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Abstract. The control of exible cable-driven parallel robots usually requires feedback
not only from the joints, but also from the end-e�ector pose or cable tension. This paper
presents a new approach for reducing the vibration of exible cable-suspended robots, using
only the feedback from the joints. First, the dynamic equations of a 6DOF cable-suspended
parallel robot with elastic cables were derived by Gibbs-Appel formulation. Subsequently,
three di�erent control approaches were investigated based on the computational load and
required sensors. As a result, a feedback linearization method based on the rigid model of
the system was selected. In order to reduce the vibration, a robust input shaping method
was employed to prevent excitation of natural modes. Simulation results revealed that the
proposed approach leads to a noticeable vibration and settling time reduction in cases of low
and high cable sti�ness, respectively. Moreover, another simulation compared the presented
approach with a composite controller, which used the feedbacks from the end-e�ector
and actuators. Thereafter, the performance of the approach in vibration reduction was
quantitatively shown. Finally, experimental validation of the approach was accomplished
by frequency analysis of the vibration obtained from the IMU sensor attached to the end-
e�ector.

© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Cable-suspended parallel robot is a type of parallel
robot, where the links are replaced with cables con-
necting the actuators (electric motors) to the end-
e�ector. In comparison with other parallel robots, they
bene�t from features such as larger workspace, lower
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manufacturing technology, higher ratio of the carrying
load per robot's moving weight, and lower repairs and
maintenance expenses. Due to the high exibility of
cables compared to the links, the system response is
vibratory.

The end-e�ector vibration due to the transversal
vibration of the cables is negligible in comparison with
that due to the axial vibration of the cables [1]. To im-
prove the system response, the state variables added to
the system because of the axial vibrations of the cables
should be considered in the controller. In this regard,
Korayem et al. described the dynamic equations of a
6DOF cable-suspended robot with elastic joints and
controlled the end-e�ector employing a robust feedback
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linearization method [2]. In another study, they
incorporated the tension obtained from PDE solution
of the vibrational cables into the SMC controller in
order to compensate for exibility uncertainties [3].

Control of exible cable robots can also be accom-
plished using the measurements of the cables tension.
Laroche et al. modeled the cables of a 3DOF cable
robot, with a point mass end-e�ector, as springs and
controlled the robot by H1 method. They used the
feedback from the end-e�ector pose and the mean
tension of the cables in the controller [4]. Meunier
et al. derived the equations of the reector of a
large radio telescope by discretizing the cables utilizing
lumped mass elements, where springs and dampers
were placed between them [5]. They employed a
cascade approach, including cable tension control using
H1 method in the inner loop, and end-e�ector pose
control using PID computed-torque method in the
outer loop. Lumped-mass method was also utilized by
Caverly et al. in modeling the cables of a 2DOF planar
cable-driven robot [6]. They incorporated the change
in the cable sti�ness when the cables were wounded
around the winches. In this research, passivity-based
control method was employed. Due to the exibility of
the long-span cables in the 500 m Aperture Spherical
radio Telescope (FAST), the receiver may encounter
a possible vibration induced by the wind disturbance.
Thus, a rigid Stewart platform was used to compensate
for the positioning error [7]. Nevertheless, when the
mass and inertia of the receiver are not negligible
in comparison with the base of the Stewart system,
the dynamic interaction becomes signi�cant. This, in
turn, challenges the compensating control of the rigid
mechanism [8].

In order to control over-constrained cable robots,
Khosravi and Taghirad modeled the cables as spring.
They showed that asymptotic stability of the closed
loop system can be guaranteed using a composite
control comprising a rigid model based controller and
a PD term, proportional to the time derivative of the
tension [9]. A survey of the control of exible joint
robots is provided in [10], where di�erent approaches
such as composite control and the concept of integral
manifold are compared.

In all of the above works, to prevent vibrations,
another feedback in addition to the actuators state
was required. However, if an approximation of the
system's natural frequency and damping parameters
is available, �ltering methods such as input shaping
can help prevent the excitation of natural modes and
reduce the vibrations. Advantages of input shaping
methods over conventional �lters, which are designed
in frequency domain, are shown in [11].

Vibration reduction of exible system using in-
put shaping is usually accompanied by a closed loop
controller, in order to compensate for uncertainties

and disturbance rejection. In this regard, Luo et al.
employed a perturbation method to separate slow and
fast dynamics of a 3R planar parallel manipulator [12].
They used a composite controller comprising a feedback
linearization method for the control of slow dynamics
and Zero Vibration Derivative (ZVD) input shaping for
vibration reduction, caused by elastic links. Hu applied
a Variable Structure Controller (VSC), an estimator,
and an input shaper for the control of a spacecraft
with elastic wings [13]. Active vibration control of a
3P2R planar parallel manipulator was accomplished by
Zhang et al. [14]. The controller was a combination of
a VSC method for motion tracking of the end-e�ector
and a strain rate feedback control for suppressing the
vibration of the elastic linkages. They also investigated
the e�ectiveness of combining a PD computed-torque
control with the ZVD input shaper for suppressing the
residual vibration of the mechanism [15].

Extra Insensitive (EI) input shaper was used to
address the vibration reduction at the end of the
point-to-point movement of a exible delta robot [16].
The damping ratio and natural frequency required
in the input shaper were obtained from a look-up
table, considering the position of the end-e�ector in
the workspace. Li et al. proposed a vibration con-
trol scheme for a two-link exible joint manipulator
mounted on a Hexapod active manipulator [17]. The
controller was composed of a linear extended state
observer, a linear feedback controller, and an adaptive
law. The ZVDD input shaper was used to alleviate the
vibration induced by input motions, while the closed
loop controller compensated for the unknown external
disturbances.

A number of studies have been devoted to com-
mand shaping to address the payload oscillation in
cranes. Blackburn studied the performance of di�erent
input shaping methods in vibration suppression of
construction cranes [18]. Sway control of the end-
e�ector of a 2-cable robot using ZV and ZVD input
shapers was proposed by Park et al. In this work,
natural frequency for any point of the workspace
was obtained from system linearization around the
associated equilibrium point [19]. Anti-sway control
of a gantry crane, modeled as a double pendulum,
was also accomplished using Speci�ed Insensitivity
(SI) input shaping method in [20]. Garrido et al.
controlled the swinging of a crane by input shaping,
where the disturbances were obtained using two cable-
slope measuring sensors and cancelled by applying a
speci�c input at a speci�c time [21]. The marine
cranes su�er from swinging problem, particularly in the
presence of sea disturbances. Elbadawy and Shehata
proposed a closed-loop PID input shaper for point-to-
point motion without swinging [22]. In the experiment,
they mounted the crane on a Stewart manipulator to
simulate the sea disturbances.
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One of the challenges encountered by the cable-
suspended robots is the possibility of zero tension
in the cables due to the vibration caused by the
exibility. In the point-to-point movement command,
the initial error is large and if it is accompanied by high
gains, the controller calculates a large control e�ort at
the beginning of the path, leading to severe tension
oscillation and possibility of zero tension in the cables.
Consequently, there is a time limitation in reaching
the desired point, as a result of the maximum gain
constraint. Similarly, in trajectory tracking, severe
trajectory change can also result in tension and end-
e�ector vibrations. If tension oscillations of the cables
are suppressed, the system can reach the desired point
at a shorter time.

