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Abstract. Linear stability of a thixotropic 
uid obeying the Moore model is investigated
in pipe 
ow using a temporal stability analysis in which in�nitesimally small perturbations,
represented by normal modes, are superimposed on the base 
ow and their evolution in time
is monitored in order to detect the onset of instability. An eigenvalue problem is obtained,
which is solved numerically using the pseudo-spectral Chebyshev-based collocation method.
The neutral instability curve is plotted as a function of the thixotropy number of the Moore
model. Based on the results obtained in this work, it is concluded that the thixotropic
behavior of the Moore 
uid has a destabilizing e�ect on pipe 
ow.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Thixotropy appears to be a common e�ect among
industrial 
uids such as drilling muds [1-3]. Waxy
crude oils are also known to exhibit thixotropic be-
havior at su�ciently low temperatures. The main
cause of thixotropy in such complex 
uid systems arises
from an interaction between the 
uid elements and the
suspended particles or microstructures. In practice,
these particles temporarily cross-link and form bonds,
which are broken down by the action of shear. Si-
multaneously, these bonds are reformed through the
Brownian motion, but, because structure reform takes
place at a lower rate, in practice, one might witness
a time-dependent thixotropic e�ect. For instance, the
viscosity of such 
uid systems may vary considerably
with time in addition to its being a function of the
shear rate [1-3]. Such time-dependent behavior is
expected to a�ect the critical Reynolds number in
con�ned 
ows [4,5]. In spite of its technological
importance, instability of thixotropic 
uids has rarely
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been addressed in the past. One can notably mention
the work carried out by Pearson and Tardy [6], and
Ebrahimi et al. [7], who have shown that thixotropy has
a stabilizing e�ect on the Sa�man-Taylor instability in
a Hele-Shaw cell. On the other hand, Pourjafar et al. [8]
have shown that in circular Coeutte 
ow, the e�ect of
thixotropy can be stabilizing or destabilizing depending
on the gap size and the severity of the 
uid's thixotropy.
To the best of our knowledge, the e�ect of thixotropy
on the stability of pipe 
ow has not been addressed in
the past.

The interest in the stability of pipe 
ow stems
from the fact that this particular geometry is widely
used for the transport of Newtonian and non-
Newtonian 
uids [9-15]. In previous studies dealing
with non-Newtonian 
uids, the e�ect of shear-thinning
and yield stress has already been investigated on the
critical Reynolds number in pipe 
ow. For example,
we already know that shear-thinning has a stabiliz-
ing e�ect on pipe 
ow [16]. Also, based on current
knowledge, it is well established that a non-zero yield
stress increases the critical Reynolds number in pipe

ow [17,18]. As to thixotropic 
uids, it is also known
that thixotropy can have a destabilizing e�ect on plane
Poiseuille 
ow [19]. Surprisingly, however, the e�ect of
thixotropy on the critical Reynolds number in circular
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Poiseuille 
ow still remains unexplored. In the present
work, we intend to investigate the e�ect of thixotropy
on the critical Reynolds number in pipe 
ow. Our
interest in this particular 
ow arises from the fact that
pipelines are widely used for the transport of waxy
crude oils, which are known to exhibit thixotropic
e�ects. Another motivation for the present study is
the fact that capillary rheometers are frequently used
for the rheological characterization of non-Newtonian

uids including thixotropic ones [20]. As a matter
of fact, the viscometric data obtained using capillary
rheometers are commonly used for deciding on their
constitutive equation. With these in mind, this paper
addresses the stability to small disturbances of circular
Poiseuille 
ow for a typical thixotropic 
uid. To that
end, the paper is organized as follows. In the next
section, the equations of motion are presented for
the thixotropic 
uid of interest (namely, the Moore
model). The basic (i.e., unperturbed) solution is then
described for this particular 
uid. After that, we
proceed with developing the linear stability analysis
of the basic 
ow so-obtained. The numerical solution
to the stability problem is then given together with
presenting our understanding of its signi�cance. The
work is concluded by highlighting major �ndings.

2. Mathematical formulation

Figure 1 shows the 
ow geometry, which is a horizontal
circular rigid pipe of length L and radius R with its
axis along the z-direction. The pipe is assumed to
be carrying an incompressible thixotropic 
uid under
laminar conditions. Neglecting gravity e�ects and
assuming axial symmetry, the equations governing the
isothermal 
ow of any 
uid are the Cauchy equations
of motion together with the continuity equation. In
cylindrical co-ordinate systems, they are written as:
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Figure 1. Schematics of the circular pipe 
ow.

where � is the 
uid's density; ur; u�; and uz are the
velocity components; and �ij are the components of
the stress tensor.

