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Abstract. The time history analysis and propagation of molar concentration, temper-
ature, and displacement waves are studied in details using an analytical method. The
method is applied to coupled non-Fickian di�usion-thermoelasticity analysis of a strip. The
governing equations are derived using non-Fickian theory of di�usion and classic theories
for coupled thermoelasticity. Molar concentration and thermoelastic wave propagations
are considered to be of �nite speed. The governing equations are �rst transferred to
the frequency domain using Laplace transform technique. The unknown parameters are
then obtained in analytical forms proposed by the presented method. By employing the
Talbot technique, the unknown parameters are eventually determined in time domain. It
can be concluded that the presented analytical method has a high capability for dynamic
and transient analysis of coupled di�usion-thermoelasticity problems. The wave fronts in
displacement, temperature, and molar concentration �elds can be tracked at various time
instants employing the presented analytical method.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Di�usion can be de�ned as the random walk of an
ensemble of particles, from regions of high concentra-
tion to regions of lower concentration. The coupling
between the thermoelastic �elds and concentration of
di�usive gas takes place when a solid body is immersed
in a gas. Thermo-di�usion in an elastic solid is due
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to the �eld of temperature, mass di�usion, and that of
strain [1].

At present, much attention is paid to the gov-
erning equations and boundary conditions by using
the chemical potential de�nition and the �rst and the
second laws of thermodynamics. Recently, Kumar
et al. [2] presented analytical solutions to the time
fractional di�usion equation using Homotopy Pertur-
bation Transform Method (HPTM). This method is a
combined form of the Laplace transform and homo-
topy perturbation methods. The variational principle
is usually used to derive a fully coupled multi�eld
formulation [3-6]. The variational method has been
regarded as the base of analysis and computations in
the coupled �elds. In non-Fickian theory of di�usion, it
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is assumed that the molar concentration is propagated
with �nite speed. There are some published works in
which the non-Fickian di�usion problems have been
studied using numerical methods [7-9]. Kuang [3,10]
proposed an inertial entropy concept and an inertial
concentration or chemical potential concept. Also,
Kuang [4] considered that variation of temperature
should be supported by the extra heat and proposed
an inertial entropy theory from which a temperature
wave equation with a �nite propagation velocity was
obtained. So many generalized thermoelastic theories
have been proposed to allow a �nite velocity for the
propagation of a thermal wave. There are mainly 4
generalized theories: Lord-Shulman (LS) [11], Green-
Lindsay (GL) [12], Green-Naghdi (GN) [13], and the
inertial entropy [4].

In the recent years, some research works have been
carried out for coupled thermoelasticity analysis based
on the non-classical theories in coupled thermoelastic-
ity using analytical [14,15] as well as numerical [16,17]
methods.

Lee [18] presented the thermoelasticity problem of
a multilayered hollow cylinder whose boundaries were
subjected to time-dependent temperatures, adiabatic
and clamped. In the case of an in�nitely long cylinder,
numerical results of multilayered hollow cylinder were
calculated with �nite di�erence and Laplace transform
methods. In another research, Xia et al. [19] studied an
isotropic semi-in�nite plate subjected to a moving heat
source by employing the �nite element method directly
in the time domain.

Sharyiat [20] carried out nonlinear generalized
(with second sound e�ect) and classical thermoelas-
ticity analyses for functionally graded thick cylinders
subjected to various thermomechanical shocks at their
inner and outer surfaces employing Hermitian ele-
ments. Recently, Sharyiat et al. [21,22] investigated
some aspects of the vibration and wave propagation
phenomena in thick-hollow functionally graded cylin-
ders under thermomechanical loads using a numerical
method. Bagri and Eslami [23,24] presented a uni�ed
formulation in which a few theories of coupled ther-
moelasticity were considered. They employed their
uni�ed formulation for dynamic and transient analysis
of coupled thermoelasticity in cylinders. Sherief and
Abd El-Latief [25] studied the fractional order theory
of thermoelasticity for a 2D problem for a half-space
and solved it with Laplace and exponential Fourier
transforms techniques. Hosseini et al. [26] presented
an analytical method for one-dimensional analysis of
coupled non-Fickian di�usion and mechanics. Kumar
and Chawla [27] studied the fundamental solution to
two-dimensional problem in orthotropic thermodi�u-
sive elastic medium. Some various problems for the
theory of generalized thermoelastic di�usion have also
been studied during the last few years [28-30]. The

e�ects of rotation and di�usion on the plane-wave
propagation were presented by Singh et al. [31] in which
a thermoelastic half-space without energy dissipation
problem was solved using GN theory (Type II). Allam
et al. [32] studied a thermoelastic di�usion interaction
in an in�nitely long annular cylinder using the theory
of thermoelastic di�usion with one relaxation time.

