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Abstract. This paper investigates the optimal distribution of Wall Shear Stress (WSS)
in a bifurcation and its e�ect on the morphology of blood vessels. The optimal WSS is
obtained through minimization of energy loss due to friction and metabolic consumption.
It is shown that the optimal WSS is a function of metabolic rate, uid properties, diameter,
and ow regime. For fully developed laminar and turbulent ows, di�erent patterns of WSS
are observed. The WSS is shown to be constant for the laminar ow, while it is a function
of the tube diameter for the turbulent ow, in which the exponent of diameter varies
with the tube relative roughness. Based on the optimal WSS and conservation of mass,
the optimal relationship between diameters of mother and daughters' vessels is obtained
for di�erent ow regimes. Also, it is theoretically shown that the optimal distribution of
WSS in a bifurcation minimizes ow resistance as well as energy loss. In addition, it is
demonstrated that the speci�c relationship between the length and diameters of a blood
vessel and optimal relationship between diameters lead to the optimal WSS distribution.
Finally, the numerical simulation is used to investigate the e�ect of Reynolds number on
the optimal WSS and ow resistance and to verify the theoretical formula predictions,
obtained in this work.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Optimality principles in arterial branching have often
been studied to predict the relationships between di-
ameters and bifurcation angles of arterial junctions
since Murray's work in the 1920s [1,2]. Based on the
principle of minimum energy and conservation of mass,
Murray formulated a relationship between the diameter
of the mother vessel and the diameters of the daughter
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vessels [1,3]. This relationship links the diameter of
the mother vessel to that of the daughter vessels as
D3

0 = D3
1+D3

2, whereD0, D1, andD2 are the diameters
of the parent and two daughter vessels, respectively.
Based on Murray's law, cost function is the sum of the
rate at which work is done on the blood and the rate
at which energy is used up by the blood vessel due
to metabolism [3]. By minimizing the cost function
with respect to the radius, he obtained Q = kD3,
where Q and D denote the volumetric ow rate and
the diameter of a vessel segment, respectively, and k
is a constant. A generalization of this relation can
be proposed as Q = kDC where C is a constant and
is determined based on uid properties and energetic
principles, i.e. exponent 2 (Q = kD2) corresponds
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to conservation of the area, and thus constant ow
velocity in and out of the bifurcation [4,5]. Exponents
greater than 2 suggest a decrease in ow velocity, while
exponents less than 2 imply an increase in ow velocity
downstream of the bifurcation. Therefore, applying the
Murray's law at the bifurcation leads to the decrease
of mean velocity downstream of the bifurcation [5].
Furthermore, the shear stress on the vessel walls is
uniform and independent of vessel diameter for laminar
regimes, where C = 3 [6]. Uylings [7] argued that
exponent C can vary in the range of 2.33 to 3.0
depending on whether the ow is turbulent (in large
arteries) (2.33) or laminar (3.0) [8]. The optimization
model suggested by Uylings was derived from minimal
energy loss due to frictional resistance of laminar and
turbulent ows and the volume of the duct system [7].
Numerous papers have been published in the past
century on Murray's law and the validation of the
exponent. Although some studies support the expo-
nent predicted by Murray's law, the value of exponent
has been debated for di�erent anatomical districts and
species.

However, it also has been reported by some in-
vestigators that the assumption of constant wall shear
stress throughout the vasculature predicted by Mur-
ray's law may not be realistic, and exponent 3 in Mur-
ray's law must be replaced by di�erent exponents [4,9].
In vivo measurements of the exponent for di�erent
arteries, it has been shown that the real exponent of
Murray's law is about 2 for aortic bifurcation, 2.5 to 3
for coronary, 2.9 in carotid bifurcation, and about 3 in
arterioles [5,9-11].

Furthermore, in the upper airways of the lung,
turbulent ow exists during inspiration, which changes
to laminar ow in the lower airways [7]. The blood
ow in the aorta of, for instance, normal rabbits and
humans is turbulent under some circumstances which
changes to laminar ow in the arteries. Di�erent types
of ow are thus present in both lung and vascular tree
structures [7].

