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Abstract. In this paper, the mode III crack problem of a non-homogenous layer bonded to
an elastic half-plane was considered. It was assumed that the half-plane is homogeneous and
the layer is non-homogeneous where the elastic properties are continuous throughout the
layer. The stress �eld in a non-homogeneous layer and in an elastic half-plane with Volterra-
type screw dislocation was obtained. Fourier transforms were applied to the governing
equations to derive a system of singular integral equations with simple Cauchy kernel.
Then, the integral equations were solved numerically by being converted into a system of
linear algebraic equations and using a collocation technique. The given results demonstrate
the e�ects of the non-homogeneity parameters, interaction between the multiple cracks, and
distance of the cracks in the stress intensity factors for gaining better understanding of the
mechanical behavior of the non-homogenous coating.

© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Functionally Graded Materials (FGMs) with material
properties varying continuously possess apparent ad-
vantages in maintaining the integrity of the structure
when subjected to applied thermo-mechanical loads.
They are also widely used in engineering �elds as
a thermal barrier to prevent chemical corrosion [1].
Functionally Graded Materials (FGMs) have been
widely applied under extreme loading environment,
and the fracture mechanics of FGMs have attracted
much attention [2,3]. Practical application shows that
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interface cracks constitute a major reason for failures
of structural connection of di�erent materials. Thus,
the study of the stress �eld of the interface is playing a
signi�cant role in the design of safe layered structures.
In addition, due to the nature of the techniques used
in processing, these materials are imperfect. Moreover,
by far, the most common forms of such imperfec-
tions, which may have the potential of growing into
a macroscopic crack and causing the failure of the
structure eventually, are the surface aws located in
the intersection of the interfaces [4].

In fracture analysis of mediums with interfacial
cracks, Erdogan is an expert as one of the pioneering
researchers; therefore, a concise review regarding his
contributions in this category is presented herein at
�rst. The analytical expression of Stress Intensity
Factor (SIFs) in two bonded elastic layers containing
cracks perpendicular to the interface was obtained
by Ming-Che and Erdogan [4]. The problem was
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formulated in terms of integral equations and the
singular behavior of the solution near to and at the
ends of intersection of the cracks. The solution to
an interface crack between two bonded homogeneous
and non-homogeneous half planes was presented by
Delale and Erdogan [5]. The results led to the
conclusion that the singular behavior of stresses in
the nonhomogeneous medium is identical to that in
a homogeneous material. In another paper, Erdogan
and Wu [6] investigated the inuence of the structure
and thickness of the interfacial regions on the strain
energy release rate in bonded isotropic or orthotropic
materials containing collinear interface cracks. They
formulated the problem in terms of a system of singular
integral equations of the second kind. The results show
that the e�ects of properties and the relative thickness
of the interfacial region on the stress intensity factors
and strain energy release rate can be highly signi�cant.
Erdogan et al. [7] solved the mode III crack problem for
two bonded homogeneous half planes. The interfacial
zone was modelled by a non-homogeneous strip in
such a way that the shear modulus is a continuous
function throughout the composite medium and has
discontinuous derivatives along the boundaries of the
interfacial zone. It was shown that the stresses had the
standard square root singularity.

Besides, in recent years, there have been several
investigations regarding mode III interface crack prob-
lems as well. For example, L�u et al. [8] investigated the
asymmetrical dynamic propagation problems of mode
III interface crack under the condition of point loads
and unit-step loads by the application of the theory
of complex functions. The problem of a functionally
graded coating bonded to an elastic substrate with
interface crack subject to anti-plane loading was ana-
lyzed by Ding and Li [9]. In this investigation, they
studied the inuence of the interaction between the
periodic arrays of interface cracks on stress intensity
factors. Chen and Chue [10] dealt with the anti-plane
problems of two bonded FGM strips weakened by an
internal crack normal to the interface. The material
properties are assumed to vary along the direction of
the crack lines. The derived system of singular integral
equations was solved numerically by Gauss-Chebyshev
integration formula. Chue and Yeh [11] considered
the anti-plane crack problem of two bonded FGM
strips. Each strip concludes an arbitrarily oriented
crack, and the material properties are assumed to be
in exponential forms. Mode III crack cutting the
interface perpendicularly between two dissimilar semi-
in�nite magneto-electro-elastic solids was investigated
by Wan et al. [12]. The problem was formulated and
solved based on the complex variable method, and
the analytical solution was then found for the entire
plane. Chao and Lu [13] studied the problem of a
layered structure demonstrating an arbitrary oriented

