bounds of Xi as
[b1; b2], let it be decomposed into s successive, equal-
probability and non-overlapping subintervals Ak =
[ak�1; ak), with k = 1; � � � ; s, b1 = a0 < a1 <
� � � < ak < � � � < as = b2, and Pr(Ak) = 1=s.
Decompose the output samples fy1; � � � ; yMg into s
subsets according to the decomposition of Xi, where:

Bk = fyj jxji 2 Akg; k = 1; � � � ; s:
The conditional variance V (Y jxi 2 Ak) can then be
evaluated by the following:

V (Y jxi 2 Ak) = V (Bk): (4)

The expected conditional variance, Exi(V (Y jxi)),
can now be evaluated approximately using the fol-
lowing relationship:

Exi(V (Y jxi)) � 1
s

sX
k=1

V (Bk): (5)

Ultimately, the sensitivity indicator of the ith vari-
able, SIi, is calculated as follows:

SIi=
V (Y )�EXi(V (Y jXi)

V (Y )
=1�EXi(V (Y jXi)

V (Y )
:
(6)

In sensitivity analysis, SIi varies between 0 and
1. The lower value of SIi corresponds to the less
inuential Xi; the higher value of SIi corresponds to
the much inuential Xi; for SIi = 0, Xi will have no
inuence on Y ;

Step 3. De�nition of the search boundaries: In the
GSAB algorithm, the search boundaries are moved
around to the global best sample (which is updated
and memorized in each iteration), Sbest, to push the
samples into the feasible search space. The search
boundaries are also decreased based on the values
of sensitivity variables, which are evaluated in the
previous step. Hence, the upper and lower boundaries
of the search space of variables in the t+1th iteration
can be computed by the following:

UBt+1 = Sbest+ BWt � SFt � Xmax;

LBt+1 = Sbest� BWt � SFt � Xmin; (7)

where BWt and SFt are the bandwidth and scale
factor of boundaries in the tth iteration, respectively.
Eq. (7) ensures that the current search space is
moved around Sbest with bandwidth BW t in the D-
dimensional space. Vector BW t can be calculated as
follows:

BWt = max(Sbest� LBt;UBt � Sbest): (8)

For the algorithm to converge to a near-optimal solu-
tion, further exploitation (strong locality) is required
to move the current solution towards the optimal one.
In the proposed GSAB algorithm, this is achieved by
using a scale factor, SF. For this purpose, once SI
values of variables are calculated, the most sensitive
variable, i.e., variable with high SI value, is identi�ed
for reducing the bandwidth; then, SF is calculated as
follows:

SFj =

(
1� sij if sij = max(SI)
1 Otherwise

8j = 1; � � � ; D: (9)

This equation shows that the bandwidth of the most
sensitive variable decreases, while other bandwidths
are constant in the tth iteration;
Step 4. Replacement of the current samples: In this
step, the samples must be ensured to be inside the
new search boundaries. For this purpose, the samples
that exceed the boundaries are regenerated randomly
in the new search boundaries as follows:

Xt+1
i =

8>>><>>>:
Xt
i ; LBt+1 � Xt

i � UBt+1;

LBt+1+R(UBT+1

�LBt+1) Otherwise;
(10)

where i = 1; 2; � � � ; N , and t represents the iteration
index.
Step 5. Termination: The optimization process is
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Figure 1. Flowchart of the GSAB.

repeated from Step 2 until a termination criterion,
such as maximum iteration number or no improve-
ment of the best sample, is satis�ed. In the GSAB
algorithm, if the maximum bandwidth of the search
space, max(W ), becomes smaller than 0.000001, the
optimization process will be terminated. This is
because the GSAB cannot change the search space
of the agents. For the sake of clarity, the owchart of
the optimization procedure using the proposed GSAB
is shown in Figure 1.

4. Examples

In this section, three numerical examples are studied.
The topological properties of the �nite-element models
are transferred to the connectivity properties of graphs
by the clique graphs [4]. A clique graph G of a FE mesh
has its nodes in a one-to-one correspondence with the
elements of the considered FE mesh, and two nodes
of G are connected by an edge if the corresponding
elements have at least one common node. In all of
these examples, the weights of all the edges and the
demands of all nodes are taken as unity, and the four-
node rectangular meshes are considered for the FEMs.

In order to compare available metaheuristic al-
gorithms, all of the examples are also solved using
the Particle Swarm Optimization (PSO) and Colliding
Bodies Optimization (CBO) [18]. In these examples,
the number of agents is set to 20 individuals. Compar-
isons are made through the cost of k-median problem

and the number of function evaluations as well as the
convergence curves.