Recently, several variational principles for cou-
pled temperature-di�usion-mechanics were presented
by Sue and Shen [33]. In another work [34], they
presented an approximate analytical method for one-
dimensional analysis of coupled non-Fickian di�usion
and mechanics without considering temperature ef-
fects. Hosseini et al. [35] presented a 2D dynamic
analysis of coupled non-Fickian di�usion-elasticity for
a 2D domain in functionally graded materials using
Meshless Local Petrov-Galerkin (MLPG) method. The
propagation of wave fronts in both molar concentration
and displacement �elds were obtained at various times.
In another work, Hosseini et al. [36] employed the
MLPG method for 2D coupled non-Fickian di�usion-
thermoelasticity based on GN theory of coupled ther-
moelasticity. They studied the dynamic behaviors of
molar concentrations, temperature, and displacement
�elds.

The main purpose of this work is to present
an e�ective analytical method to study the coupled
non-Fickian di�usion-thermoelasticity based on the
inertial entropy theory [4] in a strip subjected to shock
loading. The molar concentration, temperature, and
displacements are obtained in analytical forms using
the presented analytical method. In this way, the
wave fronts of molar concentration, displacement, and
temperature can be tracked at various time instants. It
is assumed that the temperature, di�usion, and elastic
waves are propagated at �nite speeds.

2. Governing equations

The constitutive equations for the coupled non-Fickian
di�usion-thermoelasticity can be written based on the
classical theory of coupled thermoelasticity [33] in the
following forms:

�ij = Cijkl"kl � �ijc� �1ij(T � T0); (1a)

~� = �ij"ij + �c+ �1T; (1b)

~s = �1ij"ij + �1c+
A
T0
T; (1c)

where �ij , "ij , c, ~s, A, T , and ~� are the stress, strain,
molar concentration, entropy, temperature constant,
temperature, and chemical potential (J/mol), respec-
tively. The terms Cijkl, �ij , �1ij , �1, and � stand for
the elastic coe�cients, mechanical di�usion coe�cient,
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mechanical-thermo coe�cient, thermo-chemical coe�-
cient, and the chemical potential constant, respectively.

The equation of motion in elasticity, the non-
Fickian general di�usion equations, and entropy bal-
ance equation can be taken into account as follows [33]:

�ij;j + fi = ��ui; (2a)

_~�+ _~�(a) =
I
c0
� �0Ji;i

c0
; (2b)

_~s+ _~s(a) =
_r
T
� qi;i

T
; (2c)

where fi, �, ui, ~�(a), ~s(a); I, r, qi, and c0 are the
body force, density, displacement, inertial chemical
potential, inertial entropy, di�usion source term, body
heat source strength, the heat ow, and reference
concentration, respectively. The term Ji is the di�usion
ux (mol/m3s), which satis�es J = �D0rc, and D0
is the di�usion coe�cient. ~�(a) and ~s(a) are assumed
to be proportional to the rates of concentration and
temperature, respectively. ~�(a) =  _c, and  is a
coe�cient. �0 is equal to RT , where R is the universal
gas constant and T is the absolute temperature. �0
and � satisfy � = �0=c0. ~s(a) = ĉ!̂

T0
_T , ĉ is the speci�c

heat and !̂ is a constant coe�cient with dimension of
time. Eqs. (2) can be rewritten in the following forms
by neglecting the body force, di�usion source term, and
body heat source strength:

�ij;j = ��ui; (3a)

_~�+ _~�(a) = ��0Ji;i
c0

= ��Ji;i; (3b)

_~s+ _~s(a) = �qi;i
T0
: (3c)

For a strip made of homogenous isotropic materials,
the governing equations can be developed as follows:

(2�+ �)
@2u
@x2 � � @c@x � �1

@�
@x

= �
@2u
@t2

; (4a)

� = (2�+ �)
@u
@x
� �c� �1�; (4b)

D0
@2c
@x2 =

�
�
@2u
@x@t

+
@c
@t

+ �0
@2c
@t2

+
�1
�
@�
@t
; (4c)

k
T0

@2�
@x2 = �1

@2u
@x@t

+ �1
@c
@t

+
ĉ!̂
T0

@2�
@t2

+
A
T0

@�
@t
; (4d)

where � = T � T0, �0 = =� is the relaxation time,
and � and � are Lame's constants. Eq. (4c) for
molar concentration balance is concluded by combining
Eq. (1) and Eq. (3) with the expressions of Ji and ~�(a).