crack crossing the interface in anti-plane elasticity. The
distributed dislocation was used to model a crack, and
SIFs for various inclinations with di�erent material
properties were found. Pan et al. [14] investigated the
fracture problem of multiple parallel symmetric and
permeable mode III cracks in a FG piezoelectric mate-
rial plane under anti-plane loadings. They have found
that the SIFs of cracks depend on the crack length,
FG parameter, and the distance between the parallel
cracks. Ding and Li [15] investigated an anti-plane
crack problem of two collinear cracks perpendicular to
the interface of a FG orthotropic layer bonded to an
orthotropic homogeneous substrate. Choi [16] provided
the solution to the anti-plane problem of dissimilar
nonhomogeneous layers weakened by an embedded
or edge interfacial crack. Ordyan and Petrova [17]
presented a solution to the interaction of an interface
crack with internal cracks in dissimilar materials under
anti-plane shear loading. The fracture behavior of a
piezoelectro-magneto-elastic medium under anti-plane
loading was analyzed by Rogowski [18]. It was found
that the stress, electric and magnetic �elds exhibit
square root singularity at the crack tips. Lapusta et
al. [19] analyzed an interface crack in a biomaterial
piezoelectric plane under anti-plane mechanical and in-
plane electric loadings.

L�u et al. [20] investigated the asymmetrical dy-
namic propagation problem on the edges of mode III
interface crack subjected to superimposed loads by
application of the theory of complex variable functions.
Hu et al. [21] investigated a moving Dugdale interfacial
crack model between dissimilar magneto-electro-elastic
materials under anti-plane shear and in-plane electric
and magnetic loadings. Monfared and Ayatollahi [22]
investigated the dynamic stress intensity factors of
cracked orthotropic half-plane and functionally graded
material coating of a coating-substrate material due to
the action of anti-plane traction on the crack surfaces.
The dislocation solution was utilized to derive integral
equations for multiple interacting cracks. The transient
response analysis of a mode III interface crack between
a piezoelectric layer and a FG orthotropic material was
carried out by Shin and Kim [23].

Many researchers have also studied the mixed
mode interfacial crack problems in recent years. For
instance, Yang et al. [24] studied the fracture prob-
lems near the interface crack tip of double dissimilar
orthotropic composite materials. Through the instru-
mentality of complex function method, the singularity
exponents were derived and determined. Cheng et
al. [25] studied the plane elasticity problem of two
bonded dissimilar functionally graded strips containing
an interface crack with material properties varying
arbitrarily. The governing equation in terms of Airy
stress function was formulated, and exact solutions
were obtained for several special variations of material
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properties in Fourier transformation domain. The
fatigue crack growth of interfacial cracks in bi-layered
materials using the extended �nite-element method
was analysed by Bhattacharya et al. [26]. Ding et
al. [27] studied the behavior of an interface crack for
a homogeneous orthotropic strip sandwiched between
two various FG orthotropic materials subjected to ther-
momechanical loading. Crack tip opening displacement
and plastic zone size were investigated for a curved
interface crack between a circular inclusion and an
in�nite matrix by Fan et al. [28]. Zhao et al. [29]
studied the stress intensity factor in orthotropic bi-
material interface cracks adopting the complex function
approach.