Using all the states introduced by the system
exibility in the controller can be di�cult due to
the numerous required sensors with di�erent types
and performances, and increase in the controller and
estimator computations on the processor. In this study,
vibration of the end-e�ector and the cable tension
is reduced by robust input shaping of the desired
input. In the case of high cable exibility, this method
noticeably reduces the vibration of the end-e�ector. In
the low cables exibility condition, the contribution of
input shaping is in the suppression of the cable tension
oscillation, and reduction in the settling time.

This paper is divided into the following sections:
In Section 2, the dynamic equations of the 6DOF
cable-suspended robot with elastic cables are derived
using Gibbs-Appel formulation. Next, stability of
the exible system considering the rigid model based
controller is investigated in Section 3. In Section 4,
three control approaches are investigated: a) composite
control comprising a rigid model based feedback lin-
earization for slow dynamics and a term for damping
the vibrations, b) full state feedback linearization, and
c) feedback linearization based on the rigid model.
These methods are compared based on the computa-
tion overhead and required feedbacks for the controller.
In Section 5, the formulations related to the multi-
mode robust input shaping are introduced and in
Section 6, they are combined with the rigid model
based feedback linearization to represent two appli-
cations of this approach, i.e., vibration suppression
of the end-e�ector and reducing the settling time.
In addition, the e�ciency of the proposed approach
in vibration reduction is demonstrated by comparing
with a composite controller. In Section 7, the ef-
�ciency of the approach is shown by implementing
the presented method on a 6DOF cable-suspended
robot, made for experiments in the robotic lab of
Iran University of Science and Technology (ICaS-
bot). The investigation is accomplished by vibration
measurement via IMU sensor and frequency analy-
sis.

Figure 1. Schematic view of the 6DOF cable-suspended
robot.

2. Dynamic equations of the robot with elastic
cable

Figure 1 shows the schematic view of the cable-
suspended robot studied in this paper. The triangular
end-e�ector of the robot moves by six elastic cables
with elasticity Ki. The center of the coordinate system
attached to the end-e�ector is denoted by OB , where
the Center of Gravity (C.G.) of the end-e�ector is
located. The position of OB expressed in the inertial
frame N is given by �. The vector ! shows the angular
velocity of the end-e�ector expressed in the frame
attached to the end-e�ector. The endpoint position
of the ith cable on the end-e�ector is denoted by rBi in
the frame attached to the end-e�ector. The vector rAi

indicates the other endpoint position of the ith cable
in the inertial frame. The length vector of the ith cable
in the inertial frame can be expressed as follows:

qi = �+ NRB rBi � rAi ; (1)

where NRB is the rotation matrix of the end-e�ector
frame with respect to the inertial frame. Considering
q0 and qu as the cable length vectors in the initial and
unstretched states, respectively, the following equa-
tions can be expressed:

qu = q0 � rp�; (2)

�q = q� qu; (3)

_� = � 1
rp

_qu =
1
rp

(�_q� _q) ; (4)

where � denotes the rotation vector of the drums with
radius rp. The cables are pulled using the drums on
the output shaft of the motors. The velocity vector
of the end-e�ector _~x consisting of the linear velocity
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in the inertial frame and the angular velocity in the
end-e�ector frame is de�ned as:

_~x =
�

_�
!

�
; where : � = [x ; y ; z]T ;

! = [!x ; !y ; !z]
T : (5)

The derivatives of q relate to the velocity and acceler-
ation vectors of the end-e�ector as follows:

_q = �rpA1 _~x; (6)

�q = �rp
�
A1 �~x + A2

�
; (7)

where the matrices A1 and A2 are de�ned in Ap-
pendix A. The angular velocity and acceleration of the
drums, i.e. _� and ��, can be obtained using Eqs. (2)-(7).
They are used in derivation of the dynamic equations.
The dynamic modeling is accomplished using Gibbs-
Appel formulation, where the generalized power, the
time derivative of the potential energy, the dissipation
function, and the Gibbs function of the system are
needed. The time derivative of the potential energy
due to cable elasticity and gravity can be written as:

_UP =�qTK(qu)�_q+
1
2
�qT _K(qu)�q�meg _z; (8)

where:

K(qu) = diag
�
EA
qu

�
;

where E, A, and me denote the Young's modulus of
elasticity, cable section area, and the end-e�ector mass,
respectively. By assumption of viscous damping in the
cables, the dissipation function is given by:

D =
1
2
�_qTCd�_q; (9)

where:

Cd(qu) = diag
�
cd
qu

�
;

where cd is the damping coe�cient for the unit length
of the cables. The Gibbs function of the system can be
obtained from the following equation:

S =
1
2
�~x
T

[Me] �~x + _!T (! � Ie!) +
1
2

��
T
Im ��; (10)

where:

[Me] =
�
me I3 03

03 Ie

�
;

where Ie denotes the inertia tensor of the end-e�ector.
The elements of the diagonal matrix, Im, in Eq. (10)

indicate the moment of inertia of the set, consisting of
the rotor, gears, and the output shaft of the motors,
which is obtained based on the output shaft rotation.
The generalized power of the system is:

_W = �T _�; (11)

where � is the torque on the motor output shaft.
Substituting Eqs. (8)-(11) in the Gibbs-Appel formula,
the following equations can be obtained:

[Me] �~x +
�

03�1
! � Ie!

�
+
�
01�2 �meg 01�3

�T
� rpA1

T (K�q + Cd�_q) = 0; (12)

Im �� +
rp
2

diag�1(qu)diag(q+qu)K�q

+rpCd _�q = � ; (13)

where the symbol \diag (-)" indicates that the vector
in the parenthesis is converted to a diagonal matrix.
Since the changes of the cable length are small, the
following equation can be considered:

diag�1(qu)diag(q + qu) � 2 I6: (14)

Therefore, Eq. (13) can be simpli�ed as:

Im �� + rp
�
K�q + Cd _�q

�
= � : (15)

In order to express the rotational motion of the end-
e�ector in terms of Euler angles, the angular velocity
and acceleration in Eq. (12) are replaced with the
equivalent equations in terms of Euler angle derivatives
(see Eq. (A.1) in Appendix A). After multiplying the
two sides of the equation by matrix AT

3 , the dynamic
equations can be shown in the following form:

M�z + C + G = � tot:; (16)

where:

z =
�
x
�

�
;

M, C, G, and � tot are de�ned in Box I.