Obviously, there exist the coupled terms between the
non-Fickian di�usion and thermoelasticity in Eqs. (4).
It is noted that if the coupled term in Eq. (4c) is not
considered, i.e., � = 0 and �1 = 0, Eq. (4c) will become
the pure non-Fickian di�usion.

The following homogenous initial conditions are
assumed for the problem:

u(x; t) =
@u(x; t)
@t

= 0; at t = 0; (5a)

c(x; t) =
@c(x; t)
@t

= 0; at t = 0; (5b)

�(x; t) =
@�(x; t)
@t

= 0; at t = 0: (5c)

The governing equations are solved for a strip of which
the boundary is excited by a shock loading for molar
concentration and temperature in the form of Heaviside
unit step function of time:

�(x; t) = 0; at x = 0; (6a)

c(x; t) = c1H(t); at x = 0; (6b)

�(x; t) = �1H(t); at x = 0; (6c)

u(x; t) = 0; when x = 1:5 m; (6d)

c(x; t) = 0; when x = 1:5 m; (6e)

�(x; t) = 0; when x = 1:5 m; (6f)

where H(t) is the Heaviside function.
The application of Laplace transform in Eqs. (4a),

(4c), and (4d) with respect to time yields:

(2�+ �)
@2�u(x; s)
@x2 � �@�c(x; s)

@x
� �1

@��(x; s)
@x

= �s2�u(x; s); (7)

D0
@2�c(x; s)
@x2 =

�
�
s
@�u(x; s)
@x

+ s�c(x; s)

+ �0s2�c(x; s) +
�1
�
s��(x; s); (8)

k
T0

@2 ��(x; s)
@x2 =�1s

@�u(x; s)
@x

+ �1s�c(x; s)

+
ĉ!̂
T0
s2 ��(x; s) +

A
T0
s��(x; s); (9)

where the terms �u(x; s), �c(x; s), and ��(x; s) are dis-
placement, molar concentration, and temperature in
Laplace domain.
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Also, the boundary conditions may be written in
Laplace domain as:

��(x; s) = 0; at x = 0; (10a)

�c(x; s) =
c1
s
; at x = 0; (10b)

��(x; s) =
�1

s
; at x = 0; (10c)

�u(x; s) = 0; when x = 1:5 m; (10d)

�c(x; s) = 0; when x = 1:5 m; (10e)

��(x; s) = 0; when x = 1:5 m: (10f)

To �nd the dynamic behaviors of molar concentration,
temperature, and displacement from Eqs. (7)-(9), an
analytical method is employed, which is explained in
the next section.

3. Analytical solution

The solution to Eqs. (7), (8), and (9) can be expressed
as the following Taylor series in terms of (x� 1); they
are analytical at (x� 1):

�u(x; s) =
1X
n=0

An(s)(x� 1)n; (11)

�c(x; s) =
1X
n=0

Bn(s)(x� 1)n; (12)

��(x; s) =
1X
n=0

Dn(s)(x� 1)n; (13)

where An(s), Bn(s), and Dn(s) are unknown coe�-
cients. By substituting Eqs. (11), (12), and (13) in
Eqs. (7), (8), and (9), the following equations can be
derived:

(�+ 2�)
1X
n=2

An(s)n(n� 1)(x� 1)n�2

� �
1X
n=1

Bn(s)n(x� 1)n�1

� �1

1X
n=1

Dn(s)n(x� 1)n�1

� �s2
1X
n=0

An(s)(x� 1)n = 0; (14)

�
�
s
1X
n=1

An(s)n(x� 1)n�1 + s
1X
n=0

Bn(s)(x� 1)n

+ �0s2
1X
n=0

Bn(s)(x� 1)n +
�1
�
s
1X
n=0

Dn(s)(x� 1)n

�D0

1X
n=2

Bn(s)n(n� 1)(x� 1)n�2 = 0; (15)