Moreover, there have been several investigations
using numerical techniques to solve such problems. For
instance, Bui and Zhang [30] presented a transient dy-
namic analysis of stationary cracks in two-dimensional
solids subjected to coupled electromechanical impact
loads using the extended Finite-Element Method (X-
FEM). Sharma et al. [31] analyzed a sub-interface crack
problem in piezoelectric biomaterials by the X-FEM.
In this investigation, the e�ects of di�erent poling
directions and electromechanical impact loads were
analyzed. The stress intensity factors were evaluated
by utilizing the asymptotic crack-tip �elds. Liu et
al. [32] studied the transient dynamic fracture behav-
iors of stationary cracked FG piezoelectric materials
under impact loading using the X-FEM. The tran-
sient thermal shock fracture analysis of functionally
graded piezoelectric materials using the X-FEM was
conducted by Liu et al. [33]. It was found that the
e�ect of the thermal shock loading on the dynamic
intensity factors was signi�cant. Yu et al. [34] solved
the problem of interfacial cracks between dissimilar
piezoelectric solids under coupled electromechanical
impact loadings by the X-FEM. Bui [35] presented
an extension of the extended isogeometric analysis to
simulate two-dimensional fracture mechanics problems
in piezoelectric materials under dynamic and static
coupled electromechanical loading conditions. Bui et
al. [36] developed a dynamic extended Iso Geomet-
ric Analysis (XIGA) of transient fracture of cracked
magneto-electroelastic solids under coupled electro-
magneto-mechanical loading. Doan et al. [37] presented
a numerical simulation of dynamic crack propagation
in functionally graded glass-�lled epoxy beams by
utilizing a regularized variation formulation. The
Gri�th theory-based hybrid phase �led approach was
used to simulate the dynamic crack growth accurately.
Wang and Waisman [38] proposed a set of enrichment
functions within the framework of the X-FEM for the
analysis of interface cracks in biomaterials. Itou [39]
determined the stress intensity factors for four collinear
interface cracks which are situated at the interface
between a nonhomogeneous elastic bonding layer and

one of two dissimilar elastic half-planes. The behavior
of an interface crack in two bonded dissimilar materials
subjected to in-plane loading was studied by Monfared
et al. [40]. The dislocation density on the faces of the
cracks was obtained numerically and, then, was used
to calculate the mixed mode stress intensity factors of
multiple interface cracks.

In this article, we present an analytical method
to study multiple interfacial cracks with arbitrary
arrangement under anti-plane shear loading. This
technique is e�cient and applicable to modelling the
evolution of a developing crack in two or three dimen-
sions. Basically, the same strategies will be employed
to formulate the solution to three-dimensional crack
problems by dislocation loop instead of a straight line
dislocation.

This paper presents the solution to the problem
of a graded coating bonded to an elastic isotropic half-
plane weakened by multiple interface cracks. The stress
�elds in a medium containing Volterra-type screw dis-
location are �rst presented (Section 2). The analytical
study is based on the use of Fourier transform. In the
next section, the stress analysis of a medium under
point loading is carried out (Section 3). With respect
to the results of Sections 2 and 3, the integral equations
for multiple interface cracks are derived in terms of the
dislocation density function given in Section 4. Several
examples are solved to demonstrate the applicability
of the problem presented in Section 5. Numerical
examples are given to show the e�ects of the thickness
of the FGM strips, material properties, and length of
the crack upon the fracture behavior. Finally, Section 6
will conclude the paper.