The objective of this study is to determine the
e�ect of the optimal pattern of WSS on the design
of a bifurcation of a blood vessel for di�erent ow
regimes. A general formulation was obtained for the
distribution of the optimal WSS in the microvascular
bifurcation. Furthermore, an extension of Murray's
law as a function of diameter and ow regime was
developed. Also, the necessary and su�cient condition
of blood vessels architecture for providing the optimal
pattern of WSS was discussed. Based on the mini-
mization of ow resistance, the optimal relationship
between mother and daughter was interpreted as a
ow architecture, providing minimal ow resistance.
Moreover, to verify the theoretical formula predictions,
the e�ect of Reynolds number on the optimal WSS and
the ow resistance was numerically investigated.

2. Methods

2.1. Structure and geometry of vessel walls
Arteries and veins are mainly composed of three layers
called intimal, media, and adventitia that surround
the lumen of blood vessels. The intima, which is
in intimate contact with blood, contains endothelium
that lines the lumen of the vessel, enabling blood
vessel to sense shear stress. Flow-induced changes
in vessel caliber tend to restore baseline WSS and
have been reported to be endothelium-dependent [12].
Endothelium lining the cardiovascular system is highly
sensitive to hemodynamic shear stresses that act at the
vessel luminal surface in the direction of blood ow.
Physiological variations of shear stress regulate acute
changes in the vascular diameter, while pathological
shear stress results in maladaptive growth and the
structural remodeling [13]. Regions of ow distur-
bances near arterial branches, bifurcations, and curva-
tures result in complex spatiotemporal shear stresses
and their characteristics can predict atherosclerosis
susceptibility. Changes in local artery geometry during
atherogenesis further modify shear stress characteris-
tics at the endothelium [13].

Furthermore, in order to study the e�ects of
optimality and e�ciency in cardiovascular system, it
is necessary to consider the close vicinity of junction
points as it is the most important part in the geometry
of blood vessels. Similar to Zamir's work [14], the
branching geometry at a junction is de�ned in terms
of the tangents to the center lines of the vessels at the
junction point [14]. Additionally, in the close vicinity
of the junction point, the vessels are considered to be
straight longitudinally with their walls parallel to the
tangents of their respective center lines at the junction
point [14]. This is clearly an approximation that leads
to the tree-shaped ow structure model, which is a
simpli�ed model to study hemodynamic phenomena
both experimentally and theoretically. The tree-shaped
bifurcation can be symmetrical or asymmetrical. In
this study, a bifurcation with two daughter branches
is selected, where L0 and D0 refer to the length and
diameter of the mother branch; L1, D1, and L2, D2
are also the length and diameter of the �rst and second
daughter branches, respectively.

2.2. Optimum design of blood vessel
bifurcation

2.2.1. Volumetric ow rate and viscous loss
Friction factor as a function of Reynolds number for
di�erent ow regimes can be written as follows:

Cf =
�w

1
2�u2 =

g
Ren

: (1)

In the above equation, g and n are determined by ow
regimes. For laminar and turbulent regimes, g and n



M. Golozar et al./Scientia Iranica, Transactions B: Mechanical Engineering 24 (2017) 2387{2395 2389

depend on Reynolds number and wall properties. Using
Eq. (1) and the de�nition of Reynolds number (Re =
VD
v ), ow rate (Q) and power loss due to friction in the

conduit (�) can be calculated as follows:

Q = �(�wD4�n)
1

2�n ; (2)

� = �L�
n�3
n�2
w D

2
2�n ; (3)

where � = (2g�n�2�n�)
1

n�2 and � = 4 �
(2g�(n�2)�n�)

1
n�2 are constants for blood. For details,

see Appendices A and B.

2.2.2. Optimal WSS distribution
In biological systems, there are usually two terms of
energy loss. The �rst loss, �, is the energy required
to pump uid through the conduit to overcome viscous
losses. The second term can be related to the cost
function at which energy is used up through blood
vessels by metabolism [3]. Hence, the total energy loss
in the system can be found by summing the viscous
and metabolic components as given below:

Eglobal = �+ �
�
�D2

4
L
�
; (4)

where � is power loss, � is metabolic rate, and D and
L are the diameter and length of conduit, respectively.