The stress components in these equations need a
constitutive equation to be related to the velocity �eld.
In this study, we assume that the thixotropic 
uid of
interest obeys the \Moore model" [21,22]. For a 
uid
obeying this simple thixotropic model, the viscosity is
both shear- and time-dependent, that is:

�( _
; t) = �1 (1 + ��( _
; t)) ; (5a)

where, _
 is an e�ective shear rate de�ned by the
relationship:

_
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where dij is the rate-of-deformation tensor de�ned by:
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In Eq. (5), �( _
; t) is the structural parameter, which
varies between 1 to 0 with \one" denoting complete
structure buildup and \zero" denoting complete struc-
ture breakdown. The viscosities corresponding to these
two limiting cases are referred to by the zero-shear
(�0) and in�nite-shear (�1) viscosities, respectively.
It is worth mentioning that in the Moore model, these
limiting viscosities are related to each other through
�, the simple relationship: � = �0��1

�1 . To repre-
sent the time-dependency of the structural parameter,
an appropriate kinetic equation is needed. In the
Moore model, the kinetic equation takes the following
form [21,22]:

D�
Dt

= �k1 _
�+ k2 (1� �) ; (6)

where k1 and k2 are model parameters controlling
the rates of structure breakdown and structure build-
up, respectively. While k2 has the dimension of a
reciprocal time, k1 is dimensionless. Thus, the ratio
K = k1=k2 can be regarded as the \characteristic
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time" of the Moore 
uid. In a sense, K controls the
time needed by the Moore to �nd its new con�guration
under equilibrium conditions. Still, it should be noted
that for thixotropic e�ects to become important, K
should be of the same order or even larger than the
\characteristic time of the 
ow".

2.1. The basic 
ow
As the �rst step in our instability analysis, we have to
�nd out the velocity and viscosity �elds under steady
conditions{the so-called basic 
ow. Since the 
ow
is unidirectional, the equations of motion are simply
reduced to:

0 = �@p
@z

+
1
r
@
@r

(r�rz); (7)

where p is the isotropic pressure, r is the radial distance
from the pipe axis, z is the distance along the pipe,
and �rz = Gr=2 is the shear stress (with G being the
driving pressure gradient @p=@z). On the other hand,
under equilibrium conditions, the structural parameter
is obtained as �ss = k2=(k1 _
ss + k2) so that the
equilibrium shear stress becomes:
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�
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�
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ss; (8)

where the subscript \ss" means steady state. Having
multiplied this equation by k2=k1�1, after some simple
rearrangement, we end up with the following quadratic
equation for the steady shear rate:
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In an attempt to solve this equation for the shear rate,
we �rst try to make it dimensionless. To that end, we
scale the radial position by R, the shear rate by U0=R,
and the shear stress by GR, where U0 is the velocity
scale (say, the centerline velocity). From Eq. (9), the
physically acceptable root is easily obtained as:
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where Tx = k1GR=�1k2 is called the thixotropy
number. Figure 2 shows a plot of Eq. (10) as a function
of the thixotropic parameter, Tx, and the viscosity
ratio, �.

Having found the shear rate pro�les at equilib-
rium, we can obtain the basic velocity pro�les by
simply integrating the equation: _
s = duz=dr. In
dimensionless form, the result is:
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As expected, this equation reduces to the well-known
parabolic velocity pro�le for Newtonian 
uids by sim-

Figure 2. Shear rate pro�les as a function of the thixotropic number, Tx, and the viscosity ratio, �.
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ply setting � = 0. The importance of this semi-
analytical solution is that it can easily be used to
investigate the e�ect of Tx and � on the velocity
pro�les. As such, it can be regarded as an exact
solution for the pipe 
ow of Moore 
uids. And,
as we know, exact solutions are quite rare in non-
Newtonian 
uid dynamics-mainly because of the non-
linearity of their constitutive behavior. This is perhaps
why the �eld of non-Newtonian 
uid mechanics relies
so much on the computational techniques. However,
computer codes need to be veri�ed �rst and this should
preferably be done by comparing their output with an
exact solution. To this should be added the fact that
exact solutions can provide us with a better insight
as to the physics of any given 
uid mechanics problem.
Obviously, exact solutions are indispensable tools in the
�eld of 
uid mechanics, and this by itself highlights the
importance of Eq. (11) by itself. It is worth mentioning
that our semi-analytical solution has enabled us to �nd
the velocity pro�les without any need to add di�usion
terms to the kinetic equation as previously used by
Billingham and Ferguson [23]{see also [19] who resorted

to the same trick in order to obtain converged results
in their 
uid mechanics problem.