�1s
1X
n=1

An(s)n(x� 1)n�1 + �1s
1X
n=0

Bn(s)(x� 1)n

+
A
T0
s
1X
n=0

Dn(s)(x�1)n+
ĉ!̂
T0
s2
1X
n=0

Dn(s)(x�1)n

� k
T0

1X
n=2

Dn(s)n(n� 1)(x� 1)n�2 = 0: (16)

Eqs. (14)-(16) may be rewritten in the new forms of:
1X
n=0

[(�+ 2�)(n+ 1)(n+ 2)An+2(s)

� �(n+ 1)Bn+1(s)� �1(n+ 1)Dn+1(s)

� �s2An(s)](x� 1)n = 0; (17)

1X
n=0

"
�
�
s(n+ 1)An+1(s) + sBn(s) + �0s2Bn(s)

+
�1
�
sDn(s)�D0(n+1)(n+2)Bn+2(s)

#
(x�1)n

= 0; (18)

1X
n=0

"
�1s(n+ 1)An+1(s) + �1sBn(s) +

A
T0
sDn(s)

+
ĉ!̂
T0
s2Dn(s)� k

T0
(n+1)(n+2)Dn+2(s)

#
(x�1)n

= 0: (19)

To �nd the unknown coe�cients, the following recur-
rence relations can be derived as follows:

An+2(s) =
�

(n+ 2)(�+ 2�)
Bn+1(s)

+
�s2

(n+ 1)(n+ 2)(�+ 2�)
An(s)

+
�1

(n+ 2)(�+ 2�)
Dn+1(s); (20)
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Bn+2(s) =
�s

�D0(n+ 2)
An+1(s)

+
s+ �0s2

D0(n+ 1)(n+ 2)
Bn(s)

+
�1s

�D0(n+ 1)(n+ 2)
Dn(s); (21)

Dn+2(s) =
T0�1s
k(n+ 2)

An+1(s)

+
T0�1s

k(n+ 1)(n+ 2)
Bn(s)

+
As+ ĉ!̂s2

k(n+ 1)(n+ 2)
Dn(s): (22)

It can be seen in Eqs. (21), (22), and (23) that all
coe�cients An(s), Bn(s), and Dn(s) can be expressed
in terms of \A0(s)", \A1(s)", \B0(s)", \B1(s)",
\D0(s)", and \D1(s)" when \n > 1". The terms
\A0(s)", \A1(s)", \B0(s)", \B1(s), \D0(s)", and
\D1(s)" should be determined using boundary condi-
tions. Therefore, the solutions (11), (12), and (13) can
be rewritten in new forms as:

�u(x; s) =
1X
n=0

fgn1 (s)A0(s) + gn2 (s)A1(s)

+ gn3 (s)B0(s) + gn4 (s)B1(s) + gn5 (s)D0(s)

+ gn6 (s)D1(s)g(x� 1)n; (23)

�c(x; s) =
1X
n=0

fKn
1 (s)A0(s) +Kn

2 (s)A1(s)

+Kn
3 (s)B0(s)+Kn

4 (s)B1(s)+Kn
5 (s)D0(s)

+Kn
6 (s)D1(s)g(x� 1)n; (24)

��(x; s) =
1X
n=0

fLn1 (s)A0(s) + Ln2 (s)A1(s)

+Ln3 (s)B0(s)+Ln4 (s)B1(s)+Ln5 (s)D0(s)

+ Ln6 (s)D1(s)g(x� 1)n: (25)

The coe�cients \gni (s)", \Kn
i (s)", and \Lni (s)" when

\i = 1 to 6" may be calculated using the following
equations:

gn+2
i (s) =

�
(n+ 2)(�+ 2�)

Kn+1
i (s)

+
�s2

(n+ 1)(n+ 2)(�+ 2�)
gni (s)

+
�1

(n+ 2)(�+ 2�)
Ln+1
i (s); (26)

kn+2
i (s) =

s+ �0s2

D0(n+ 1)(n+ 2)
Kn
i (s)

+
�s

�D0(n+ 2)
gn+1
i (s)

+
�1s

�D0(n+ 1)(n+ 2)
Lni (s); (27)

Ln+2
i (s) =

As+ ĉ!̂s2

k(n+ 1)(n+ 2)
Lni (s)+

T0�1s
k(n+ 2)

gn+1
i (s)

+
T0�1s

k(n+ 1)(n+ 2)
kni (s): (28)

