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are considered to be of finite speed. The governing equations are first transferred to
the frequency domain using Laplace transform technique. The unknown parameters are
then obtained in analytical forms proposed by the presented method. By employing the
Talbot technique, the unknown parameters are eventually determined in time domain. It
can be concluded that the presented analytical method has a high capability for dynamic
and transient analysis of coupled diffusion-thermoelasticity problems. The wave fronts in
displacement, temperature, and molar concentration fields can be tracked at various time
instants employing the presented analytical method.

(© 2018 Sharif University of Technology. All rights reserved.

1. Introduction to the field of temperature, mass diffusion, and that of
strain [1].

At present, much attention is paid to the gov-
erning equations and boundary conditions by using

Diffusion can be defined as the random walk of an
ensemble of particles, from regions of high concentra-

tion to regions of lower concentration. The coupling the chemical potential definition and the first and the
between the thermoelastic fields and concentration of second laws of thermodynamics. Recently, Kumar
diffusive gas takes place when a solid body is immersed et al. [2] presented amalytical solutions to the time

in a gas. Thermo-diffusion in an elastic solid is due fractional diffusion equation using Homotopy Pertur-

bation Transform Method (HPTM). This method is a

combined form of the Laplace transform and homo-

E-mail addresses: Amin.hoss@gmail.com (5.A. Hosseini); jcopy perturbation meth.OdS' The variational pI‘lIl.Clple
sm_hosseini@um.ac.ir (S.M. Hosseini); abolbash@um.ac.ir is usually used to derive a fully coupled multifield
(M.H. Abolbashari). formulation [3-6]. The variational method has been
regarded as the base of analysis and computations in
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is assumed that the molar concentration is propagated
with finite speed. There are some published works in
which the non-Fickian diffusion problems have been
studied using numerical methods [7-9]. Kuang [3,10]
proposed an inertial entropy concept and an inertial
concentration or chemical potential concept. Also,
Kuang [4] considered that variation of temperature
should be supported by the extra heat and proposed
an inertial entropy theory from which a temperature
wave equation with a finite propagation velocity was
obtained. So many generalized thermoelastic theories
have been proposed to allow a finite velocity for the
propagation of a thermal wave. There are mainly 4
generalized theories: Lord-Shulman (LS) [11], Green-
Lindsay (GL) [12], Green-Naghdi (GN) [13], and the
inertial entropy [4].

In the recent years, some research works have been
carried out for coupled thermoelasticity analysis based
on the non-classical theories in coupled thermoelastic-
ity using analytical [14,15] as well as numerical [16,17]
methods.

Lee [18] presented the thermoelasticity problem of
a multilayered hollow cylinder whose boundaries were
subjected to time-dependent temperatures, adiabatic
and clamped. In the case of an infinitely long cylinder,
numerical results of multilayered hollow cylinder were
calculated with finite difference and Laplace transform
methods. In another research, Xia et al. [19] studied an
isotropic semi-infinite plate subjected to a moving heat
source by employing the finite element method directly
in the time domain.

Sharyiat [20] carried out nonlinear generalized
(with second sound effect) and classical thermoelas-
ticity analyses for functionally graded thick cylinders
subjected to various thermomechanical shocks at their
inner and outer surfaces employing Hermitian ele-
ments. Recently, Sharyiat et al. [21,22] investigated
some aspects of the vibration and wave propagation
phenomena in thick-hollow functionally graded cylin-
ders under thermomechanical loads using a numerical
method. Bagri and Eslami [23,24] presented a unified
formulation in which a few theories of coupled ther-
moelasticity were considered. They employed their
unified formulation for dynamic and transient analysis
of coupled thermoelasticity in cylinders. Sherief and
Abd El-Latief [25] studied the fractional order theory
of thermoelasticity for a 2D problem for a half-space
and solved it with Laplace and exponential Fourier
transforms techniques. Hosseini et al. [26] presented
an analytical method for one-dimensional analysis of
coupled non-Fickian diffusion and mechanics. Kumar
and Chawla [27] studied the fundamental solution to
two-dimensional problem in orthotropic thermodiffu-
sive elastic medium. Some various problems for the
theory of generalized thermoelastic diffusion have also
been studied during the last few years [28-30]. The

effects of rotation and diffusion on the plane-wave
propagation were presented by Singh et al. [31] in which
a thermoelastic half-space without energy dissipation
problem was solved using GN theory (Type II). Allam
et al. [32] studied a thermoelastic diffusion interaction
in an infinitely long annular cylinder using the theory
of thermoelastic diffusion with one relaxation time.