3. Stability analysis of the robot with elastic
cables

In [9], the asymptotic stability of the system is shown
using a damping term in the controller, where the
feedback of the tension rate is needed. However,
the stability of the system can be achieved by ap-
proximation of the cables dissipation energy using
Rayleigh viscous damping function. The dynamics of
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M =
�
A3

T[Me]A3 06
06 Im

�
;

C =

24A3
T
�

[Me]A4 +
�

03�1

P _ � Ie P _ 

�
� rpA1

T (K�q + Cd�_q)
�

rp (K�q + Cd�_q)

35 ;
G =

24 02�1�meg
09�1

35 � tot: =
�
06�1
�

�
:

Box I

the exible system can be investigated by dividing the
dynamic equations into the slow and fast dynamics
using singular perturbation techniques [23,24]. In order
to express the exible system equations in the form
of singular perturbations, the state u and the small
parameter " are de�ned:

u = EA�q; (17)

"2 =
1
EA

; cd =
�
"
; � = O(1): (18)

The order considered for the damping coe�cient, cd,
is selected based on the analogy with a mass-spring-
damper system, where the damping coe�cient is pro-
portional to the square root of the spring constant.
Using Eqs. (17) and (18), the angular acceleration
vector is obtained as:

�� =
"2

rp
�u + A1 A3�x + A1 A4 + A2: (19)

Considering Eqs. (17)-(19), the dynamic equation (16)
can be rewritten as:

A3
T
�

[Me] + A1
T ImA1

�
A3 �x + A3

T
�

[Me]A4

+
�

03�1

P _ � Ie P _ 

�
+ A1

T Im (A1A4 + A2)

+

24 02�1�meg
03�1

35�=A3
TA1

T
�
�� "2Im

rp �
�u
�
; (20)

Im

�
"2

rp
�u + A1A3�x + A1 A4 + A2

�
+ rp diag�1(qu)

�
u + cd"2 _u

�
= � : (21)

In the above equations, x is the slow dynamic state
and u represents the fast dynamic state produced by

the exibility of the system. The reduced model of the
equations can be obtained by considering " = 0 and
q = qu. According to Tikhonov theory [24], the states
x and u can be approximated as follows:(

x = x0(t) + O(")
u = u0(t) + �(�) + O(")

(22)

where � = t
" and � are the time scale and the variable

corresponding to the fast dynamic of the system.
Ignoring the higher order terms, the �rst and second
derivatives of u are:(

_u = _u0 + 1
"

d�
d�

�u = �u0 + 1
"2

d2�
d�2

(23)

Ignoring the order "2 and the fast dynamic, Eq. (21)
can be rewritten as:

u0 + � " _u0 =
diag(qu)

rp

�
�0 � Im

�
A10 A30�x0

+ A10 A40 + A20

��
; (24)

where � 0 is the torque obtained from the reduced
model and �� denotes the torque considered for damp-
ing the vibrations of the fast dynamic. Considering
� = �0 + �� and substituting Eq. (24) in Eq. (21), the
boundary layer equation is obtained as:

Im

rp
d2�
d�2 + rpdiag�1(qu)(� + �

d �
d�

) = � �: (25)

If the fast dynamic term of the controller is considered
to be �� = �K�" _u, Eq. (25) can be written as:� _�

��

�
=
�

0 1
�K1 �K2

� �
�
_�

�
;

K1 =
rp2EA

Im diag(qu)
;
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K2 =
rp2
p
EA

Im

�
K�

rp
+

�
diag(qu)

�
; (26)

where K� is a positive semi-de�nite matrix. Consider-
ing the control torque obtained for the rigid model and
the kinematic equations, the dynamic equation (20)
becomes:�

_e
�e

�
=
�

0 I
�Kp �Kd

� �
e
_e

�
+
�

0 0
C�p C�d

� �
�
_�

�
;

C�p = rp M�1(A1A3)Tdiag�1(qu);

C�d = cdC�p : (27)

The stability analysis is performed with the Lyapunov
candidate as:

V =
1
2

�
_eT _e + eT Kp e +

h
�T _�

T
i

"
rp2
�
EA+

p
EA�

�
I Imdiag(qu)

Imdiag(qu) Imdiag(qu)

#�
�
_�

��
:
(28)

The derivative of Eq. (28) is obtained as:

_V =� _eTKd _e + _eT �C�p C�d

� ��
_�

�
� h�T _�

T
i

�
rp2EA I 0

0 �rp2
p
EA I

� �
�
_�

�
:

(29)

The cable sti�ness is considered to be constant during
the derivative operations. If a condition is found that
makes _V negative semi-de�nite, then the stability of
the origin is proven. The upper bound of the terms in
Eq. (29) are considered as:

� _eTKd _e � ��min (Kd) k _ek = ��mek _ek2; (30)

_eT �C�p C�d

� ��
_�

�
�k _ek

��_���max
��

C�p C�d

��
= �m k _ek

��_�� ; (31)

�
�
�
_�

�T �rp2EA I 0
0 �rp2

p
EA I

� �
�
_�

�
�

� �min

��
rp2EA I 0

0 �rp2
p
EA I

����_��
= ��m�

��_��2

:
(32)

As a result, the upper limit of _V is:

_V � �
�
k _ek

��_��� � �me ��m2��m2 �m�

�24 k _ek��_��
35 : (33)

In order to make _V � 0, the following condition should
be satis�ed:

�me �m� � �m2

4
: (34)

Therefore, considering the cable damping and the
suitable choice of derivative gain in the rigid model
based controller, the stability of the system can be
guaranteed.

4. Control approaches

As explained in the previous section, the torque
� can be obtained using a composite control, i.e.
� = � 0 + � �, where �� is obtained using the time rate
of the cable tension. If instead of the time derivative
of the cable tension, a direct feedback from the end-
e�ector is present, the following equivalent value of ��
can be used:

� � = �K�rp( _� �A1 A3 _x): (35)

If the cables have no damping properties, ignoring the
term �� in the controller results in increase in the cable
tension oscillation and, consequently, the end-e�ector
vibration. Therefore, in order to suppress the vibration
using the composite control method, the feedback from
the cable tension rate or the pose and velocities of the
end-e�ector are needed. The desired error dynamic
of the exible system can also be achieved using the
feedback linearization method and the feedback only
from the end-e�ector. If no damping is assumed in the
cables, the �rst 6 rows in Eq. (16) can be rewritten in
the following compact form:

~M �x + ~C + ~G = �q: (36)

According to the last 6 rows of Eq. (16), the 2nd
derivative of � has a direct relation with � . Following
the steps in Appendix B, the control torque:

� =
Im

rp

� �~M x(2) + 2 _~M x(3) + ~M� + �~C + �~G� �q
�

+ rpK
�

~M �x + ~C + ~G
�
; (37)

linearizes the error dynamic. In Eq. (37) � = x(4)
d +P3

i=0 kie
(i) and e = xd � x. Also, x(i) denotes the

ith derivative of x. The coe�cients ki can be obtained
using the desired error dynamic. It is notable that the
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states needed to be fed back to the controller can be
any of the following equivalent sets:

(x; _x; �x; ...x) ;
�
x; _x;�; _�

�
;
�
x; _x;T; _T

�
; (38)

where T = K�q. The matrices ~M, ~C, and ~G in
Eq. (36) are obtained by multiplying the two sides of
the �rst six rows of Eq. (13) by (rpAT

1 K)�1. Since the
matrix A1 includes the Jacobian matrix �T, obtaining
the derivatives of ~M, ~C, and ~G in Eq. (37), which
include matrix (AT

1 )�1, needs substantial computa-
tions. In addition, providing the necessary feedback
of the states as in Eq. (38) needs additional sensors
compared with the rigid model control, which increases
the complication for obtaining the control e�ort. In
composite control approach, the slow dynamic term �0
is obtained using the feedback from encoders of motors,
while calculating the fast dynamic term �� requires the
feedback from the end-e�ector pose, and velocities or
the cable tension rate. In this paper, another approach
for simplifying the controller computations as well as
avoiding the use of additional feedback is considered.
Considering that the dynamics of the exible system
converge to the rigid model dynamics, the control
torque is calculated using a rigid model based control
approach and the feedback from the actuators. In
addition, the end-e�ector vibration is suppressed using
a robust input shaping method. The control torque
based on the rigid model is obtained employing the
Feedback Linearization method as follows:

� =F�1(M�FL + C + G);

�FL=�xd+Kp e+Kd _e; (39)

where:

e =xd�x; _e = _xd� _x:

The inertia matrix M, centrifugal and Coriolis matrix
C, gravity matrix G, and the torque coe�cient matrix
F are obtained using the rigid model of the system.
Similar to Eq. (39), a typical sliding mode controller
can be obtained by a small modi�cation in the control
input �FL as follows:

�SMC=�xd+Kd _e + Ksign(s);

s = _e + Kd e: (40)

Matrix K is strictly positive de�nite. In spite of
some bounded disturbances or dynamic uncertainties,
the discontinuous function included in Eq. (40) can
guarantee that the trajectories of the system reach the
invariant set s = 0 in a �nite time. On the sliding
surface, the error dynamics is de�ned by the equation
of the set. In order to avoid steady state errors, integral

action can be considered in the controller. To this aim,
the sliding surface can be de�ned as:

s = _e + Kd e + Kp

Z t

0
e d�: (41)

By modifying Eq. (40) to:

�ISMC=�xd+Kd _e + Kp e + Ksign(s); (42)

the error dynamics of the integral sliding mode con-
troller on the sliding surface become identical to those
of the FL controller:

�e+Kd _e + Kp e = 0: (43)

At the expense of chattering on the control input, the
switching function ensures reaching the sliding surface
in a �nite time and remaining on the surface in the
presence of uncertainties and disturbances with known
bound. Thus far, di�erent methods have been proposed
to smooth the discontinuous control law by �nding
a trade-o� between the control bandwidth and the
tracking accuracy. Since this paper does not intend
to address the uncertainty issues of the rigid model,
the control law presented in Eq. (39) is utilized. The
feedback from the end-e�ector in the Cartesian space is
approximated using the direct kinematic equation and
the data obtained from the encoders:

_x = (A1 A3)�1 _�: (44)

5. Vibration reduction using input shaping

Input shaping technique is based on convolving a
desired input with a sequence of impulses. The ampli-
tudes and the times of applied impulses are determined
in such a way that at the end of command, the vibration
caused by exciting the system natural modes is reduced
or cancelled completely. If a good approximation of the
natural frequency and damping exists, then the ratio
of the vibration amplitude produced by a sequence of
impulses to the vibration amplitude caused by a unit
impulse is [25]:

V (!; �) = e�� ! tm
q
C(!; �)2 + S(!; �)2; (45)

where:

C(!; �) =
mX
i=1

Aie� ! ti cos(!dti);

S(!; �) =
mX
i=1

Aie� ! ti sin(!dti);

!d = !
p

1� �2:
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Ai and ti denote the amplitude and the time
location of the i-th impulse, respectively, ! is natural
frequency, � is damping, and m represents the number
of impulses. The main goal of the input shaping
methods is reduction in the vibration amplitude ratio,
V , using the formulations for the amplitude and time
location of the impulses. A vibrational system may
have more than one natural mode. If m impulses are
considered for a system with n natural modes, then
the shaped impulse sequence for the p-th mode can be
expressed by:

Lp =
mX
i=1

Ap;i� (t� tp;i); (46)

where:

p = 1 ::: n ; tp;i = (i� 1)
�

!p
q

1� �p2
;

where �(t� tp;i) denotes the impulse applied at instant
tp;i. The composite shaped impulse sequence Lmult for
a vibrational system with n modes can be formed by
convolving the sequences as:

Lmult = L1 � ::: � Ln; (47)

where � is the convolution operator. An impulse
sequence works as a �lter of the system input. There-
fore, it causes a time delay equivalent to one cycle of
the impulse sequence. When the designed composite
sequence Lmult is combined with any desired input,
r(t), a shaped input, x(t), with a property that does
not excite the natural modes is obtained as:

x(t) = r(t) � Lmult: (48)

In practice, modeling error always exists. Considering
a linear behavior for a nonlinear system to estimate
the damping and natural frequency is one source of the
errors. In order to robustify the input shaping method
against the damping and natural frequency uncer-
tainties, the constraint of making vibration amplitude

ratio, V , equal to zero is relaxed to a speci�ed tolerable
level of vibration, Vtol. One of the input shaping
methods that bene�ts from this idea is EI shaper. For
Vtol = 5%, the allowable band of frequency uncertainty
of single hump EI shaper is�20%. If more robustness is
required, multi-hump EI shapers can be designed [26].
In this paper, vibration reduction is accomplished
using undamped three-hump EI shaper, where the
amplitudes and time locations of the impulses are:�

Ai
ti

�
=
�
A1 A2 1� 2(A1 +A2) A2 A1
0 0:5T T 1:5T 2T

�
;
(49)

where:

A1 =
1 + 3Vtol + 2

p
2Vtol(Vtol + 1)

16
;

A2 =
1� Vtol

4
;

T =
2�
!
:

In the three-hump EI shaper, the allowable band
of frequency uncertainty for Vtol = 5% is nearly �50%.

6. Simulation

In this section, several case studies are performed
to show the e�ectiveness of the proposed approach.
The �rst case study investigates convergence of the
dynamic response of the exible robot towards the
rigid-cable robot. The next two case studies show
the contributions of the proposed approach and the
last compares the proposed controller with a composite
controller. The coordinates of the cables endpoints
on the platform rAi and on the end-e�ector rBi are
obtained based on the side length of the triangular end-
e�ector and the upper triangular plate of the platform
as presented in Table 1. This table also represents the
inertia parameters as well as the drum radius of motors.
The scheme for control gain selection is provided in
Figure 2. Considering the error dynamics of the rigid

Table 1. Geometrical and inertia parameters.