Figures 3 and 4 show typical basic-
ow velocity
pro�les using Eq. (11). As can be seen in Figure 3,
by an increase in �, the velocity pro�les deviate more
and more from the parabolic pro�le of Newtonian

uids. This is because at su�ciently large �, the
logarithmic term in Eq. (11) becomes progressively
more important. It is also interesting to note that
the centerline velocity decreases by an increase in the
viscosity ratio. Figure 4 shows the e�ect of Tx number
on the axial velocity pro�le for a given �. As can be
seen in this �gure, the centerline velocity increases by
an increase in Tx. Obviously, the two parameters in
the Moore model (i.e., � and Tx) have opposite e�ects
on the velocity pro�les.

3. Linear stability analysis

Having found the basic solution, we can now proceed
with their linear stability analysis. Using the idea of
normal modes, we substitute:

Figure 3. E�ect of the viscosity ratio on the axial basic 
ow velocity pro�les, u, obtained at (a) Tx = 10 and (b)
Tx = 100.

Figure 4. E�ect of the viscosity ratio on the axial basic 
ow velocity pro�les u in various Tx numbers: (a) � = 10 and (b)
� = 100.
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uz (r; z; t) = �uz + ûz = �uz + ŵ(r)eqt+ikz; (12a)

u� (r; z; t) = 0 + û� = f̂(r)eqt+ikz; (12b)

ur (r; z; t) = 0 + ûr = û(r)eqt+ikz; (12c)

� (r; z; t) = ��+ "̂(r)eqt+ikz; (12d)

� (r; z; t) = �� + ŷ(r)eqt+ikz; (12e)

p (r; z; t) = �p+ �̂(r)eqt+ikz; (12f)

where �uz; �p; ��; and �� represent the basic solution as
represented by Eqs. (10) and (11), and � is the
kinematic viscosity. It needs to be mentioned that,
based on the temporal instability analysis, in these
equations, the axial wavenumber (k) is a real number
whereas the growth rate (q) is a complex number.
Now, as the next step, we insert these equations into
the time-dependent set of the governing equations.
After neglecting the nonlinear terms based on the
\linear stability analysis," we end up with the following
equations for the perturbations amplitude functions:
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To calculate the viscosity function in these equations,
the e�ective shear rate should be calculated �rst from

Eq. (5a). To that end, we �rst write down the rate of
deformation tensor as shown in Box I (see Eq. (5b)),
where we have dropped all @=@� terms thanks to
the 
ow being axisymmetric in cylindrical coordinate
system. The e�ective shear rate can then be obtained
as:
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This equation can be simpli�ed as:
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The above equation can be recast into the following
form:
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Having dropped all nonlinear terms and using the
binomial, we obtain:
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where, \S" refers to the sign of d�uz
dr . Knowing the shear

rate for the perturbed form of the Moore model, the
kinetic equation (see Eq. (6)) takes the following form:
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@r

� 1
2

�
@ûr
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@û�
@z + 1

r
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It should also be noted that there is a relationship
between the disturbed amplitude of the kinematic
viscosity and the structural parameter itself. To obtain
this relationship, Eq. (5) is re-written as:
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As the next step, we substitute: a = Rk, � = R2q=�1,
u� = û=U0, f� = f̂=U0, �� = ��=�1, and y� = ŷ=�1.
We then combine Eqs. (13a) to (13c) with Eq. (14e)
in order to obtain the following r- and �-momentum
equations. We �nally end up with following equations
for the dimensionless (still unknown) functions \u�"
and \f�":
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For the �-momentum equation, we obtain:
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The above set of di�erential equations (governing the
perturbations) needs six boundary conditions to be
amenable to a numerical solution. Based on the no-slip
condition, the three velocity perturbations and their
amplitudes must vanish at the wall. On the other hand,
from Eq. (13d) the boundary condition on w can be
translated into dû

dr + û
r = 0 at the wall as well as at

the centerline. To capture the �rst mode of instability,
the dimensionless ampli�cation factor, �, should be set
equal to zero.
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4. Method of solution

Since our main target is to �nd out the critical
Reynolds number, it su�ces to obtain the neutral
stability curves by �nding the critical wave number at
which we have: max[real(�cr(Recr; �cr))] = 0. In the
MATLAB code, we used the \polyig" function to deal
with the eigenvalue problem resulting from Eqs. (15a)
and (15b). In addition, for solving the stability equa-
tions, we have relied on the pseudo-spectral based on
Chebyshev polynomials and using the Gauss-Lobatto
collocation points [24]. The fundamental consideration
of spectral method is to assume unknown functions of
u� and f� as the base functions, that is:

u� (x)=
NX
n=0

anTn (x) ; f� (x)=
NX
n=0

bnTn (x); (16)

where Tn(x) = cos(n cos�1(x)) is the nth Chebyshev
polynomials. Since the polynomials are de�ned in
[�1; 1], we use the transformation x = 2r � 1 to map
the interval of [0; 1] (from pipe centerline to its wall)
to [�1; 1]. The collocation points used in this work are
the Gauss-Lobatto points de�ned by:

xj = � cos
�
j
�
N

�
; j = 0; 1; 2; :::; N: (17)

In the next section, we report instability results ob-
tained in this way for the critical Reynolds number as
a function of � and K (or, Tx number). We have
checked the e�ect of the number of base (or, trial)
functions on the accuracy of our numerical results and
reached the conclusion that using N = 60 can ensure
grid-independent results. To validate the code, we can
rely on published Newtonian results for pipe 
ow of
Newtonian 
uids. In [25], the critical Reynolds number
for Newtonian 
uids has been reported to be equal to
2000. Our spectral code renders a value of roughly
2004, which is quite close to that reported in this
reference (see Figure 5).