Recently, several variational principles for cou-
pled temperature-diffusion-mechanics were presented
by Sue and Shen [33]. In another work [34], they
presented an approximate analytical method for one-
dimensional analysis of coupled non-Fickian diffusion
and mechanics without considering temperature ef-
fects. Hosseini et al. [35] presented a 2D dynamic
analysis of coupled non-Fickian diffusion-elasticity for
a 2D domain in functionally graded materials using
Meshless Local Petrov-Galerkin (MLPG) method. The
propagation of wave fronts in both molar concentration
and displacement fields were obtained at various times.
In another work, Hosseini et al. [36] employed the
MLPG method for 2D coupled non-Fickian diffusion-
thermoelasticity based on GN theory of coupled ther-
moelasticity. They studied the dynamic behaviors of
molar concentrations, temperature, and displacement
fields.

The main purpose of this work is to present
an effective analytical method to study the coupled
non-Fickian diffusion-thermoelasticity based on the
inertial entropy theory [4] in a strip subjected to shock
loading. The molar concentration, temperature, and
displacements are obtained in analytical forms using
the presented analytical method. In this way, the
wave fronts of molar concentration, displacement, and
temperature can be tracked at various time instants. It
is assumed that the temperature, diffusion, and elastic
waves are propagated at finite speeds.

2. Governing equations

The constitutive equations for the coupled non-Fickian
diffusion-thermoelasticity can be written based on the
classical theory of coupled thermoelasticity [33] in the
following forms:

0i; = Cijricr — aijc — Bri; (T — To), (1a)

ﬂ: Q;5E45 +60+T1T, (1b)

N A

5= PBiei; +mic+ =T, (1c)
To

where 05, €5, ¢, 5, A, T, and [i are the stress, strain,
molar concentration, entropy, temperature constant,
temperature, and chemical potential (J/mol), respec-
tively. The terms Cjju, asj, Brij, 71, and 3 stand for
the elastic coeflicients, mechanical diffusion coefficient,
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mechanical-thermo coefficient, thermo-chemical coeffi-
cient, and the chemical potential constant, respectively.

The equation of motion in elasticity, the non-
Fickian general diffusion equations, and entropy bal-
ance equation can be taken into account as follows [33]:

oy + fi = pl, (2a)

B Z(a 1 BIJM

it il = — — ==, (2b)
Co Co

PRI ) I (I 5

5+ 5 T T (2¢)

where f;, p, wi, @9, 9 I r ¢, and ¢, are the
body force, density, displacement, inertial chemical
potential, inertial entropy, diffusion source term, body
heat source strength, the heat flow, and reference
concentration, respectively. The term J; is the diffusion
flux (mol/m?s), which satisfies J = —DyVe, and Dy
is the diffusion coefficient. (®) and §(*) are assumed
to be proportional to the rates of concentration and
temperature, respectively. ji(*) = ~¢, and v is a
coefficient. 3’ is equal to RT, where R is the universal
gas constant and T is the absolute temperature. f’
and 3 satisfy 3 = 8'/co. 5@ = %Tv ¢ is the specific
heat and @ is a constant coefficient with dimension of
time. Egs. (2) can be rewritten in the following forms
by neglecting the body force, diffusion source term, and
body heat source strength:

Tij.5 = P, (3a)

L Z(a 51(]1',1'

ot Y = —=" = —p i, (3b)
co

f i) _ T 3

s+s T, (3¢)

For a strip made of homogenous isotropic materials,
the governing equations can be developed as follows:

d*u dc 00 du
=(2 +/\)%—ac—59 (4h)
g = 2 o 1Y,

2 2 2
ac—aau_i_%_kn)ﬁ_f_ﬂ% (4C)

0942 ~ B0oxot | ot o2 " B ot

L 0%0 9%u de 000 A oh
B N = 4
o o T toe T 9

where § = T — Ty, 10 = v/ is the relaxation time,
and A and p are Lame’s constants. Eq. (4c) for
molar concentration balance is concluded by combining
Eq. (1) and Eq. (3) with the expressions of J; and (%),

Obviously, there exist the coupled terms between the
non-Fickian diffusion and thermoelasticity in Eqgs. (4).
It is noted that if the coupled term in Eq. (4c) is not
considered, i.e., « = 0 and 71 = 0, Eq. (4¢) will become
the pure non-Fickian diffusion.