Name Symbol Value Unit

Side length of the triangular upper plate of the platform | 1.19 m
Side length of the triangular end-e�ector | 0.17 m
Radius of the cable drums rp 0.015 m
End-e�ector mass me 3.1 kg

Moment of inertia tensor of the end-e�ector Ie

26640:0018 0 0
0 0:0018 0
0 0 0:0036

3775 kg.m2

Equivalent moment of inertia of the motors Im 0.03 I6 kg.m2
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Figure 2. The scheme for control gain selection.

model and the initial errors, a primary guess about the
control gain can be made using the given values of the
positive settling band, es, and the settling time, ts, as
follows:

es = exp(�Kd

2
ts)
����e0

�
1 +

Kd

2
ts
�

+ ts _e0

���� ; (50)

where e0 and _e0 are the initial errors. In order to
prevent the oscilation in the slow dynamic motion,
Eq. (50) is obtained considering the following relation
between the control gains:

Kd = 2
p

Kp: (51)

Since the intended cable robot is of the under-
constrained type, the cable tension cannot be arbi-
trarily increased. Large feedback control input or
severe changes of the desired trajectory may lead to
cable tension oscilation. This may result in cable
slack. Considering the nonlinear dynamic of the
exible system, cable tension should be determined
numerically. Therefore, in order to hold the positive
tension condition, the control gains should be obtained
by a trial and error algorithm. According to Figure 2,
the cable tension should not become less than a given
positive value, Tmin. In case of decrease in settling
time, the minimum cable tension should fall within a
given range of [Tmin, Tmax]. If in the simulation,
the minimum cable tension becomes less than Tmin, it

should be checked which part of the control input, i.e.
feedforward or feedback, leads to the violation of the
tension condition. To this end, a simulation of the rigid
model with the trajectory obtained from the exible
model simulation and using the inverse dynamic is
performed. Next, by checking the minimum tension
condition, it can be decided whether the control gain
should be decreased or the desired trajectory is not
applicable and should be changed. If the minimum
cable tension is above Tmin, the selected control gain
can be used for the vibration reduction approach.
However, in case of reducing the settling time, if the
minimum cable tension exceeds Tmax, the control gain
should be increased untill it falls within the given range.

It should be noted that the algorithm provided in
Figure 2 assumes that the desired trajectory is smooth
and the initial states of the system are not placed on
the desired trajectory. If these assumptions are not
satis�ed and the tracking error is not in the considered
band, the control gain is increased and the simulation
is repeated. Moreover, when the initial states of the
system are on the desired trajectory, the control gains
are initially chosen with a blind guess and, then, the
rest of the steps are followed.

6.1. Dynamic response of the exible robot
As shown in Box II, the desired path considered for the
�rst case study is circular such that the velocity of the
end-e�ector equals zero in the beginning and end of the
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xdes =

8<:[0:05 cos(� t
2

16 ) ; 0:05 sin(� t
2

16 ) ; 0:45 ; 0 ; 0 ; 0]
T

0 � t < 4

[0:05 cos(� (8�t)2

16 ) ; �0:05 sin(� (8�t)2

16 ) ; 0:45 ; 0 ; 0 ; 0]
T

; 4 � t � 8

Box II

path. The initial pose of the end-e�ector with respect
to the desired path is:

e0 = [�0:02 ; �0:02 ; 0:3 ; 0 ; 0 ; 0]T :

Control gain values are selected as:(
Kp = diag(4:25 ; 4:25 ; 21:25; 0:425; 0:425; 4:25)
Kd = 2

p
Kp

The control gains of the position are obtained consid-
ering the settling time and the error band in the rigid
model as follows:

ts = [3 ; 3 ; 1:7]T ;

es = [3 ; 3 ; 1]T mm:

The angular control gains are selected in such a way
that during the tracking, the angular errors remain
below 1 deg. Simulation of the closed loop system is
performed for the rigid-cable robot as well as for the
exible robot using three sti�ness values, i.e. EA =
1:5e3, 1.5e4, and 1.5e5. Figure 3 shows the end-
e�ector path in XY plane. Since the desired and
initial values of Euler angles are set to zero, they
show small variations. Therefore, frequency analysis
of the data using FFT better reveals the dominant
frequency of the system in the course of motion. As

Figure 3. Circular path of the end-e�ector.

Figure 4. Frequency analysis of the 3rd Euler angle, '.

Figure 5. The distance between C.G. of the end-e�ector
and the desired path.

shown in Figure 4, when EA is multiplied by 10,
with a good approximate, the most dominant or the
lowest natural frequency is multiplied by

p
10. In

addition, an increase in the location of the lowest
natural frequency decreases the amplitude vibration.
Similarly, the distance between C.G. of the end-e�ector
and the desired path in Figure 5 presents the same
results. This is because with increase in EA, the
frequency increases, the vibration amplitude decreases,
and the system dynamic becomes closer to the rigid-
cable model.

The next two case studies in Sections 6.2 and
6.3 show the two contributions of this paper, i.e.
improvement of settling time and vibration reduction.
The last case study presented in Section 6.4 compares
the proposed controller with a composite controller and
investigates vibration reduction using an introduced
index. Since a low cable exibility is considered in Sec-
tion 6.2, vibration of the end-e�ector is not remarkable.
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However, using input shaping, cable tension oscillation
is suppressed and, as a result, reaching the desired
point can be achieved in a shorter time. The case study
in Section 6.3 is performed with high cable exibility.
Therefore, the simulation is carried out for the purpose
of reducing the vibration in the end-e�ector using
three-hump EI input shaper. In the simulation, input
shaping is applied to the desired input, which is
expressed in the Cartesian space. Furthermore, the
damping in the cables is ignored in order to show the
performance of the proposed approach.

6.2. Reducing the settling time
In order to study the e�ectiveness of the proposed
approach in the robot with low cable exibility con-
dition, a high sti�ness of EA = 15e5 is selected.
Two simulations are performed in this case study.
In the �rst simulation, input shaping method is not
applied. Using the �rst simulation result, the dominant
natural frequencies of the system are obtained and used
when applying the input shaping method in the second
simulation. In these simulations, a control command
for the end-e�ector to move from the initial point x0
to the desired point xf is applied:8><>:x0 =

h
0 0 1:1 0 0 0

iT
xf =

h
0:2 0:2 0:8 0 0 �

12

iT
In order to calculate the initial control gains associated
with the position and the third Euler angle of the
end-e�ector, the settling time and the error band are
considered as follows:

ts = [7:4 ; 7:4 ; 3:5 ; 4:4]T ;

es = [1mm ; 1mm ; 1mm; 1 deg]T :

The rest of the angular control gains are selected in
such a way that during the tracking, the associated
angular errors remain below 0.1 deg. Following the
algorithm presented in Figure 2, the control gains
which do not result in zero cable tension are obtained
by:(

Kp = diag(1 ; 1 ; 5 ; 0:1 ; 0:1 ; 1)
Kd = 2

p
Kp

By considering the zero desired value for the �rst
and the second Euler angles, the slow dynamic of
these states becomes negligible. Therefore, frequency
analysis of the states better reveals the vibration of
the fast dynamic of the system. Figures 6 and 7
demonstrate the magnitude of FFT for these two Euler
angles as well as cable tension, respectively. It is shown
that the most dominant frequencies of the vibrational
system are 32.7 Hz and 63.7 Hz.

