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Abstract. In this paper, we propose a new high-accuracy method based on non-
polynomial spline for the numerical solution to two-dimensional elliptic partial di�erential
equations. Using a non-polynomial spline approximation in x-direction and central
di�erence in y-direction, we obtain a new nine-point compact �nite-di�erence formulation.
A four-point Group Explicit (GE) iterative scheme with an acceleration tool is then applied
to the obtained system. The formulation procedure is presented in detail. The e�ciency
of the proposed method is then illustrated by some test problems. The numerical results
are found to be in good agreement with the exact solutions.
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1. Introduction

Equilibrium problems in two or higher dimensions often
lead to the elliptic partial di�erential equations. These
equations arise very frequently in describing velocity
potentials, stationary distribution of temperatures, po-
tential ows, and structural mechanics. Thus, solving
this type of equation has been of interest to many
researchers [1-5]. We consider the two-dimensional
elliptic partial di�erential equation of the form:

@2u
@x2 +

@2u
@y2 =A(x; y)

@u
@x

+B(x; y)
@u
@y

+g(x; y);

(x; y) 2 
; (1)

de�ned in solution domain 
 = f(x; y) : 0 < x; y < 1g
with boundary @
, where A(x; y) > 0 and B(x; y) > 0
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in 
. The corresponding Dirichlet boundary conditions
are prescribed by:

u(x; y) =  (x; y); (x; y) 2 @
: (2)

Assume that the boundary conditions are given with
su�cient smoothness to maintain the order of accuracy
in the numerical method under consideration.

The construction of group iterative methods in
solving the elliptic partial di�erential equation with
promising results and improved execution timings has
been greatly observed since the 1980s [6-12]. The
methods were formulated using a combination of
skewed �nite-di�erence approximations together with
the centred-di�erence approximation that resulted in
schemes with better rates of convergence than the exist-
ing iterative methods available in literature. However,
one of the weaknesses of these formulations is that
the formulas are based purely on �nite-di�erence dis-
cretization which enables the solutions to be obtained
only at certain intersection points of the grid lines in
the solution domain.

The application of splines to solving di�erential
equations has been an active area of research over the
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last few decades. In 1968, Bickley [13] originated an
idea to obtain better accuracy for a linear ordinary
di�erential equation by using cubic splines method.
Following this, Albasiny and Hoskins [14] applied the
cubic spline interpolation to solve a two-point bound-
ary value problem. At about the same time, Fyfe [15]
examined the method suggested by Bickley [13] and
carried out the error analysis. Fyfe concluded that
spline method is better than the usual �nite-di�erence
method as the spline method has the exibility to get
the solution at any point in the domain with more ac-
curate results. Due to its simplicity, many researchers
started considering spline as one of the approximation
tool to obtain accurate numerical solutions [16-19].
Recently, Ding et al. [20] and Gopal et al. [21] have
studied non-polynomial spline methods for the numer-
ical solution to one-dimensional hyperbolic problem.
More recently, Jha and Mohanty [22] have formulated
the solution to nonlinear second-order boundary value
problems by using quintic non-polynomial spline. To
the best of the authors' knowledge, no high-accuracy
non-polynomial spline method has been investigated on
two-dimensional elliptic partial di�erential equations.
Since the spline method has the exibility to produce
approximations at any point in the domain with high-
accuracy solutions, there has been an interest to for-
mulate group iterative schemes in hybrid with splines
in solving the elliptic partial di�erential equations.
Goh and Ali [23] managed to derive a new method,
namely the Spline Explicit Group (SEG) iterative
method, which incorporates cubic spline with group
iterative scheme for solving the elliptic equation with
the promising results. However, with the emergence of
newer types of splines with more favorable properties,
it would be a worthwhile e�ort to investigate the
application of highly advanced types of splines to the
group schemes as a means to further improve the
performance of the methods.