2. Formulation of the problem

The anti-plane problem under consideration consists
of a graded coating bonded to isotropic semi-in�nite
substrate with an interface crack (see Figure 1). The
thickness of strip is h in y-direction, where shear mod-
ulus, �, varies continuously in the thickness direction.
There is a screw dislocation at y = 0 between the
graded coating and elastic substrate. The constitutive
relations for FGM and isotropic material may be
expressed as follows:

Figure 1. Geometry of the problem.
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�zx1 = �(y)
@w1

@x
; �zy1 = �(y)

@w1

@y
;

�zx2 = �0
@w2

@x
; �zy2 = �0

@w2

@y
: (1)

To facilitate the solution of the problem, non-
homogeneity of the material may be approximated by:

�(y) = �0e2�y; (2)

where � is a non-homogeneity parameter. In the above
equations, �0 is the shear module of elasticity. The
strip is traction free on the boundary. Thus, boundary
condition is as follows:

�zy1(x; h) = 0: (3)

A Volterra-type screw dislocation with Burgers vector;
bz, is placed at the origin of coordinates. The condition
illustrating the dislocation is:

w1(x; 0+)� w2(x; 0�) = bzH(x); (4)

where H(:) is the Heaviside step function. The condi-
tion of self-equilibrium of stress between the strip and
half-plane implies that:

�zy1(x; 0+) = �zy2(x; 0�): (5)

The equilibrium equations in terms of displacement will
be written as follows:

@2w
@x2 +

@2w
@y2 + 2�

@w
@y

= 0; 0 � y � h;

@2w
@x2 +

@2w
@y2 = 0; y � 0: (6)

The solution to Eqs. (6) can be solved by the Fourier
transformation, de�ned as follows:

F (s) =
1Z
�1

f(x)eisxdx; (7)

and the inversion of the Fourier transform is:

f(x) =
1

2�

1Z
�1

F (s)e�isxds: (8)

By applying the Fourier transform Eq. (7), the solution
to Eqs. (6) may be expressed as follows:

d2W (s; y)
dy2 + 2�

dW (s; y)
dy

� s2W (s; y) = 0; 0 � y � h;
d2W (s; y)

dy2 � s2W (s; y) = 0; y � 0; (9)

where s is the transform variable, and the solution will
lead to the following equations for each region:

W (s; y) =A1(s)e(����)y +A2(s)e(��+�)y

0 � y � h;
W (s; y) = B(s)ejsjy; y � 0; (10)

where � =
p
� 2 + s 2 and unknown functions, A1(s),

A2(s), and B(s) are determined from the boundary
conditions. The Fourier transforms of boundary condi-
tions (3) to (5) result in:

dW1(s; h)
dy

= 0;

W1(s; 0+)�W2(s; 0�) = bz
�
� �(s) +

i
s

�
;

dW1(s; 0+)
dy

=
dW2(s; 0�)

dy
; (11)

where �(:) is the Dirac delta function. The solution to
Eq. (10) subject to the above boundary conditions is
straightforward. Hence, unknowns A1(s), A2(s), and
B1(s) may be expressed as shown in Box I.

By substituting Eq. (12) into Eq. (10) and ap-
plying the Fourier transform inversion formula (8), the

A1(s) = � bzjsj(��(s) + i=s)(� � �)e�h

jsj[(� + �)e��h � (� � �)e�h] + (�2 � �2)(e��h � e�h)
;

A2(s) =
bzjsj(��(s) + i=s)(� + �)e��h

jsj[(� + �)e��h � (� � �)e�h] + (�2 � �2)(e��h � e�h)
;

B1(s) =
bz(��(s) + i=s)(�2 � �2)(e�h � e��h)

jsj[(� + �)e��h � (� � �)e�h] + (�2 � �2)(e��h � e�h)
: (12)

Box I
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w1(x; y) = � bz
2�

Z 1
�1
jsj(��(s) + i/s)e��y[(� � �)e�(h�y) � (� + �)e��(h�y)]
jsj[(� + �)e��h � (� � �)e�h] + (�2 � �2)(e��h � e�h)

e�isxds; 0 � y � h;

w2(x; y) =
bz
2�

Z 1
�1

(��(s) + i/s)(�2 � �2)(e�h � e��h) ejsjy
jsj[(� + �)e��h � (� � �)e�h] + (�2 � �2)(e��h � e�h)

e�isxds; y � 0: (13)

Box II

displacement �eld in the medium can be obtained by
Eq. (13) as shown in Box II.