Figure 6. Frequency analysis of the 1st and 2nd Euler
angles.

Figure 7. Frequency analysis of cables tension.

Since in cable modeling, damping is ignored, the
parameter � is set to zero. The tolerable level of the
vibration is selected to be Vtol = 5%. Considering the
natural frequency obtained in the previous simulation,
as well as the tolerable level of the vibration amplitude
ratio, the second simulation with three-hump EI input
shaping is performed. Using the input shaping method,
the oscillation amplitude of the cable tension with
the previous control gains is reduced. Therefore, the
control gain, Kp, for the second simulation is increased
by 2.5 times the previous values to achieve almost
the same minimum tension as that in the previous
simulation:(

Kp = diag(2:5 ; 2:5 ; 12:5 ; 0:25 ; 0:25 ; 2:5)
Kd = 2

p
Kp

Figures 8 and 9 show that cable tension is signi�cantly
reduced after implementing the input shaping method
compared with the simulation without input shaping.
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Figure 8. Tension of the 1st, 2nd, and 5th cables.

Figure 9. Tension of the 3rd, 4th, and 6th cables.

The trend of the distance between C.G. of the end-
e�ector and the desired point towards the settling band
of 1 mm is shown in Figure 10. It is shown that the
time required to enter the settling band is decreased
by 36% using input shaping method. The minimum
values of the tensions in the second simulation are still
higher, to some extent, than the minimum values in
the �rst simulation. Therefore, the control gains in the
second simulation can be further increased up to the
values that the minimum tensions in both simulations
are the same. This indicates that the time required
to reach the settling band can be further decreased.
In Figure 11, convergence of the 3rd Euler angle, ',
to the desired set-point is shown for both cases of
with and without applying the input shaping method.
It is shown that, using the input shaping approach,
the settling time is reduced signi�cantly. The control
torques of the actuators are shown in Figures 12-14.

6.3. Vibration reduction
To investigate the e�ectiveness and contribution of the
proposed approach, when the robot experiences high

Figure 10. The distance between C.G. of the end-e�ector
and the desired point.

Figure 11. Convergence of the 3rd Euler angle, '.

Figure 12. Control torque in the 1st and 3rd actuators.
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Figure 13. Control torque in the 2nd and 4th actuators.

cable exibility, another case study with low sti�ness
of EA = 1:5e3 is performed. Similar to the previous
case study, two simulations are performed for this case
study. The desired path, in this case study, forms a
square:8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

xb =
h
�0:15 + 3

25 t �0:15 1:1 0 0 0
iT

0 < t < 2:5

xb =
h
0:15 �0:15 + 3

25 (t� 2:5) 1:1 0 0 0
iT

2:5 < t < 5

xb =
h
0:15� 3

25 (t� 5) 0:15 1:1 0 0 0
iT

5 < t < 7:5

xb =
h
�0:15 0:15� 3

25 (t� 7:5) 1:1 0 0 0
iT

7:5 < t < 10

The vibration reduction using input shaping is
investigated using the same control gains. Therefore,
considering that the settling time is not important in
this simulation, the control gains only need to result in
a non-zero cable tension. This result can be achieved
using the control gains as follows:(

Kp = diag(4:25 ; 4:25 ; 21:25 ; 0:425 0:425; 4:25)
Kd = 2

p
Kp

The �rst simulation is carried out without using input
shaping method. Considering the justi�cation provided
in the previous case study, one can obtain the natural
frequencies of the system by calculating the FFT of the
Euler angles and the cables tension (Figures 15 and 16).

As shown in Figures 15 and 16, the dominant
modes occur at frequencies of 2.4 Hz, 17 Hz, and

Figure 14. Control torque in the 5th and 6th actuators.

Figure 15. Frequency analysis of Euler angles.

33.9 Hz. Considering these frequencies, as well as
Vtol = 5% and � = 0, the second simulation with a
three-hump EI input shaper is performed. Figures 17
and 18 show the end-e�ector path in the horizontal
plane and vertical direction, respectively. It is shown
that the controller with input shaping signi�cantly
reduces the vibration of the end-e�ector. In Figure 19,
the norm of Euler angles error is shown. The control
torques are illustrated in Figures 20 and 21.

6.4. Comparative study
In order to further investigate the e�ectiveness of the
proposed approach in vibration reduction, the last case
study makes a comparison with a composite controller,
which uses the feedback from the pose and velocity of
the end-e�ector. In this case study, three simulations
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Figure 16. Frequency analysis of cables tension.

Figure 17. End-e�ector path in XY plane.

Figure 18. End-e�ector displacement in vertical
direction.

Figure 19. Norm of Euler angles error.

Figure 20. The torques �1, �3, and �5.

Figure 21. The torques �2, �4, and �6.

are performed. In the �rst simulation, the input
shaping method is not applied. The natural frequencies
obtained from the �rst simulation results are used when
applying the input shaping method for the second
simulation. The third simulation is carried out using
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a composite controller without applying input shaping.
The performance of the proposed method is compared
with that of the composite controller using a new
index.

One of the indices in determining the percent-
age of remaining vibration is Percentage of Residual
Vibration (PRV), which is de�ned in Eq. (45). This
index is only well de�ned for single mode LTI systems
and di�cult to measure from simulation data of multi-
mode and nonlinear systems. In [27], the index PRE
is de�ned as the ratio of the remaining energy in a
system with input shaping to the remaining energy in
a system without input shaping, where, for single mode
condition, PRV =

p
PRE. Since the index PRV is de-

�ned for single-mode LTI systems, this latter de�nition
can be generalized to the multi-mode nonlinear systems
with PRV =

p
PRE. In this paper, to investigate

the vibration reduction of the end-e�ector, a modi�ed
index of PRV is de�ned. The new index is the square
root of the ratio between the mean value of remaining
kinetic energy with input shaping and the mean value
of remaining kinetic energy without input shaping. The
kinetic energy of the end-e�ector is calculated after
entering a given settling band.

Cable sti�ness of this case study is EA = 1:5e3.
The simulations with point-to-point command are car-
ried out for the following initial and desired points:

x0 =
�
0 0 1:1 0 0 0

�T ;
xf =

�
0:2 0:2 0:8 0 0 �

12

�T :
Considering an assumed settling time and error band
for the rigid model, the control gains are obtained as
follows:

Kp = diag(0:5 ; 0:5 ; 2:5 ; 0:05 ; 0:05 ; 0:5);

Kd = 2
p

Kp:

Similar to the case study in Section 6.3, the natural
frequencies and the parameters of the input shaper are
obtained from the �rst simulation results. The second
simulation is performed using the three-hump EI input
shaping method. The third simulation is carried out
using a composite controller, where the control gains
for the slow dynamic are similar to those in the former
simulations. Increasing the fast dynamic gain, K�,
leads to an increased delay in reaching the settling
band, while decreasing K� results in an increase in
vibration. For a fair comparison between the composite
control approach and the proposed algorithm, fast
dynamic gain of K� = 0:65I6 is selected, which
results in the same delay time in the two simulations.
Figures 22 and 23 show the �rst and the second control
torques. Figure 24 shows the distance between C.G.