The global energy in Eq. (4) can be expressed as
follows:

Eglobal = �D
n�5
n�2L

1
n�2 (�P )

n�3
n�2 + �

�
�
D2

4
L
�
; (5)

where � = 32
1

n�2 (4�ng�n�2�n�)
1

n�2 is a constant.
At constant diameter of the vessel, constant pres-

sure di�erence along the vessel, and constant metabolic
rate, total energy, Eglobal, is a minimum when:

L = 	
�P

D
n+1
n�3

; (6)

where 	 = ( 4�
(2�n)�� )

n�2
n�3 is a constant.

Finally, by using the de�nition of WSS, �w =
�P.D

4L , the optimal WSS can be expressed as follows:

�w = �D
2(n�1)
n�3 ; (7)

where � = (�8
n
n�2 �(n � 2)(g�n�)� 1

n�2 )
n�2
n�3 is a con-

stant.
From Eq. (7), we can see that for laminar ow,

where n = 1, the wall shear stress through a conduit is
only a function of uid properties. With the transition
from laminar to turbulent ow, the value of n becomes
continuously smaller and the exponent of the conduit's
diameter becomes larger; in addition, with n = 0 as the

limit in the case of fully turbulent ow, the exponent
of the conduit's diameter is 2=3.

Consequently, WSS for turbulent ow depends on
the diameter of the conduit, and it increases with the
increase of the diameter.

By using Eq. (7) for mother and daughter vessels,
the relationship between mother and daughter's WSS
is obtained as follows:

�wall,daughter

�wall,mother
=
�
Dd

Dm

� 2(n�1)
n�3

: (8)

It is obvious that for laminar ow, where n = 1, WSS of
the mother conduit is the same as that of the daughter
conduit, and for 0 � n � 1, this ratio is dependent on
the ratio of the diameters, resulting in a di�erent WSS
in mother and daughter vessels.

2.2.3. Optimal relationship of diameters between
mother and daughter branches

By substituting WSS from Eq. (6) into Eq. (2) (see
Appendix B), the volumetric ow rate of a conduit
can be expressed as a function of conduit's diameter
as follows:

Q = �D(n�7
n�3 ); (9)

where � = ��� 1
n�2 is a constant. The optimum

relationship between the diameter of parent, D0, and
daughter branches, D1 and D2, can be derived from
Eq. (9) using the principle of conservation of mass at
the bifurcation point:

D(n�7
n�3 )

0 = D(n�7
n�3 )

1 +D(n�7
n�3 )

2 : (10)

This relationship is a general extension of Murray's law
for ow in arterial bifurcations. Di�erent relationships
derived by substituting the respective values of n in
Eq. (10) are summarized in Table 1. Also, the above
equation can be veri�ed by the result presented in the
work of Uylings.

2.2.4. Geometric conditions for providing the optimal
WSS distribution

Eq. (10) was derived under the assumption of the
optimal WSS in the bifurcation. This argument would
only be valid if we obtain Eq. (10) from the assumption
of the optimal WSS. It is indispensable to understand
that the reverse conclusion does not necessarily hold
true. In other words, if the optimal relationship
between mother and daughter vessels (Eq. (10)) exists
in a bifurcation, we cannot conclude that WSS is
optimal. Further assumption is required to infer such
an implication.

Using Eqs. (1) and (7) and conservation of mass
(Q0 = Q1 + Q2) for a bifurcation (see Appendix E)
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Table 1. Optimal geometrical relationship between daughter and mother vessels.

Flow regime Relationship
for diameters

Relationship between
diameters and lengths

Laminar D3
0 = D3

1 +D3
2 L1=D1 = L2=D2

Turbulent (smooth)
�
n = 1

4

�
D

27
11
0 = D

27
11
1 +D

27
11
2 L1=D

5
11
1 = L2=D

5
11
2

Turbulent (rough) (n = 0) D
7
3
0 = D

7
3
1 +D

7
3
2 L1=D

1
3
1 = L2=D

1
3
2

results in the optimal WSS in the bifurcation as follows:

L0

D
n+1
3�n
0

=
L1

D
n+1
3�n
1

=
L2

D
n+1
3�n
2

; (11)

D(n�7
n�3 )

0 = D(n�7
n�3 )

1 +D(n�7
n�3 )

2 : (12)

It is obvious that for laminar ows, where n = 1,
Eq. (10) is the same as Murray's law, and Eq. (11)
becomes L0=D0 = L1=D1 = L2=D2. Consequently,
in order to obtain the optimal WSS in a bifurcation,
in addition to Eq. (10), the ratio of the length and
diameter of the mother vessel must be equal to the
ratio of the length and diameter of the daughter vessel.
The results of the above equation for di�erent values
of n are summarized in Table 1.