Also:

g0
1(s) = 1; g0

2(s) = 0; g0
3(s) = 0;

g0
4(s) = 0; g0

5(s) = 0; g0
6(s) = 0;

g1
1(s) = 0; g1

2(s) = 1; g1
3(s) = 0;

g1
4(s) = 0; g1

5(s) = 0; g1
6(s) = 0;

g2
1(s) =

�s2

2(�+ 2�)
; g2

2(s) = 0; g2
3(s) = 0;

g2
4(s) =

�
2(�+ 2�)

; g2
5(s) = 0;

g2
6(s) =

�1

2(�+ 2�)
; (29)

K0
1 (s) = 0; K0

2 (s) = 0; K0
3 (s) = 1;

K0
4 (s) = 0; K0

5 (s) = 0; K0
6 (s) = 0;

K1
1 (s) = 0; K1

2 (s) = 0; K1
3 (s) = 0;

K1
4 (s) = 1; K1

5 (s) = 0; K1
6 (s) = 0;

K2
1 (s) = 0; K2

2 (s) =
�s

2�D0
;

K2
3 (s) =

s+ �0s2

2D0
; K2

4 (s) = 0;

K2
5 (s) =

�1s
2�D0

;K2
6 (s) = 0; (30)
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as well as:

L0
1(s) = 0; L0

2(s) = 0; L0
3(s) = 0;

L0
4(s) = 0; L0

5(s) = 1; L0
6(s) = 0;

L1
1(s) = 0; L1

2(s) = 0; L1
3(s) = 0;

L1
4(s) = 0; L1

5(s) = 0; L1
6(s) = 1;

L2
1(s) = 0; L2

2(s) =
�1T0s

2k
;

L2
3(s) =

�1sT0

2k
; L2

4(s) = 0;

L2
5(s) =

As+ ĉ!̂s2

2k
; L2

6(s) = 0: (31)

Eqs. (23)-(25) are the analytical solutions for dis-
placement, molar concentration, and temperature �elds
in Laplace domain. To determine the solutions in
time domain, the present work uses the Talbot algo-
rithm [37], which is based on deforming the contour
in the Bromwich inversion integral to reduce numerical
error. This formulation yields relations in time domain
as follows:

u(x; t) =
2
5t

M�1X
k=0

Re(k�u(x; sk));

c(x; t) =
2
5t

M�1X
k=0

Re(k�c(x; sk));

�(x; t) =
2
5t

M�1X
k=0

Re(k��(x; sk)); (32)

where:

sk =
�k
t
; �0 =

2M
5
; 0 = 0:5e�0 ;

�k =
2k�

5

�
cot
�
k�
M

�
+ i
�
;

k=

"
1+i

�
k�
M

� 
1+
�
cot
�
k�
M

��2
!
�i cot

�
k�
M

�#
e�k ;

0 < k < M: (33)

4. Numerical results and discussion

In this section, some numerical results are presented
for the problem. For the sake of comparison, some
of the material speci�cations of the problem are given
as in [34]. However, material speci�cations and other

Table 1. Material speci�cations and other parameters of
the problem.

� = 1:326� 109 � N
m2

�
� = 0:884� 109 � N

m2

�
� = 2000

� kg
m3

�
D0 = 10000

�
m2

s

�
� = 5832

�
N.m4

mol2

�
� = 1:87082

�N.m
mol

�
�0 = 3:086� 10�1 (s) �t = 1:78� 10�5 � 1�K

�
k = 1000

� N�K.s

�
A = 1:8

�
N

m2.�K

�
�1 = 0:0001

� N.m
mol.�K

�
ĉ!̂ = 24:5

�
N.s

m2.�K

�
c1 = 93540

�mol
m3

�
T0 = 300 (�K)

�1 = (3�+ 2�)�t �1 = 450 (�K)

Figure 1. Schematic of the boundary conditions for the
strip.

Figure 2. The comparison between obtained results and
those of Ref. [34] for molar concentration along the x
direction.

parameters are presented in Table 1. The boundary
conditions are illustrated in Figure 1.

For validation, a comparison between the molar
concentration obtained by the proposed analytical
method without considering temperature and those
obtained in [33] is presented in Figure 2. The com-
parison reveals a good agreement. Therefore, the
proposed analytical method can be considered as an
e�ective analytical method with a high capability
for solving coupled governing equations of this type
and similar types. The variations of displacement,
temperature, and molar concentration in time domain
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Figure 3. The dynamic behavior of the displacement at
di�erent positions in time domain.