Figure 22. The control torque �1.

Figure 23. The control torque �2.

Figure 24. The distance between C.G. of the end-e�ector
and the desired point.
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of the end-e�ector and the desired point for the three
simulations. The index PRV for the two simulations,
a) slow dynamic controller with input shaping and b)
slow dynamic controller plus fast dynamic controller,
is 7.7% and 5.8%, respectively, which shows that both
suppressed the vibration e�ectively. However, the
composite controller reduced the amplitude of the end-
e�ector vibration slightly better than the proposed
approach did at the cost of additional accurate end-
e�ector feedback.

7. Experimental results

Veri�cation of the approach presented in this paper
is performed using ICasBot, a 6DOF cable-suspended
robot manufactured in the robotic lab of Iran Uni-
versity of Science and Technology (Figure 25). The
controller of the robot is implemented in the LabVIEW
software, where it takes the feedback from incremental
encoders installed on the output shaft of the motors
(see the block diagram in Appendix C). The feedback
is then mapped in the Cartesian space using the direct
kinematic equation. Data communication between the
LabVIEW and the hardware, i.e. encoders and motor
drivers, is performed using two data cards (PCI 1780,
Advantech). After processing and computation of the
feedback signals in the LabVIEW, the PWM signals
are generated and applied to the motors. The rest of
the components of the experimental setup are described
in [28].

The following equation reects the electrical rela-
tion between the torque � in the output shaft of a DC
motor and the applied voltage V:

� = k1 v + k2 _�;

k1 =
nkt
R

;

k2 = �n2 kt kb
R

; (52)

where R is the motor winding resistance, Kb is the back
electromagnetic force constant, and Kt denotes the mo-
tor torque constant. In addition, n and _� are the motor
gear ratio and the output shaft speed, respectively.
Considering Eq. (52) and the rigid dynamic equation,
the torque � can be omitted and the rigid dynamic
equation with the input as voltage, v, is obtained:

�M�x + �Ce + �G = �Fev; (53)

where �Ce = �C� �F k2 _� and �Fe = �F k1.
The control e�ort can be obtained using Eq. (39),

considering that �C, �F, and � are replaced by �Ce,
�Fe, and v. In this work, the applied PWM signals

to the motors are generated by Pulse Width Modu-
lation of 12 v supply. Noting that the DC voltage
applied to the motor is the average value of the
PWM signal, the applied PWM can be obtained from
PWM(%) = v

0:12 .
Since the cable robot used for the experiment

has short cable length, the natural frequencies of
the system are high. The smallest impulse time in
the input shaping method is half the natural period
of the system. Therefore, considering the Nyquist
sampling theorem, vibration reduction using the input
shaping method requires the sampling rate of the
implemented controller to be theoretically four times
the lowest natural frequency of the system. However,
in the implementation, far higher sampling rate is
needed. The sampling frequency of the implemented
approach in the LabVIEW is in the range of [91-
100 Hz]. In order to verify the approach using this
sampling frequency, the system natural frequencies are
intentionally lowered. This is performed by inserting
springs with the same sti�ness between each of the

Figure 25. (a) The designed ICASBOT, (b) Motors, (c) Encoders, and (d) IMU, springs and end-e�ector.
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Table 2. Control inputs.

Initial position [0; 0; 1:1 m; 0; 0; 0]

Final position [0; 0; 0:8 m; 0; 0; 0]

Proportional gain Kp = [1:25; 1:25; 6:25; 0:125; 0:125; 0:125]

Derivative gain Kd = 2�p(Kp)

Electrical parameters of motors k1 = 0:17 (N.m/V), k2 = �0:08 (N.m.sec)

Cable sti�ness 440 N/m

Figure 26. Frequency analysis of the angular velocity in
the experiment.

cables and the end-e�ector. The end-e�ector vibration
during the tracking is measured using an IMU sensor,
GY86-MPU 6050. This sensor measures the linear
accelerations as well as the angular velocities in three
orthonormal directions. The experimental parameters
are provided in Table 2. Two tests are carried out in
this study.

7.1. Verifying the dynamic model
In the �rst experiment, a comparison between the
frequency spectrum of the simulation and the test
veri�es the derived dynamic model. A point-to-point
vertical motion of the end-e�ector from z = 1:1 m
to z = 0:8 m is performed. As shown in Figure 26,
the dominant vibrational frequencies of the system,
obtained from the IMU, range between [3.2-4.2 Hz].
Next, a simulation with the same cable sti�ness as that
in the experiment is performed. Figure 27 represents
the frequency spectrum of the cable tension. As shown,
the frequency of the exible model is 3.75 Hz, which
well matches the test results.

7.2. Investigation of the vibration reduction
approach

In the second experiment, the e�ectiveness of the input
shaping method in vibration reduction is investigated.
The trajectory of the end-e�ector is considered as
follows:

Figure 27. Frequency analysis of the cable tension in the
simulation.

xb =
�
0:1 sin

�
2�
15
t
�

0:1 cos
�

2�
15
t
�

1:1

+ 0:01 cos
�

4�
3
t
�

01�3

�T
:

In this experiment, the trajectory tracking is performed
for two cases, i.e. with and without applying the input
shaping method. In the case without input shaping,
the frequency analysis shows that the dominant natural
frequencies are in the range of [2.7-4.3 Hz]. Therefore,
for the second test, the parameters of the input shaping
method are obtained considering the middle frequency
of 3.5 Hz. Figures 28-30 compare the angular veloc-
ities in the two tests obtained from the IMU sensor.
Considering the data in Figures 28-30, the ratio of the
standard deviation of the test with input shaping to
that of the test without input shaping is in the range of
[0.22-0.24]. Indeed, this index indicates the reduction
ratio of the vibration amplitude.

Figures 31-33 show the frequency spectrum of the
angular velocities. Comparing the test results indicates
that the input shaping method signi�cantly reduced
the vibration of the main modes. It is notable that
the frequency content of the test data, obtained from
the sensor, includes the unwanted data related to noise
and disturbances in addition to the vibration data of
the system. Since the noise and the disturbances in the
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Figure 28. Angular velocity !x obtained from IMU.

Figure 29. Angular velocity !y obtained from IMU.

Figure 30. Angular velocity !z obtained from IMU.

system are distributed over the whole range of the fre-
quency spectrum, beyond the range of the vibrational
modes of the system, the vibration reduction algorithm
has no remarkable e�ect.