2.2.5. The optimal architecture and minimal ow
resistance

Constructal theory states that natural ow systems
have evolved, such that they provide easier access to
global ow [15,16]. In this regard, the architecture
of an optimal vascular system should minimize ow
resistance to provide easier access of blood ow. In
other words, for vascular systems, the ow resistance
must be minimized [5]. Minimization of ow resistance
(Rs = �p=Q2�n) of a tree-shaped bifurcation (see
Appendix D) results in:

L1

D
n+1
3�n
1

=
L2

D
n+1
3�n
2

; (13)

D(n�7
n�3 )

0 = D(n�7
n�3 )

1 +D(n�7
n�3 )

2 : (14)

Comparing Eqs. (11) and (12) and Eqs. (12) to (14)
shows that minimizing energy loss provides minimal
ow resistance in the bifurcation as well.

2.3. Numerical simulation
The e�ects of Reynolds number on WSS distribution
and ow resistance are investigated for laminar ows.
In addition, the e�ects of the ratio of mother and
daughter diameters on ow resistance with respect to
di�erent Reynolds numbers are considered.

The geometry of the bifurcation is symmetrical
with a mother and two identical daughter branches.
Radius and length of the mother branch are 0.5 cm
and 5 cm, respectively, similar to Aorta vessels [5,6].
Also, the ratio of the diameter and length of the
daughter to mother branches are Dd=Dm = 2�1=3 �=
0:8 and Ld=Lm = 2�1=3, respectively. For comparison,
di�erent geometries were chosen under the assumption
of equal occupied volumes. Under this assumption, dif-
ferent ratios of daughter to mother diameters (Dd=Dm)
were chosen as 0.4, 0.5, 0.6, 0.7, 0.9, and 1.

The blood ow was assumed to be steady, lam-
inar, and incompressible. An average velocity at the
inlet and zero pressure (Pout = 0) at the outlet were
assigned. The density and viscosity of blood are
1050 kg/m3 and 0.00345 pa.s, respectively [17]. Also,
the wall was assumed to be rigid. Furthermore, the
average velocity at the inlet was selected as 50 cm/s,
5 cm/s, and 0.5 cm/s; the corresponding Reynolds
numbers are 1400, 140, and 14. A 3-D �nite-element
numerical algorithm was used to obtain the distribution
of the pressure and velocity �elds of the blood ow in
the bifurcation. The governing equations are expressed
as follows:

r � �u = 0; (15)

��u � r � �u = r � P + �r2�u; (16)

where P , �, and � are the uid pressure, density, and
viscosity, respectively.

3. Results and discussion

The e�ects of Reynolds number and geometrical pa-
rameters on the optimal WSS and the ow resistance
were investigated. Figure 1(a)-(c) show velocity distri-
bution for an idealized geometry of Aorta bifurcations.
As shown in this �gure, with the increase of Reynolds
number, the maximum velocity in the daughter vessel
deviates and gets closer to the inner wall of the vessel.
In addition, we notice from Figure 2 that streamlines
deviate at the junction point, and as the Reynolds
number increases, they get closer to the inner wall of
the vessel. In fact, as the Reynolds number increases,
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Figure 1. Velocity distribution and blood ow pattern in aorta geometry with the diameter ratio of 0.8 for: (a) Re = 14;
(b) Re = 140 and (c) Re = 1400.

Figure 2. Streamlines of blood ow in aorta geometry
with the diameter ratio of 0.8 for (a) Re = 14 (b)
Re = 140, and (c) Re = 1400.

the e�ects of inertia become important in the close
vicinity of the junction point. Consequently, as a result
of inertia e�ects, the velocity pro�le deviates at the
junction point. As can be seen in Figure 1(b), the
velocity is higher near the interior wall of the junction
and it is lower near the outer wall of the junction.