In this paper, we aim to discuss the formulation
of a new numerical method which incorporates a
non-polynomial spline into combination with a group
explicit iterative scheme for solving a two-dimensional
elliptic partial di�erential equation. We will present
the proposed method as follows. In the next section,
we discuss the non-polynomial spline approximations.
In Section 3, the numerical scheme of the solution
to the singular problem based on the non-polynomial
spline approximation in x-direction and central di�er-
ence approximation in y-direction will be elaborated
in detail. The formulation of the non-polynomial
spline group explicit iterative method will be discussed
and the complexity of computation will be analyzed
in Section 4. The performance of method will be
investigated via few test problems in Section 5. Finally,
the discussion and concluding remarks will be given in
Sections 6 and 7, respectively.

2. The non-polynomial spline approximation

Let solution domain 
 = [0; 1] � [0; 1] be divided into
Nx�Ny mesh with spatial step size h = 1=Nx > 0 in x-
direction and k = 1=Ny > 0 in y-direction, respectively,
where Nx and Ny are positive integers. The mesh ratio
parameter is denoted by � = (k=h) > 0. Grid points
(xl; ym) are de�ned by xl = lh and ym = mk, l =
0; 1; � � � ; Nx, m = 0; 1; � � � ; Ny. Notations ul;m and
Ul;m are represented as the exact and approximation
solutions of u(x; y) at grid point (xl; ym), respectively.
At grid point (xl; ym), di�erential equation (1) can be
written as follows:

Uxxl;m+Uyyl;m=f(xl; ym; Ul;m; Uxl;m; Uyl;m)�Fl;m; (3)

where:

f(x; y; U; Ux; Uy) = A(x; y)Ux +B(x; y)Uy + g(x; y):

In this paper, a non-polynomial spline approximation
is used to approximate the solution. Non-polynomial
spline, Sm(x), is a function of class C2[0; 1], which
interpolates value Ul;m at grid point (xl; ym) at each
mth mesh row and is given by:

Sm(x) =al;m + bl;m(x� xl) + cl;m sin!(x� xl)
+ dl;m cos!(x� xl); xl � x � xl+1; (4)

where al;m, bl;m, cl;m, and dl;m are constants and ! is
a free parameter.

The derivatives of non-polynomial spline Sm(x)
can be obtained as follows:

S0m(x)=bl;m+!cl;m cos!(x�xl)�!dl;m sin!(x�xl); (5)

S00m(x)=�!2[cl;m sin!(x�xl)+dl;m cos!(x�xl)]: (6)

In order to derive the expression for the coe�cients of
Eq. (4) in terms of Ul;m, Ul+1;m, Ml;m, and Ml+1;m,
we denote:

Sm(xl) = Ul;m; Sm(xl+1) = Ul+1;m;

S00m(xl) = Ml;m; S00m(xl+1) = Ml+1;m:

From algebraic manipulation, we can obtain:

al;m=Ul;m+
Ml;m

!2 ; cl;m=
Ml;m cos ��Ml+1;m

!2 sin �
;

bl;m =
Ul+1;m � Ul;m

h
+
Ml+1;m �Ml;m

!�
;

dl;m = �Ml;m

!2 ;

where � = !h. By substituting x = xl and the
constants into Eq. (5), we obtain:
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ml;m =S0m(xl) = Uxl;m =
Ul+1;m � Ul;m

h

� h[�Ml+1;m + Ml;m]; (7)

where:

� =
1
�2 (� csc � � 1);  =

1
�2 (1� � cot �):

Replacing h by �h, it gives:

ml;m =S0m(xl) =
Ul;m � Ul�1;m

h

+ h[�Ml�1;m + Ml;m]: (8)

Combining both Eqs. (7) and (8), the following approx-
imation can be obtained:

ml;m =S0m(xl) =
Ul+1;m � Ul�1;m

2h

� �h
2

[Ml+1;m �Ml�1;m]: (9)

Further, we have:

ml+1;m =S0m(xl+1) =
Ul+1;m � Ul;m

h

+ h[�Ml;m + Ml+1;m]; (10)

ml�1;m =S0m(xl�1) =
Ul;m � Ul�1;m

h

� h[�Ml;m + Ml�1;m]: (11)