The following homogenous initial conditions are
assumed for the problem:

u(x,t) = aug,t) =0, at t=0, (5a)
o, 1) = 305;2”5) —0, at t=0, (5b)
B(,t) = ‘9‘9(6? D_o,  at t=o0. (5¢)

The governing equations are solved for a strip of which
the boundary is excited by a shock loading for molar
concentration and temperature in the form of Heaviside
unit step function of time:

o(x,t) =0, at =0, (6a)
c(z,t) = c1 H(), at =0, (6Db)
f(x,t) =61 H(t), at x =0, (6¢)
u(x,t) =0, when 2 = 1.5 m, (6d)
c(z,t) =0, when x=1.5m, (6e)
f(x,t) =0, when 2z =15m, (61)

where H(t) is the Heaviside function.
The application of Laplace transform in Egs. (4a),
(4¢), and (4d) with respect to time yields:

&%u(x, s) oe(x, s) 9(z, s)
(2 +A) a2 Y ox A ox
= ps*i(z, s), (7)
0%e(x,s) a Ou(w,s)  _
Dy D _Bs o + sé(x, s)
2 1 5
+108°8(x, 5) + 559(%5)7 (8)
k 9%6(x,s) , Ou(w,s) _
T oz - 18 o + 1188(x, 8)
@ gy s A
+ TOS O(x,s)+ T s6(z, s), (9)

where the terms u(z,s), é(x,s), and (x,s) are dis-
placement, molar concentration, and temperature in
Laplace domain.
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Also, the boundary conditions may be written in
Laplace domain as:

a(xz,s) =0, at = =0, (10a)

_ C1

é(x,s) = > at = =0, (10b)

- 0,

f(x,s) = —, at © =0, (10c)
s

(x,s)=0 when £ = 1.5 m, (10d)

&(z,s) =0 when z = 1.5 m, (10e)

f(x,s) =0, when z = 1.5 m. (10f)

To find the dynamic behaviors of molar concentration,
temperature, and displacement {rom Eqs. (7)-(9), an
analytical method is employed, which is explained in
the next section.

3. Analytical solution

The solution to Egs. (7), (8), and (9) can be expressed
as the following Taylor series in terms of (x — 1); they
are analytical at (z — 1):

ZA )z —1)" (11)

c(w,5) =Y Bu(s)(x—1)", (12)
n=0
Z Dy(s)(z —1)" (13)

where A, (s), B,(s), and D,(s) are unknown coeffi-
cients. By substituting Egs. (11), (12), and (13) in
Eqgs. (7), (8), and (9), the following equations can be
derived:

(A +20) 3 Au(s)n

n—1)(x—1)"2

-« i B, (s)n(z —1)"!
n=1

— 61 Z _D ZE — 1) n—1
—ps* Y An(s)(x —1)" =0, (14)
n=0

gsiAn(s)n(x Y 1+SZB )z —1)"
n=1

+T082§:Bn( (z —1)" ZD Yo —1)"
n=0

n—1)(z-1)""?%=0, (15)

- DO Z Bn(s)n(

nl—f—ﬁsZB Wz —1)"

Brs i An(s)n(z
n=1
SZD

n=0

k o0
— ?0 ; D, (s)n

Eqgs. (14)-(16) may be rewritten in the new forms of:

?Os‘ ;Dn(s)(x—l)"
(n—1)(z—-1)""2=0. (16)

o0

D I+ 2u)(n +1)(n + 2) Ay ya(s)
- a(n + l)BnJrl(S) - ﬂl (n + I)Dn+1(5)
— ps?An(s)](x —1)" =0, (17)
S %s(n + 1) Ansi(s) + sBa(s) + 105> Bals)
B

n=0

+T1sDn(s)—Dg(n—l—1)(n+2)Bn+2(s)](:v—1)“

B
—0, (18)
Z[ﬂls(”Jrl)AnH( )+ 118Bn(s) + TAOSDn(S)
& k §
+TOS Dn(s)—TO(”+1)(n+2)Dn+2(3)](x—1)