Figure 2(a)-(c) show streamlines in mother and
daughter vessels. For low Reynolds numbers (Re = 14),
there is no deviation in streamlines while entering the
daughter vessel. This is due to the constant velocity
distribution in the bifurcation. As the Reynolds num-
ber increases, the e�ect of inertia on blood at the junc-
tion point forces blood to accelerate towards the inner
wall of the junction as entering the daughter branch;
consequently, the density of streamlines increases in
this region, and the density of streamlines in the outer
wall of the branch decreases. This inhomogeneous
distribution of streamlines creates a disturbed region,
i.e. region of ow separation, in an arterial branch
which is highly susceptible to atherosclerosis. Flow
separations at an arterial branch can predispose or
contribute to pathogenesis [13]. The primary char-
acteristics of disturbed ows are low average shear
stress, constantly changing gradients of shear stress,

oscillatory ow (and shear stress) due to ow reversal,
and multi-frequency, multidirectional, secondary ows.
On the other hand, high shear stress protects against
atherosclerosis as long as it remains below the levels
that detach the endothelium (estimated > 40 pa) [13].

It can be seen from Figure 3(a)-(c) that as the
Reynolds number increases, the pressure at the inner
region of the junction point increases, and the pressure
in the region near the outer wall of the junction point
decreases. The reduction of pressure near the outer
wall is the result of inertia e�ects which cause blood
molecules to accelerate towards the inner wall. On the
other hand, for low Reynolds numbers (Re = 14), the
inertia e�ects can be neglected and the pressure loss
near the junction point is negligible. In addition, as
can be seen in Figure 3, with the increase of Reynolds
number, the pressure in cross-sections of daughter
vessels is not constant. Since the theoretical formulas
were derived under the assumption of fully developed
ow, the increase in Reynolds number reduces the
validity of the obtained formulas. Such a phenomenon
is best observed at high Reynolds numbers (Re = 1400)
in daughters' branches.

Figure 4 depicts the variation of WSS ratio versus
Reynolds number for Newtonian uid. From this
�gure, it is visible that for low Reynolds numbers, up
to 100, WSS ratio is equal to one, meaning that WSS
is the same in mother and daughter vessels. This is
evidenced through the derived analytical relationships
in this article, predicting constant WSS in blood vessel
bifurcations with laminar ows. As Reynolds number
further increases, the inertia e�ects overcome viscous
e�ects, leading to an increase in the WSS ratio.

Figure 5 illustrates the variation of ow resis-
tance versus Reynolds number for di�erent ratios of
diameter of daughter to mother branches. Also, the
volume of branches for di�erent diameter ratios is the
same. According to Eq. (10), the optimal diameter is
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Figure 3. Pressure distribution in aorta geometry with the diameter ratio of 0.8 for (a) Re = 14, (b) Re = 140, and (c)
Re = 1400.

Figure 4. Ratio of WSS of daughter to mother branches
with respect to Reynolds number.

Figure 5. Flow resistance as a function of Reynolds
number for di�erent ratios of diameters of mother to
daughter vessels.

Dd=Dm = 2� 1
3 = 0:8. It can be seen from Figure 5

that, for a constant ratio of diameters, as the Reynolds
number increases, ow resistance increases. It was also
observed that for small diameter ratios, the increase in
ow resistance is very considerable compared to larger
diameter ratios that are close to one.

Figure 6 indicates the variation of ow resis-
tance versus the diameter ratio for di�erent values
of the Reynolds number. The non-dimensional ow
resistance is the ratio of ow resistance to maximum
ow resistance for each Reynolds number given in
Figure 5. Also, Figure 6 illustrates the variation of
ow resistance with respect to the diameter ratio for
constant Reynolds numbers. This �gure shows that for
small Reynolds numbers, the minimum ow resistance
occurs at the diameter ratio of 0.8. In other words, for
small Reynolds numbers, the diameter ratio of 0.8 is the
optimal geometry con�guration leading to a minimum

Figure 6. Non-dimensional ow resistance as a function
of the ratio of diameters for di�erent Reynolds numbers.
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ow resistance. It can be also seen from Figure 6 that
for high Reynolds numbers, the simulation calculations
predict that minimum ow resistance is likely to hap-
pen where the diameter ratio is close to one. Since
the inertia e�ects, such as ow contraction, separation,
and secondary ow, are dominant at high Reynolds
numbers, equal diameters of mother and daughter
branches predict lower ow resistance. However, for low
Reynolds numbers, viscous e�ects are dominant and
analytical results are in agreement with numerical ones.