Figure 4. The dynamic behavior of the molar
concentration at di�erent positions in time domain.

Figure 5. The dynamic behavior of the temperature at
di�erent positions in time domain.

are respectively presented in Figures 3, 4, and 5 for
di�erent positions. The transient as well as steady
state behaviors are shown in these �gures. The
conversion between thermal and mechanical energy is
the reason of disturbances in the transient parts of
these diagrams. From time histories of displacement,
temperature, and molar concentration, it is clearly
concluded that the presented analytical method has
an acceptable convergence rate. The distributions of
molar concentration along the x direction are shown
in Figure 6. The propagation of wave front can be
observed with �nite speed of propagation. Also, as
shown in this �gure, with increasing the di�usion time,
the di�usion distance gradually increases and, at the
same time, concentration decreases. The distributions

Figure 6. The wave fronts of molar concentration wave
propagation along the x direction for various time instants.

Figure 7. The wave fronts of displacement wave
propagation along the x direction for various time instants.

Figure 8. The wave fronts of temperature wave
propagation along the x direction for various time instants.

of displacement and temperature along the x direction
are illustrated in Figures 7 and 8 at various time
instants. Obviously, as the di�usion distance increases,
the displacement gradually approaches zero. It is also
seen that the assumed mechanical boundary condi-
tions are satis�ed at each side of domain. It means
that the presented method has a high convergence
rate for satisfying the boundary conditions. As it
can be observed in Figures 6-8, there are not any
disturbances in the vicinity of wave fronts or other
situations in diagrams. The reason may be the su-
periority of the convergence rate and high accuracy of
the presented analytical method. The concentration
�eld from the coupled non-Fick/non-classic di�usion-
thermoelasticity theory and that from the coupled
classical di�usion-thermoelasticity are compared in
Figure 9. It is obviously seen that at shorter times,
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Figure 9. The comparison between classical and
non-classical form of concentration along the x direction.

Figure 10. The e�ect of relaxation time on concentration
along the x direction.

the di�erence between the two solutions is signi�cant.
The e�ect of the di�usion relaxation time, �0, on the
velocity of wave propagation in molar concentration
�eld can be observed in Figure 10. As it is shown, when
the relaxation time decreases, the wave propagation
velocities decrease.

5. Conclusions

In this article, an analytical solution was presented for
the transient analysis of coupled non-Fickian di�usion-
thermo-elasticity based on the classical theory of cou-
pled thermoelasticity. The coupled governing equa-
tions were transferred to Laplace domain and, then,
the unknown parameters including temperature, mo-
lar concentration, and displacement were obtained in
closed form in Laplace domain. Using the Talbot
inversion Laplace technique, the dynamic behaviors
were illustrated in time domain. The main conclusions
of this study can be outlined as follows:

� The presented solution may be e�ectively used
for studying the wave propagations of displace-
ment, molar concentration, and temperature �elds.
The molar concentration and displacement wave
fronts can be tracked using the presented analytical
method at every arbitrary time instant;

� The time history and dynamic behaviors of dis-
placement, molar concentration, and temperature

are analyzed using an analytical method. Also, the
e�ects of shock loadings of both molar concentration
and temperature �elds on the dynamic behaviors are
obtained;

� The presented analytical solution and series forms
for molar concentration and displacement furnish a
suitable framework for optimization of coupled non-
Fickian di�usion-thermoelasticity problems.

Nomenclature

A Temperature constant
An(s),
Bn(s),
Dn(s)

Unknown coe�cients

c Mass concentration
ĉ Speci�c heat
c0 Reference concentration
c1 Shock concentration
Cijkl The elastic constants
D0 Di�usion coe�cient
fi Body force
I Di�usion source
Ji Di�usion ux
k Thermal conductivity
qi Heat ow
r Body heat source strength
R Universal gas constant
~s Entropy

~s(a) Proportional to the rate of temperature
!̂ Constant coe�cient
t Time
T Absolute temperature
T0 Reference temperature
ui Components of displacement vector
x Position
�ij ; � Mechanical di�usion coe�cient
�t Coe�cient of linear thermal expansion
�1ij ; �1 Mechanical-thermo coe�cient
� Chemical potential constant
 Constant coe�cient
�; � Lame's constants
~� Chemical potential

~�(a) Proportional to the rate of
concentration

� Density
�ij Components of stress tensor
�0 Relaxation time
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�1 Chemical-thermo coe�cient
"ij Components of strain tensor
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