By splitting the integrals in Eq. (13) into odd
and even parts with respect to parameter s in view
of Eq. (1), the stress �elds are written as follows:

�zy1(x; y) = �bz�0e�y

�

Z 1
0

s(e�(h�y)�e��(h�y))
(�+��s)e��h�(����s)e�h sin(sx)ds;

�zx1(x; y) = �bz�0e�y

�

Z 1
0

(���)e�(h�y)�(�+�)e��(h�y)

(�+�� s)e��h�(����s)e�h cos(sx)ds;

0 � y � h;

�zy2(x; y) = �bz�0

�

Z 1
0

sesy(e�h � e��h)
(�+��s)e��h � (���� s)e�h sin(sx)ds;

�zx2(x; y) = �bz�0

�

Z 1
0

sesy(e�h�e��h)
(�+��s)e��h�(����s)e�h cos(sx)ds;

y � 0: (14)

In order to specify the singular nature of the stress
components, the asymptotic behavior of integrands in
Eq. (14) should be examined. Since the integrands are
continuous functions of s and also �nite at s = 0, the
singularity must occur as s tends to in�nity. The �nal
results may be presented as follows:

�zy1(x; y) =

� �0bze2�y

2�

�
x

x2+y2 +
x

x2+(2h�y)2

�
��0bze�y

�

�
Z 1

0

�
s(e�he�(�+�)y � e��he�(���)y)
(�+��s)e��h�(����s)e�h

� e�sy � e�s(2h�y)

2

�
sin(sx)ds;

0 � y � h;

�zx1(x; y) =
�0bze2�y

2�

�
y

x2 + y2 +
2h� y

x2 + (2h� y)2

�
� �0bze�y

�

�
Z 1

0

�
(���)e�he�(�+�)y�(�+�)e��he�(���)y

(�+��s)e��h�(����s)e�h

+
e�sy � e�s(2h�y)

2

�
cos(sx)ds;

0 � y � h:

�zy2(x; y) = ��0bz
2�

�
x

x2 + y2

�
� �0bz

�

Z 1
0�

s(e�h � e��h)
(�+��s)e��h � (����s)e�h �

1
2

�
esy sin(sx)ds;

y � 0;

�zx2(x; y) =
�0bz
2�

(
x

x2 + y2 )� �0bz
�

Z 1
0�

s(e�h � e��h)
(�+��s)e��h � (����s)e�h �

1
2

�
esy cos(sx)ds;

y � 0: (15)
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It is noteworthy to mention that stress �elds exhibit
Cauchy singularity at the dislocation position. More-
over, the integrands in Eq. (15) decay quite rapidly
as s ! 1, which makes the integrals susceptible to
numerical evaluation.

3. Point load solution

It is assumed that the medium is under an anti-
plane point load with magnitude �0 on the boundary,
represented by the following:

�zy1(x; h) = �0�(x): (16)

The continuity conditions can be expressed as follows:

w1(x; 0+) = w2(x; 0�);

�zy1(x; 0+) = �zy2(x; 0�): (17)

The expressions for the displacements and stresses may
be obtained as shown in Box III.

The singular parts of the kernels in Eq. (18) may
be evaluated by separating the leading terms in the

asymptotic analysis for s!1. Thus, after performing
the appropriate asymptotic analysis using a symbolic
manipulator and separating the singular parts of the
kernels, we obtain:

�zy1(x; y) =
�0e�(h�y)

�

�
(h� y)

x2+(h� y)2

+
Z 1

0

�
(�+��s)e��y � (�� �� s)e�y
(�+��s)e��h � (�� �� s)e�h

� e�s(h�y)
�

cos(sx)ds
�
; 0 � y � h;

�zx1(x; y) =� �0e�(h�y)