5. Results and discussions

Having veri�ed the code, we are now ready to present
our new results addressing the e�ect of a 
uid's
thixotropy, as represented by the thixotropy number
(Tx), on the instability picture in pipe 
ow. For com-
pleteness, we also address the e�ect of viscosity ratio on
the critical Reynolds number. Figure 6 shows the e�ect
of the thixotropy ratio on the critical Reynolds number
as well as on the critical wave number for several viscos-
ity ratios, �. As can be seen in this �gure, for any given
�, by an increase in Tx, the critical Reynolds number is
decreased monotonically, meaning that the thixotropy
ratio in the Moore model has a destabilizing e�ect on
the pipe 
ow. Interestingly, longer wave numbers (or,

Figure 5. Critical Reynolds number for Newtonian 
uids.

equivalently, shorter wavelengths) are excited when Tx
is increased (see Figure 6(b), right). Unfortunately, a

uid obeying Moore model is shear-thinning in addition
to being thixotropic. One might therefore wonder if
the e�ect shown in Figure 6 is a true re
ection of the
thixotropy or not. Based on available data (see, for ex-
ample, Ref. [16]), we already know that shear-thinning
has a stabilizing e�ect on pipe 
ow. Therefore, the
results presented in Figure 6 show that the destabilizing
e�ect of thixotropy is so strong that it has eclipsed the
stabilizing e�ect of shear-thinning, so much so that the
net e�ect is destabilizing (see Figure 6).

Figure 7 shows the e�ect of the viscosity ratio on
the critical Reynolds number as well as on the critical
wave number for several thixotropy ratios, Tx. As
can be seen in this �gure, for any given Tx, by an
increase in �, the critical Reynolds number is increased
monotonically, meaning that the viscosity ratio in the
Moore model has a stabilizing e�ect on the pipe 
ow.
Interestingly, shorter wave numbers (or, equivalently,
longer wavelengths) are excited when � is increased
(see Figure 7(b)). As mentioned above, a 
uid obeying
Moore model is shear-thinning and, for a given �1,
its shear-thinning behavior is intensi�ed when � is
increased. On the other hand, the e�ect of shear-
thinning on pipe 
ow is already known to be stabilizing.
Thus, the destabilizing e�ect of the viscosity ratio is not
surprising (see Figure 7).

The strong e�ects of the thixotropy number and
the viscosity ratio in the Moore model on the instability
picture of pipe 
ow can best be seen by plotting the
neutral instability curves in Figure 8. In Figure 8(a),
we have shown the e�ect of Tx for a typical � = 10
and in the right plot, we have shown the e�ect of �
for a typical Tx = 10. The destabilizing e�ect of Tx
is evident in the left plot (cf. results at Tx = 10 with
results at Tx = 100). Similarly, the stabilizing e�ect of
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Figure 6. E�ect of the thixotropy number, Tx, on the critical Reynolds number.

Figure 7. E�ect of the viscosity ratio, �, on the critical Reynolds number.

Figure 8. E�ect of the thixotropy ratio at constant viscosity ratio: (a) � = 10 and viscosity ratio at constant Tx number
and (b) Tx = 10 on the critical Reynolds number.

� is clear in the right plot (cf. results at � = 0:5 with
results at � = 1).

6. Concluding remarks

In the present work, we have relied on the Moore model
to investigate the e�ect of a 
uid's thixotropy on the
critical Reynolds number in pipe 
ow using a linear,
temporal, normal-mode, and stability analysis. Based
on the results obtained in the present work, it can be

concluded that thixotropic 
uids obeying Moore model
are less stable than their corresponding Newtonian

uids. That is to say that, the thixotropy number
(i.e., the breakdown-to-rebuild ratio) has a destabi-
lizing e�ect on the pipe 
ow. Since a 
uid obeying
Moore model is both shear-thinning and thixotropic,
interpretation of the results appear to be a tricky task
at �rst sight. However, Fortunately, because shear-
thinning is already known to have a stabilizing e�ect on
pipe 
ow, the destabilizing e�ect found for the Moore
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model can be ascribed to its thixotropic behavior,
which is so strong that it eclipses the stabilizing e�ect
of shear-thinning.
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