—0. (19)

To find the unknown coefficients, the following recur-
rence relations can be derived as follows:

Anta(s) ZmBnH(S)

2

ps
t T Dm0 2 )

B1
T T2+ 20

Dn+1 (5)7 (20)
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as

Biia(s) :mAnH(S)

N s + 7952
Do(n+1)(n+2)

B, (s)

T T8
BDo(n + 1)(n+2)

ToBrs
k(n+2)

Di(s), (21)

Diya(s) = nt1(8)

TOT15
L — -
+ k(n+1)(n+2) (s)
N As + éws?
k(n+1)(n+2)

It can be seen in Egs. (21), (22), and (23) that all
coefficients A,,(s), Bn(s), and D,(s) can be expressed
in terms of “Ag(s)”, “Ai1(s)”, “Bo(s)”, “Bi(s)”,
“Do(s)”, and “D;(s)” when “n > 1”. The terms
“Ao(s)", “Ai(s)", “Bo(s)", “Bi(s), “Dy(s)", and
“D1(s)” should be determined using boundary condi-
tions. Therefore, the solutions (11), (12), and (13) can
be rewritten in new forms as:

Dy (s). (22)

a(z,s) =y {97 (s)Ao(s) + g5 (s) A (s)
n=0

+95(s)Bo(s) + g4 () B1(s) + g5 (s) Do(s)

+95(s)Di(s)}(x = 1), (23)
o, 5) =Y _{K7(s)Ao(s) + K3 (s) A (s)
n=0

+ K3 (8)Bo(s)+ K3 (s)B1(8)+ K¢ (s)Do(s)

+ Kg (s)Di(s)}x —1)", (24)
B(a,s) =Y {Li(s)Ao(s) + L5 (s)Au(s)
n=0

+L3(s)Bo(s)+ Ly (s)Bi(s)+ L5 (s) Do(s)
+ Ly (s)D1(s)}(z — 1)". (25)

The coefficients “gP*(s)”, “K(s)”, and “L*(s)” when
“ = 1 to 6” may be calculated using the following
equations:

n+2

g9 (s) = K[ (s)

(n+2)(A+2p) °

ps*

T D20+ 20

g:'(s)

: Mechanical Engineering 25 (2018) 20772086 2081
61 +1
b (), 26
mroiro s W (26)
K2 = =gy
i Y T Dy D+ 2) Y
s nt1
18 ,
L? 27
+6D0(n+1)(n+2) i(s), (27)
. As + éDs? Tof1s
LMt2(g) =~ """ n 272 gntl
i) k(n+1)(n+2) Z(S)+k(n+2) i)
Toms o). (28)

+k(n+ Dn+2)"

gi(s)=1,  gi(s)=0,  g¢3(s)=0,

2 pPs 2 2
RO = sz BO=0 6 =0
2 a 2
= = O
94(5) 2()\ + 2,“/)7 g5 (S) 9
2 b1
= 29
K)s)=0, KJ(s)=0, KJ(s)=1
K(s)=0, K2(s)=0, KJs)=0,
Ki(s)=0, Ki(s)=0, Ki(s)=0,
Kj(s) =1, K3(s) =0, K;(s) =0,
. as
Ixf(s) =0, AQZ<5) = ma
. s+ 18> .
K39 =50 Ki9=0
» S .
K3(s) = 335 K3 (s) = 0. (30)
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as well as:

Li(s)=0,  Ly(s)=0,  Lg(s)=0,

L§(s)=0, L3(s)=1,  LY(s)=0,
Li(s)=0,  Li(s)=0,  Lj(s)=0,
Li(s)=0,  Lg(s)=0, Lg(s) =1,
. B1Tos
LRs)=0,  IL3(s)= =5
. 71871 .
L3(s) = == L3(s) =0,
A %N o2
Bs)= 2D () =0, (31)