4. Conclusion

In this paper, the optimal distribution of WSS in a
bifurcation and its e�ect on the pattern of diameters
of blood vessels were investigated. Using the principle
of minimum energy, the optimal WSS was obtained.
It was shown that the optimal WSS is a function of
metabolic rate, uid properties, diameter, and ow
regime. Di�erent patterns of WSS were obtained for
fully developed laminar and turbulent regimes. For
laminar ows, WSS was predicted constant through the
bifurcation, but for turbulent ows, WSS is a function
of diameter, such that the exponent of diameter varies
with tube relative roughness. It was shown that, for
smooth tubes, the exponent is 6/11, but for fully rough
tubes, the exponent is 2/3. Based on the optimal WSS
and conservation of mass, the optimal relationship
between diameters of mother and daughters vessels was
obtained as a function of ow regime. Also, it was the-
oretically shown that the optimal relationship between
diameters of a bifurcation minimizes the ow resistance
as well as energy loss. Furthermore, it was shown that
the optimal relationship of diameters and a speci�c re-
lationship between diameter and length of vessels pro-
vide the optimal WSS distribution in the bifurcation.
Finally, numerical simulation showed that for large
Reynolds numbers in the close vicinity of the bifurca-
tion point, WSS in the lateral wall is smaller compared
with medial wall. Furthermore, simulation results for
symmetrical bifurcation showed that the diameter ratio
of 0.8 predicts the minimum ow resistance for low
Reynolds numbers, which is in agreement with the ana-
lytical results, but diameter ratio equal to one predicts
minimum ow resistance for large Reynolds numbers
(Re = 1400). Also, it was observed that increasing the
Reynolds number is accompanied by increasing the ow
resistance. However, this e�ect becomes less important
as diameters' ratio approaches one.
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Appendix A

Friction factor and fanning friction factor
Fanning friction factor for fully developed ow through
a pipe is de�ned as follows:

Cf =
�w

1
2�V 2 ; (A.1)

where �w is the shear stress at the wall and V is the
uid velocity in the pipe given by V = Q

A ; Q and A are
the volume ow rate through the duct and the cross-
sectional area of the duct, respectively. Substituting
into Eq. (A.1), we have:

Cf =
�w

1
2�Q2

��
4
D2
�2
: (A.2)

The dimensionless friction factor can be written as
follows:

Cf =
g

Ren
=

g�
4Q
��D

�n ; (A.3)

where D is the diameter of the pipe, � is kinematic
viscosity, and the values of constants g and n in
Eq. (A.3) are dependent upon the value of the relative
roughness of the vessel wall and the value of Reynolds
number, Re. The relations between these quantities
are depicted in the Moody diagram [18].

The exponent values of D and Q are determined
exclusively by n, where 0 � n � 1. Value n = 1 holds
for laminar ow. With the transition from laminar to
turbulent ow, the value of n becomes continuously
smaller, with n = 0 as the limit in the case of
completely turbulent ow [7].

Appendix B

Derivation of volumetric ow rate and viscous
loss
Based on WSS of conduit and using Eqs. (A.2)
and (A.3), the ow rate can be calculated as follows:

Q = �
�
�wD4�n� 1

2�n ; (B.1)

where � = (2g�n�2�n�)
1

n�2 is a constant for blood.
A second law of thermodynamic analysis on a

conduit's segment of constant cross-section provides
the following expression for the power loss due to
friction [3,5]:

� = Q�P: (B.2)

For fully developed ow, the momentum balance relates
the pressure drop to the shear stress as:

�w =
�P
L

D
4
; (B.3)

where �w is the shear stress at the wall, and �P and
L refer to pressure drop and length along the conduit,
respectively. D is the diameter of conduit.

Using Eqs. (B.1) and (B.3), the power loss due
to friction can be expressed as a function of wall shear
stress:

� = �L�
n�3
n�2
w D

2
2�n ; (B.4)

where � = 4� (2g�(n�2)�n�)
1

n�2 is a constant.