The maximum vibrational frequency is nearly
4.5 Hz. Therefore, considering the input shaping
method, the sampling rate is about 5 times the required

Figure 31. Frequency analysis of the angular velocity !x.

Figure 32. Frequency analysis of the angular velocity !y.

Figure 33. Frequency analysis of the angular velocity !z.

value according to the Nyquist theorem. In the
implementation, this is the minimum required sampling
rate in order to apply the impulses of the input shaping
method at the proper time. However, in the industrial
implementation, higher sampling rate can be achieved,
making it possible to suppress the residual vibration at
higher frequencies. The control inputs of the test are
shown in Figures 34 and 35.
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Figure 34. The control input of the 1st, 3rd, and 4th
motors.

Figure 35. The control input of the 2nd, 5th, and 6th
motors.

8. Conclusions

In this paper, dynamic equations of a 6DOF cable-
suspended robot with elastic cables are derived em-
ploying Gibbs-Appel formulation. After compar-
ing three control approaches, feedback linearization
method based on the rigid cable model and feedback of
the actuators was selected. To suppress the vibration
caused by exibility of cables, three-hump EI input
shaper was employed to modify the desired input of the
end-e�ector in Cartesian space such that the natural
modes of the system were not excited. Several case
studies were carried out in the simulation section.
The �rst case study showed that the trajectory of
the cable robot with elastic cables converged to the
trajectory of the one with rigid cable model. The
second and third case studies showed two contributions
of using input shaping for conditions of low and high
cable exibility. When cable exibility was high, the
simulation indicated that the input shaping had a
noticeable e�ect in vibration reduction of the end-
e�ector. In the case of low cable exibility, vibration of

the end-e�ector was not signi�cant and the proposed
approach contributed to the reduction in the time
required to reach the desired track. The last simulation
compared the proposed approach with a composite
controller. The composite controller comprised a slow
dynamic term for controlling the overall motion of the
end-e�ector using the feedback from the motor encoder
and a fast dynamic term to suppress the end-e�ector
vibration using the feedback from the end-e�ector pose
and velocity. It was demonstrated that the composite
controller had slightly better performance in vibration
reduction at the cost of additional sensors and more
controller computations. Finally, the experiment on
a laboratory robot manufactured in Iran University of
Science and Technology, i.e. ICastBot, demonstrated
the e�ectiveness of the proposed approach in vibration
reduction. In the experiment, the vibrations were mea-
sured employing an IMU sensor attached to the end-
e�ector for specifying the system natural frequencies
and investigating the vibration reduction.
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Nomenclature

A Cross section area of the cables
Ai; i = 1:::4 Coe�cient matrices
C Coriolis and centrifugal vector of the

exible system
Cd Cable damping coe�cient
cd Cable damping coe�cient per unit

length
E Young's modulus of elasticity
e = xd � x End-e�ector pose error
G Gravity vector of the exible system
Ie Moment of inertia tensor of the

end-e�ector
Im Equivalent moment of inertia of the

rotating parts of the motors
K� The gain of the torque for stabilizing

the fast dynamic
Kp;Kd Proportional and derivative gains of

the feedback linearization controller
Lmult The composite shaped impulse

sequence
M Symmetric positive de�nite mass

matrix of the exible system
me End-e�ector mass
P Euler angles rate matrix
PWM Pulse width modulation
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q =

2664 ...
qi
...

3775 Stretched cable length vector

i = 1:::6

qu =

2664 ...
qui
...

3775 Unstretched cable length vector

i = 1:::6
NRB Rotation matrix of the end-e�ector

frame with respect to the inertial frame
rp Cable drum radius
rAi Position vector of the ith cable's

endpoint on the end-platform stated in
the inertial frame

rBi Position vector of the ith cable's
endpoint on the end-e�ector stated in
the end-e�ector frame

u Fast dynamic variable
V Lyapunov function
v Control voltage calculated by feedback

linearization control law
x = [�  ]T Pose vector of the end-e�ector with

respect to the inertial frame

z =
�
x
�

�
State vector of the exible system

� Rotation vector of the motors

� = [x;y; z]T Position vector of the end-e�ector
�(� ) Fast dynamic variable
" Elasticity parameter of the cable
� Jacobian matrix
�min(:) The smallest eigenvalue of the matrix

in the parenthesis
�max(:) The largest singular value of the matrix

in the parenthesis
�� The torque applied to the motors
��0 The torque calculated based on the

rigid model
��� The torque for stabilizing the fast

dynamic
� Fast dynamic time scale

! =
[!x; !y; !z]

Angular velocity of the end-e�ector in
the end-e�ector frame

! Natural frequency of the vibrational
system

 = [ ; �; ']T Euler angle vector of the end-e�ector
� Damping of the vibrational system
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Appendix A

The coe�cient matrices in the kinematic and
dynamic equations
The relation between angular velocity of the end-
e�ector in the frame attached to the end-e�ector and
the time derivative of the Euler angles is:

! = P _ ; where : _ = [ ; � ; ']T (A.1)

where P is Euler angle rate matrix. Therefore, the
vectors _~x and �~x can be rewritten as:

_~x = A3 _x; �~x = A3�x + A4; (A.2)

where:

x =
�
�
 

�
; A3 =

�
I3 03
03 P

�
; A4 =

�
03�1
_P _ 

�
:

Considering the Jacobian matrix � as:

� =
�
::: �Nq̂i :::
::: �(NRB rBi�Nq̂i) :::

�
6�6

(A.3)

the matrices A1 and A2 are obtained:

A1 =
1
rp

�TN �RB; (A.4)

where:

N �RB =
�
I3 03
03

NRB

�
;

A2 =
1
rp

_�
TN �RB _~x; (A.5)

where Nq̂i is the unit vector along the ith cable, from
motor side to the end-e�ector side, expressed in the
inertial frame. NRB is the rotation matrix of the frame
attached to the end-e�ector with respect to the inertial
frame.

Appendix B

Feedback linearization of error dynamics for
the exible system
After obtaining the 2nd derivative of Eq. (36) and
replacing �� with the expression obtained from the last
six rows of Eq. (16), the following equation is obtained:

Im

rp

� �~M x(2) + 2 _~M x(3) + ~M x(4) + �~C + �~G� �q
�

+ rpK�q = � ; (B.1)
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Figure C.1. LabVIEW block diagram.

where x(i) denotes the i-th derivative of x. Substituting
the cable length deection from Eq. (36) into Eq. (B.1)
gives:

Im

rp

� �~M x(2) + 2 _~M x(3) + ~M x(4) + �~C + �~G� �q
�

+ rpK
�

~M �x + ~C + ~G
�

= � : (B.2)

If the control torque of Eq. (37) is inserted in Eq. (B.2),
the linear error dynamics of the system are obtained:

e(4) + k3 e(3) + k2 e(2) + k1 _e + k0 e = 0: (B.3)

Appendix C:

LabVIEW
Figure C.1 shows the LabVIEW block diagram.
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