Eqs. (23)-(25) are the analytical solutions for dis-
placement, molar concentration, and temperature fields
in Laplace domain. To determine the solutions in
time domain, the present work uses the Talbot algo-
rithm [37], which is based on deforming the contour
in the Bromwich inversion integral to reduce numerical
error. This formulation yields relations in time domain
as follows:

M-1

Z Re(vyru(x, si)),

w(x,t) =

o M-l
O(x,t) = = Re(v:0(x, sx)), (32)
k=0
where
] 2M
s;v:Tk, bo = — 5 7o = 0.5¢%,

)
() 1o

0<k<M. (33)

Yk =

=+
/\
\/
—_
\—/
L
aQ
o}
o+
SN
<3
3
N——
—_
o
=%
2

4. Numerical results and discussion

In this section, some numerical results are presented
for the problem. For the sake of comparison, some
of the material specifications of the problem are given
as in [34]. However, material specifications and other

Table 1. Material specifications and other parameters of
the problem.

A =1.326 x 10° (%)
p = 2000 (%)
B =s5s32 (Xm)

p=10.884 x10° (%)
Do = 10000 (=)
o = 1.87082 (fi=)

mol

mol?

70 = 3.086 x 107! (s)
k= 1000 (s3=)

= 0.0001 (rnljl.n]K)

c1 = 93540 (29)

m3

B1= BN+ 2p)an

o =178 x 1077 (5k)
A=138 (ZK>
e = 24.5 (K)

To = 300 (°K)
01 = 450 (°K)

i ¢——1.5 m ——Pp

SRS
([ ]|
S oo

e}

Figure 1. Schematic of the boundary conditions for the
strip.

x10%
o

[

--- T=0.010
— T=0.005
------- T =0.005, [34]
== T'=10.010, [34]

0
9
8
7
6
o b
4
3
2
1
0
0

.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
xT

Figure 2. The comparison between obtained results and

those of Ref. [34] for molar concentration along the z

direction.

parameters are presented in Table 1.
conditions are illustrated in Figure 1.

For validation, a comparison between the molar
concentration obtained by the proposed analytical
method without considering temperature and those
obtained in [33] is presented in Figure 2. The com-
parison reveals a good agreement. Therefore, the
proposed analytical method can be considered as an
effective analytical method with a high capability
for solving coupled governing equations of this type
and similar types. The variations of displacement,
temperature, and molar concentration in time domain

The boundary
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Displacement (m)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

Figure 3. The dynamic behavior of the displacement at
different positions in time domain.

x10%
T

[

==
(=]
T

| |
0.01 0.02 0.03 0.04

Molar concentration (mol/ms)

W AR Ot N 0 O
T

L |
0.05 0.06
Time (s)

0.07 0.08 0.09 0.10

Figure 4. The dynamic behavior of the molar
concentration at different positions in time domain.

400
350}
300F
250"
200}
150}
100 J

50k 1

0] I L I I I L I
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time (s)

Temperature (K)

Figure 5. The dynamic behavior of the temperature at
different positions in time domain.

are respectively presented in Figures 3, 4, and 5 for
different positions. The transient as well as steady
state behaviors are shown in these figures. The
conversion between thermal and mechanical energy is
the reason of disturbances in the transient parts of
these diagrams. From time histories of displacement,
temperature, and molar concentration, it is clearly
concluded that the presented analytical method has
an acceptable convergence rate. The distributions of
molar concentration along the z direction are shown
in Figure 6. The propagation of wave front can be
observed with finite speed of propagation. Also, as
shown in this figure, with increasing the diffusion time,
the diffusion distance gradually increases and, at the
same time, concentration decreases. The distributions

2083
4
10 X10 .
_____ —.—t=0.002s
——t=0.008s

o)

- --t=0.005s

[=>)
T
.
/
.
.

[
T
i
/
/

=}
T

Molar concentration (mol/m?)
N
:
/

'
o

Il
.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Displacement (m)

Figure 6. The wave fronts of molar concentration wave
propagation along the z direction for various time instants.

x1073
0,

T p——

1k T T . z

Displacement (m)
)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Distance (m)

Figure 7. The wave fronts of displacement wave
propagation along the z direction for various time instants.