Appendix C

Derivation of the relationship between mother
and daughter vessels for turbulent ow in
smooth pipes
One of the purposes of our study is to �nd a new
relationship between mother and daughter vessels with
regard to their diameters for turbulent ow in smooth
pipes.

For Turbulent ow in smooth pipes, the Blasius
correlation, valid for 2� 103 � ReD � 105, is:

f =
0:316
Re:25 : (C.1)

Fanning friction factor is one-fourth of the Darcy's
friction factor (f = 4Cf ); hence:

Cf =
0:079
Re0:25 : (C2.)

From Eq. (C.2), we can see that the values for g and
n are 0.079 and 0.25, respectively. Thus, for turbulent
ow in smooth pipes, the extension of Murray's law
becomes:

D( 27
11 )

0 = D( 27
11 )

1 +D( 27
11 )

2 : (C.3)

Appendix D

Derivation of the optimal relationships
between diameter and length using
minimization of ow resistance
By using Eqs. (B.1) and (B.3), we can derive a
relationship between pressure drop and ow rate of
a conduit with respect to geometry characteristics as
follows:

�p = CQ2�n L
D5�n ; (D.1)
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where C is a constant and n is an indicator to determine
the ow regime.

With regard to geometry parameters and uid
ow constants, the ow resistance is de�ned as follows:

Rh = C
L

D5�m : (D.2)

Using the conservation of mass (Q0 = Q1 + Q2) and
the total pressure drop (�p = �p0 +�p1;�p1 = �p2),
the total ow resistance can be expressed as follows:

Rh =C

(
L0

D5�n
0

+

 �
L1

D5�n
1

� 1
2�n

+
�

L2

D5�n
2

� 1
2�n
!n�2)

:
(D.3)

Using the Lagrange multiplier method to �nd where
Rh is minimized subject to the constraint, that the
total volume of conduit is a constant, �(R2

0L0 +R2
1L1 +

R2
2L2) = const, results in the following equations:

	 = Rh +
�
4

(�D2
0L0 + �D2

1L1 + �D2
1L1); (D.4)

@ 
@R0

= 0;
@ 
@R1

= 0;
@ 
@R2

= 0: (D.5)

Elimination of Lagrange multiplier (�) between
Eqs. (D.5) yields the following results:

D(n�7
n�3 )

0 = D(n�7
n�3 )

1 +D(n�7
n�3 )

2 ; (D.6)

L0

D
n+1
3�n
0

=
L1

D
n+1
3�n
1

: (D.7)

Appendix E

Optimal architecture and minimal ow
resistance
In order to �nd the second necessary condition for
optimal WSS, we use conservation of mass (Q0 = Q1 +
Q2) and total pressure drop (�p = �p0 + �p1;�p1 =
�p2) formulas in a bifurcation, in addition to pre-
assumption equation (Eq. (9)).

By substituting Eq. (B.3) into Eq. (B.1), volume
ow rate in a conduit can be expressed as follows:

Q = !
�
LDn�5

�p

� 1
n�2

; (E.1)

where ! is a constant.
From Eq. (E.1), we can obtain the pressure drop

as:

�P = cQ2�m
�

L
D5�m

�
; (E.2)

where c is a constant.
By de�ning R = c L

D5�m and using Eq. (E.1)
and conservation of mass, total pressure drop can be
obtained as follows:

�p = �p0

�
1 +

R1R2

R0(R1 +R2)

�
; (E.3)

where R0, R1, and R2 are L0
D5�m

0
, L1
D5�m

1
, and L2

D5�m
2

,
respectively.

By substituting pressure drop into Eq. (B.3),
solving the equation for WSS of the conduit using
Eq. (10), and assuming L0

D
n+1
3�n
0

= L1

D
n+1
3�n
1

= L2

D
n+1
3�n
2

, we

can �nd that WSS is optimal.
Consequently, if Eq. (10) exists between mother

and daughter vessels, the only assumption that can lead
to optimal WSS is L0

D
n+1
3�n
0

= L1

D
n+1
3�n
1

= L2

D
n+1
3�n
2

.
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