4.1. Example 1
A rectangular FEM for a plate, shown in Figure 2,
is considered as the �rst example. The numbers of
medians in this example are set to k = f3; 4; 5; and
6g. As can be seen in Figure 2, the number of meshes
is 2601(51 � 51). The performance of the algorithms
is tested on this model, and the results are depicted
in Table 1. Figure 3 shows the optimal subdomains
of FE meshes with di�erent colors for di�erent values
of k. The evolution processes of the best �tness value
obtained by three algorithms for k = 6 are also shown
in Figure 4.

4.2. Example 2
The FEM of a rectangular plate with four openings
consisting of 760 meshes, as shown in Figure 5, is
considered. The number of medians considered in this
example is set as k = f5 and 10g. The performance
of the proposed algorithm is tested on this model,
and the results are depicted in Table 1. Figure 6
shows the optimal subdomains obtained using the
GSAB algorithm for di�erent values of k, and Figure 7
illustrates the convergence curves of the best results
obtained for this example.

4.3. Example 3
In the last example, a circular plate with 2400 elements
having one opening is considered (Figure 8). The



2484 A. Kaveh and V.R. Mahdavi/Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 2480{2487

Table 1. The optimal cost and CPU time obtained using the CBO and PSO algorithms for the examples.

The number
of medians

Algorithm
PSO CBO Proposed method

Cost
Number of

function
evaluations

Cost
Number of

function
evaluations

Cost
Number of

function
evaluations

Example 1

k = 3 28122 4000 28097 4000 28099 1494
k = 4 22186 4000 22113 4000 22113 2235
k = 5 20589 4000 20505 4000 20507 3746
k = 6 19219 4000 18924 4000 18927 2537

Example 2 k = 5 3809 6000 3787 6000 3798 1765
k = 10 2876 6000 2589 6000 2563 3954

Example 3 k = 5 21745 8000 21508 8000 21400 3288
k = 10 15742 8000 15071 8000 14759 4172

Figure 2. (a) A 2601 rectangular FEM for a rectangular
plate. (b) The associated clique graph.

number of medians considered in this example is k =
f5 and 10g. Similar to the previous examples, the
performance of all the algorithms is tested on this
model, and the results are depicted in Table 1. Figure 9
shows also the optimal subdomains obtained using the
GSAB algorithm for di�erent values of k, and Figure 10

Figure 3. A FEM divided into k subdomains using the
GSAB algorithm: (a) k = 3, (b) k = 4, (c) k = 5, and (d)
k = 6.

Figure 4. The convergence curves for k = 6 using three
algorithms.
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Figure 5. A plate FE mesh with 760 elements.

Figure 6. An FE mesh divided into k subdomains using
the GSAB algorithm: (a) k = 5 and (b) k = 10.

illustrates the convergence curves of the best result
obtained for this example.

4.4. Discussions
As can be seen in Figures 3, 6, and 9, the problem of
�nding the median of the considered FEMs is achieved
using the proposed method. The optimal subdomains
contain approximately equal numbers of meshes to
balance the computational load between processors
and, also, have good aspect ratios.

Table 1 shows the comparison of the results
obtained using the GSAB algorithm and those of the

Figure 7. The convergence curves for k = 10 using three
algorithms.

Figure 8. The FEM of a circular plate with one opening.

CBO and PSO algorithms for all the examples. It can
be seen in this table that the best costs obtained by the
presented algorithm are better than those of the PSO
and CBO algorithms, except for some cases with few
number of function evaluations.

According to Figures 4, 7, and 10, although CBO
and PSO are considerably faster in the early opti-
mization iterations, GSAB converges to a signi�cantly
better decomposition without being trapped in local
optima.

5. Concluding remarks

This paper proposed an optimal subdomain decompo-
sition method for �nite-element meshes based on the
Global Sensitivity Analysis-Based (GSAB) algorithm
and k-median method. In this method, the search
space of the optimization was determined using the
sensitivity indicator of variables, and the sensitive
variables of solution were iteratively changed more
rapidly than the less sensitive ones in the search space.
In order to �nd the optimal subdomains, a clique graph
was used to transform the connectivity properties of FE
meshes into those of graphs. Then, the medians of the
graph were selected based on optimization algorithm
with the continuous variables.
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Figure 9. An FEM divided into k subdomains using the
GSAB algorithm: (a) k = 5 and (b) k = 10.

Figure 10. The convergence curves for k = 10 using three
algorithms.

The validity and e�ciency of the proposed
method were illustrated using three test problems. The
proposed algorithm solutions were compared with the
best-known standard particle swarm optimization and
colliding bodies optimization algorithms. The outcome
was that the GSAB algorithm clearly outperformed
the PSO and CBO algorithms with the few number
of function evaluations.
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