�

�
x

x2 + (h� y)2

+
Z 1

0

�
(�+��s)e��y � (�� �� s)e�y
(�+��s)e��h � (�� �� s)e�h

� e�s(h�y)
�

sin(sx)ds
�
; 0 � y � h;

w1(x; y) =
�0

2��0

Z 1
�1

e(�+�)(h�y)�2�y[(� + �+ jsj)e2�y � (� � �+ jsj)]
s2(e2�h � 1) + jsj[(� + �)� (� � �)e2�h]

e�isxds;

0 � y � h;

w2(x; y) =
�0
��0

Z 1
�1

�e(jsj�2�)y+(�+�)h

(1� e2�h)(�2 � �2) + jsj[�(1 + e2�h) + �(1� e2�h)]
e�isxds;

y � 0;

�zy1(x; y) =
�0e�(h�y)

�

Z 1
0

(� + �� s)e��y � (� � �� s)e�y
(� + �� s)e��h � (� � �� s)e�h cos(sx)ds;

0 � y � h;

�zx1(x; y) = ��0e�(h�y)

�

Z 1
0

(� + �� s)e��y � (� � �� s)e�y
(� + �� s)e��h � (� � �� s)e�h sin(sx)ds;

0 � y � h;

�zy2
(x; y) =

2�0
�

Z +1

0

�(s� 2�)e�(h�2y)+sy

s[(� + �� s)e��h � (� � �� s)e�h]
cos(sx)ds;

y � 0;

�zx2(x; y) =� 2�0
�

Z 1
0

�e�(h�2y)+sy

(� + �� s)e��h � (� � �� s)e�h sin(sx)ds;

y � 0: (18)

Box III
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�zy2(x; y) =
�0e�(h�2y)

�

�
(h�y)

x2+(h� y)2

+
Z 1

0

�
2�(s� 2�)

s[(�+��s)e��h� (����s)e�h]

� e�sh
�
esy cos(sx)ds

�
; y � 0;

�zx2(x; y) =� �0e�(h�2y)

�

�
x

x2+(h� y)2

+
Z 1

0

�
2�

(�+��s)e��h � (�� �� s)e�h

�e�sh
�
esy sin(sx)ds

�
; y � 0; (19)

At the points of application of load, i.e., r ! 0, stress
�elds exhibit the familiar Cauchy type singularity, 1=r,
where r is the distance from the load.

4. Medium weakened by crack

The dislocation solutions accomplished in the pre-
ceding section may be employed to analyze several
arbitrarily cracks located in the interface of two dis-
similar mediums. A crack con�guration with respect
to Cartesian coordinate x � y may be described in a
parametric form as follows:

xi = xi0 + ai �;

yi = yi 0; i = 1; 2; :::; N; �1 � � � 1; (20)

where (xi 0; yi 0) is the coordinates of the ith crack
center. Suppose that the screw dislocation unknown
density, Bzi(t), is distributed on segment aidt at the
surface of the ith crack, where �1 � t � 1. Covering
the cracks surfaces by dislocations, the principal su-
perposition may be invoked to obtain traction on the
given crack surface. The anti-plane �eld traction on the
face of the ith crack due to the presence of distribution
of the above-mentioned dislocation on all N cracks is
obtained. The system of a singular equation can be
written in the following form utilized in a numerical
procedure:

�zy
�
xi(�); yi(�)

�
=

NX
j=1

1Z
�1

kij(�; t)ajBzj(t)dt;

� 1 � � � 1; i = 1; 2; :::; N: (21)

Kernel Kij in integral Eqs. (21) is coe�cient of bz in
the stress components. By virtue of the Buckner's
principle [41], the left-hand side of Eqs. (21), after
changing the sign, is the traction caused by the point
load given in Section 3. The equation for the crack

opening displacement across the ith crack is as follows:

w1i(�)�w2i(�)=
Z �

�1
aiBzi(t)dt; i 2 f1; 2; :::; Ng:

(22)

The displacement �eld is single-valued out of crack
surfaces. Consequently, the dislocation density is
subjected to the following closure requirement:Z 1

�1
Bzi(t) dt = 0; i 2 f1; 2; :::; Ng : (23)

The stress �elds in the neighborhood of crack tips
behave like 1=

p
r, where r is the distance from the

crack tip. Therefore, the dislocation densities are taken
as follows:

Bzi(t) =
gzi(t)p
1� t2 ;

�1 � t � 1; i 2 f1; 2; :::; Ng : (24)

Parameters gzi(t) are obtained by solving the system
of Eqs. (21) and (24) using numerical solutions of
integral equations with Cauchy-type kernel developed
by Erdogan et al. [42]. The stress intensity factors will
reduce to:

KIIIL =
p

2
4
�(yLi) lim

rLi!0

w1i(�)� w2i(�)prLi ;

KIIIR =
p

2
4
�(yRi) lim

rRi!0

w1i(�)� w2i(�)prRi ; (25)

where subscripts L and R designate the left and right
crack tips, respectively, and the geometry of crack
implies the following:

rLi = [(xi(�)� xi(�1))2 + (yi(�)� yi(�1))2]
1
2 ;

rRi = [(xi(�)� xi(1))2 + (yi(�)� yi(1))2]
1
2 : (26)

By substituting Eq. (24) intoEq. (22) and the resultant
equation into Eq. (25) after utilizing the Taylor series
expansion of functions xi(�) and yi(�) in the vicinity
of points � = �1, the stress intensity factors can be
expressed as follows:

KIIIL =
�(yLi)

2

h
[x0i(�1)]2 + [y0i(�1)]2

i 1
4
gzi(�1);

KIIIR = ��(yRi)
2

h
[x0i(1)]2 + [y0i(1)]2

i 1
4
gzi(1): (27)

5. Results and discussion

The main results of this study demonstrate that the
stress intensity factors have been calculated for dif-
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ferent non-homogeneity parameters, crack length, and
interactions between several cracks which are located
at the interface between the nonhomogeneous layer and
the isotropic half-plane. The above presented method
allows for the consideration of dissimilar materials
with multiple straight cracks subjected to anti-plane
tractions. The results have been obtained through the
instrumentality of distributed dislocation technique.
The validity of the analysis is veri�ed by considering
a few examples, wherein the cracks are under constant
normal traction.

The �rst problem is an interface crack in a
functionally graded coating-substrate structure under
the uniform anti-plane loading. External loading,
�zy = �0, is applied on the crack surface. The plots of
dimensionless stress intensity factors for two di�erent
non-homogeneity parameters are drawn in Figure 2.
In this case, excellent agreement is observed between
the results of this study and those presented by Ding
and Li [9]. The second example deals with periodic
interface cracks with three di�erent distances between
cracks centers, as shown in Figure 3. The cracks'
faces are subjected to uniform anti-plane shear loads.
The results favorably match results of Ding and Li [9].

Figure 2. Comparison of the normalized stress intensity
factors for straight crack in the interface under a uniform
load.

Figure 3. Comparison of the normalized stress intensity
factors for periodic cracks in the interface under a uniform
load.

The applicability of the methodology developed here is
illustrated by solving some new problems.

In all remaining examples, since the medium is
under concentrated anti-plane point loads as speci�ed
in Eq. (16), the quantity for making stress intensity
factors dimensionless is K0 = �0=

p
a where a is the

half length of an embedded crack. In addition, it
should be mentioned that the dimensions of distance
between multiple cracks are taken c=a = 1:125 as in
all numerical results presented in this paper unless
otherwise stated.