500 T

> . t=0.01s
TA00F T~ e =0.07s
<) A =0.20s
2 300 =1.00s
5200
&
g 100
=

0.6
Distance (m)

Figure 8. The wave fronts of temperature wave
propagation along the x direction for various time instants.

of displacement and temperature along the x direction
are illustrated in Figures 7 and 8 at various time
instants. Obviously, as the diffusion distance increases,
the displacement gradually approaches zero. It is also
seen that the assumed mechanical boundary condi-
tions are satisfied at each side of domain. It means
that the presented method has a high convergence
rate for satisfying the boundary conditions. As it
can be observed in Figures 6-8, there are not any
disturbances in the vicinity of wave fronts or other
situations in diagrams. The reason may be the su-
periority of the convergence rate and high accuracy of
the presented analytical method. The concentration
field from the coupled non-Fick/non-classic diffusion-
thermoelasticity theory and that from the coupled
classical diffusion-thermoelasticity are compared in
Figure 9. It is obviously seen that at shorter times,
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—

o o x10*

=) T T T T T T T

=9 t = 0.00005 s 1
3

g 8L\ ]

Nak by — Fickian diffusion and classical thermoelasticity

o Tr N\ --- Non-Fick diffusion and non-classic thermoelasticity | 7

Q 6L N,

S N J

i)

g 5t 1

5

= | J

g 4

g 3r 1

S 2f J

5 1t 1

=

S 0

= 0.0

Distance (m)

Figure 9. The comparison between classical and
non-classical form of concentration along the x direction.

x10%

=
(=}

T T T T T T

t = 0.0005 s

©

N ——- 19 = 0.030 1
N ——- 79 = 0.007 | A
— 79 = 0.001 | |

oo
T
-

-~
T
e

(=)
T

Molar concentration (mol/ms)

TR KRS,

Distance (m)

Figure 10. The effect of relaxation time on concentration
along the z direction.

the difference between the two solutions is significant.
The effect of the diffusion relaxation time, 79, on the
velocity of wave propagation in molar concentration
field can be observed in Figure 10. As it is shown, when
the relaxation time decreases, the wave propagation
velocities decrease.

5. Conclusions

In this article, an analytical solution was presented for
the transient analysis of coupled non-Fickian diffusion-
thermo-elasticity based on the classical theory of cou-
pled thermoelasticity. The coupled governing equa-
tions were transferred to Laplace domain and, then,
the unknown parameters including temperature, mo-
lar concentration, and displacement were obtained in
closed form in Laplace domain. Using the Talbot
inversion Laplace technique, the dynamic behaviors
were illustrated in time domain. The main conclusions
of this study can be outlined as follows:

e The presented solution may be effectively used
for studying the wave propagations of displace-
ment, molar concentration, and temperature fields.
The molar concentration and displacement wave
fronts can be tracked using the presented analytical
method at every arbitrary time instant;

e The time history and dynamic behaviors of dis-
placement, molar concentration, and temperature

are analyzed using an analytical method. Also, the
effects of shock loadings of both molar concentration
and temperature fields on the dynamic behaviors are
obtained;

e The presented analytical solution and series forms
for molar concentration and displacement furnish a
suitable framework for optimization of coupled non-
Fickian diffusion-thermoelasticity problems.

Nomenclature

A Temperature constant

An(s),

B.,.(s), Unknown coefficients

D,.(s)

c Mass concentration

¢ Specific heat

Co Reference concentration

c1 Shock concentration

Cijkl The elastic constants

Dy Diffusion coefficient

fi Body force

1 Diffusion source

J; Diffusion flux

k Thermal conductivity

¢ Heat flow

r Body heat source strength
Universal gas constant

5 Entropy

5@ Proportional to the rate of temperature

w Constant coeflicient

t Time

T Absolute temperature

Ty Reference temperature

u; Components of displacement vector

x Position

0y, 0 Mechanical diffusion coefficient

Qy Coefficient of linear thermal expansion

Biij, B1 Mechanical-thermo coefficient

I} Chemical potential constant

vy Constant coefficient

ALl Lame’s constants

it Chemical potential

il Proportional to the rate of
concentration

0 Density

0ij Components of stress tensor

o Relaxation time



T1

Eij
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Chemical-thermo coefficient

Components of strain tensor
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