The e�ects of crack length and non-homogeneity
parameter on the normalized stress intensity factors are
given in Figure 4. The symmetry of the problem with
respect to y-axis implies that the stress intensity factors
at crack tips are identical. As physically expected,
the stress intensity factors increase with the increase
of crack length. Moreover, it can be observed that
the normalized stress intensity factors increase as the
non-homogeneity parameter rises. The e�ect of non-
homogeneity parameter on stress intensity factors is
depicted in Figure 5. It can be seen that the highest
value of dimensionless stress intensity factors occurs
where the non-homogeneity parameter increases. In
general, the inuence of the coating thickness on the

Figure 4. Normalized stress intensity factors for an
interface crack versus the dimensionless crack length for
di�erent non-homogeneity parameters.

Figure 5. Normalized stress intensity factors for an
interface crack versus the non-homogeneity parameter.
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Figure 6. Normalized stress intensity factors for two
interface cracks versus the dimensionless crack length.

Figure 7. Normalized stress intensity factors for two
interface cracks versus the non-homogeneity parameter.

Figure 8. Normalized stress intensity factors for two
interface cracks versus the dimensionless distance between
the cracks.

stress intensity factors is as signi�cant as that of the
non-homogeneity parameter. Figure 6 shows the e�ects
of non-homogeneity parameter and cracks' lengths
between two interface cracks on the normalized stress
intensity factors. It can be seen that an increase in ei-
ther �a or a=h causes an increase in the stress intensity
factors. As observed, dimensionless stress intensity fac-
tors for the two approaching crack tips change rapidly.

Two equal-length interface cracks are considered,
as shown in Figures 7 and 8. The lengths of cracks

Figure 9. Normalized stress intensity factors for three
interface cracks versus the non-homogeneity parameter.

Figure 10. Normalized stress intensity factors for three
interface cracks versus the dimensionless distance between
the cracks.

Figure 11. Normalized stress intensity factors for three
interface cracks versus the dimensionless crack lengths.

remain �xed, while the non-homogeneity parameter
and crack centers are changing. From Figures 7 and
8, we may conclude that the stress intensity factors
of the two interface cracks are mainly a�ected by
the non-homogeneity parameter and interactions of
cracks. According to the given results in Figure 8, it
is evident that the normalized stress intensity factors
decline steadily, while the distances between cracks
increase as expected, due to the dramatic decline
of the interaction between cracks. The �nal set of
results, shown in Figures 9-11, presents stress intensity
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Figure 12. Normalized stress distribution around the
crack tips.

factors for three interface cracks with changing non-
homogeneity parameter. Figure 11 shows the stress
intensity factors of three interface cracks as a function
of the crack lengths. Note that the stress intensity
factors are highly inuenced by the non-homogeneity
parameter in which the stress intensity factors go up
as non-homogeneity parameter rises.

Last but not least, stress distribution along x-axis
is depicted in Figure 12 while �a = 2:0. Singularities
are, obviously, in the vicinity of the crack tips. It is
crystal clear that the stress values plummet dramati-
cally to be equal to the far �eld loadings at the su�cient
distance of the crack tips.

6. Conclusions

The fracture behavior of a non-homogeneous layer
along with a half plane bonded together was investi-
gated. It was assumed that the half plane is homoge-
neous and the layer is non-homogeneous, in which the
elastic properties are continuous throughout the layer
and have discontinuous derivatives along the interface.
The dislocation solution was obtained in a functionally
graded layer and in half-plane containing Volterra-type
screw dislocation by means of Fourier transformation.
The dislocation solution was utilized to derive integral
equations for the layer weakened by multiple cracks.
The conclusions can be made as follows:

1. The stress intensity factors are highly inuenced by
the non-homogeneity parameter;

2. It was observed that as the crack length increases,
the stress intensity factors escalate;

3. For the multiple interface cracks, the stress inten-
sity factors are highly a�ected by the cracks' length
and distance;

4. Negative values for the non-homogeneity parame-
ters tend to decrease the stress intensity factor.

5. It was seen that decreasing the value of coating

thickness while keeping � constant tends to increase
the stress intensity factor for negative values of
parameter �.
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