By using the continuity of the �rst derivative at
(xl; ym), which is S0m(x+

l ) = S0m(x�l ), the following
relation can be obtained:

Ul+1;m � 2Ul;m + Ul�1;m

h2 =�Ml+1;m + 2Ml;m

+ �Ml�1;m: (12)

It is worthwhile to notice that when ! ! 0, that � ! 0
and (�; ) ! (1=6; 1=3), then the relation reduces to
ordinary cubic spline relation:

Ul+1;m � 2Ul;m + Ul�1;m

=
h2

6
(Ml+1;m + 4Ml;m +Ml�1;m):

The following approximations are considered:

Uyl;m=
Ul;m+1�Ul;m�1

2k
=Uyl;m+

k2

6
U03+O(k4);

(13a)

Uyl+1;m =
Ul+1;m+1 � Ul+1;m�1

2k
= Uyl+1;m

+
k2

6
U03 +

k2h
6
U13 +O(k2h2); (13b)

Uyl�1;m =
Ul�1;m+1 � Ul�1;m�1

2k
= Uyl�1;m

+
k2

6
U03 � k2h

6
U13 +O(k2h2); (13c)

Uyyl;m =
Ul;m+1 � 2Ul;m + Ul;m�1

k2 = Uyyl;m

+
k2

12
U04 +O(k4); (14a)

Uyyl+1;m =
Ul+1;m+1 � 2Ul+1;m + Ul+1;m�1

k2

=Uyyl+1;m+
k2

12
U04+

k2h
12

U14+O(k2h2);
(14b)

Uyyl�1;m =
Ul�1;m+1 � 2Ul�1;m + Ul�1;m�1

k2

=Uyyl�1;m+
k2

12
U04� k

2h
12

U14+O(k2h2);
(14c)

ml;m=
Ul+1;m�Ul�1;m

2h
=ml;m+

h2

6
U30+O(h4);

(15a)

ml+1;m =
3Ul+1;m � 4Ul;m + Ul�1;m

2h
= ml+1;m

� h2

3
U30 �O(h3); (15b)

ml�1;m =
�3Ul�1;m + 4Ul;m � Ul+1;m

2h
= ml�1;m

� h2

3
U30 +O(h3); (15c)

where:

Wab =
@a+bW (xl; ym)

@xa@yb
; W = U;D and g:

For the derivatives of Sm(x), we consider:



3184 J. Goh and N.H.M. Ali/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 3181{3192

M l;m = �Uyyl;m + F l;m; (16a)

M l+1;m = �Uyyl+1;m + F l+1;m; (16b)

M l�1;m = �Uyyl�1;m + F l�1;m; (16c)

m̂l;m=
Ul+1;m�Ul�1;m

2h
� �h

2
�
M l+1;m�M l�1;m

�
;

(17a)

m̂l+1;m=
Ul+1;m�Ul;m

h
+h
�
�M l;m+M l+1;m

�
;
(17b)

m̂l�1;m=
Ul;m�Ul�1;m

h
�h ��M l;m+M l�1;m

�
;
(17c)

and:

F l;m = f(xl; ym; Ul;m; Uxl;m; Uyl;m); (18a)

F l+1;m=f(xl+1; ym; Ul+1;m; Uxl+1;m; Uyl+1;m); (18b)

F l�1;m=f(xl�1; ym; Ul�1;m; Uxl�1;m; Uyl�1;m); (18c)

F̂l;m = f(xl; ym; Ul;m; Ûxl;m; Uyl;m); (19a)

F̂l+1;m=f(xl+1; ym; Ul+1;m; Ûxl+1;m; Uyl+1;m); (19b)

F̂l�1;m=f(xl�1; ym; Ul�1;m; Ûxl�1;m; Uyl�1;m): (19c)

Let:

�l;m =
�
@f
@Ux

�
l;m

: (20)

With the help of approximations (13) and (15), from
Eqs. (18a)-(18c), we obtain:

F l;m = Fl;m +
h2

6
U30�l;m +O(h4 + k2); (21a)

F l+1;m =Fl+1;m � h2

3
U30�l;m

+O(�h3 + k2 + k2h+ k2h2); (21b)

F l�1;m =Fl�1;m � h2

3
U30�l;m

+O(h3 + k2 � k2h+ k2h2): (21c)

Similarly, using approximations (14), (16), and (21),
Eqs. (17a)-(17c) can be simpli�ed as follows:

m̂l;m = ml;m +O(h4 + k2h2); (22a)

m̂l+1;m=ml+1;m+O(�h3�h4�k2h�k2h2); (22b)

m̂l�1;m = ml�1;m +O(h3 � h4 + k2h� k2h2): (22c)

Now, from Eqs. (19a)-(19c), we can get:

F̂l;m = Fl;m +O(h4 + k2 + k2h2); (23a)

F̂l+1;m =Fl+1;m +O(�h3 � h4

+ k2 + k2h+ k2h2); (23b)

F̂l�1;m =Fl�1;m +O(h3 � h4 + k2

� k2h+ k2h2): (23c)

By using Taylor series expansion about grid point
(xl; ym), Eq. (1) can be written as follows:

Lu ��2(Ul+1;m � 2Ul;m + Ul�1;m)

+
k2

12
�
Uyyl+1;m + Uyyl�1;m + 10Uyyl;m

�
=
k2

12

h
F̂l+1;m + F̂l�1;m + 10F̂l;m

i
+ T̂l;m; (24)

where l = 1; � � � ; Nx, m = 1; � � � ; Ny, and T̂l;m is
the local truncation error. Finally, using the above
approximations and from Eq. (24), we can obtain local
truncation error, T̂l;m = O(k4 + k4h2 + k2h4).

3. Application to singular problem

Consider the two-dimensional elliptic equation:

@2u
@x2 +

@2u
@y2 = D(x)

@u
@x

+ g(x; y); 0<x; y<1;
(25)

subject to appropriate Dirichlet boundary conditions
prescribed, where functions D(x) and g(x; y) 2 C2(
).
Applying Eq. (24) to the above equation, the following
di�erence scheme can be obtained:

�2(Ul+1;m � 2Ul;m + Ul�1;m)

+
k2

12
�
Uyyl+1;m + Uyyl�1;m + 10Uyyl;m

�
=
k2

12
[Dl+1m̂l+1;m +Dl�1m̂l�1;m + 10Dlm̂l;m]

+
k2

12
[gl+1;m + gl�1;m + 10gl;m] + T̂l;m: (26)

Substituting above approximations (14)-(18) into
Eq. (26) will result in:
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f � 24�2 � �2h(Dl�1 �Dl+1)

� 2[10 + �h(Dl+1 �Dl�1)]

+ 2k2(Dl+1 � 5�Dl)Dl+1

� 2k2(5�Dl � Dl�1)Dl�1gUl;m
+
n

12�2 � �2h(Dl+1 + 5Dl)

� 2[1 + h(Dl+1 � 5�Dl)]

� 3
2
k2(Dl+1 � 5�Dl)Dl+1

� 1
2
k2(�Dl+1 � �Dl�1)Dl

+
1
2
k2(5�Dl � Dl�1)Dl�1

o
Ul+1;m

+
n

12�2 + �2h(5Dl +Dl�1)

� 2[1 + h(5�Dl � Dl�1)]

� 1
2
k2(Dl+1 � 5�Dl)Dl+1

+
1
2
�k2(Dl+1 �Dl�1)Dl

+
3
2
k2(5�Dl � Dl�1)Dl�1

o
Ul�1;m

+ [1+h(Dl+1�5�Dl)](Ul+1;m+1+Ul+1;m�1)

+ [10 + �h(Dl+1 �Dl�1)](Ul;m+1 + Ul;m�1)

+ [1+h(5�Dl�Dl�1)](Ul�1;m+1+Ul�1;m�1)

= k2f[1 + h(Dl+1 � 5�Dl)]gl+1;m

+ [1 + h(5�Dl � Dl�1)]gl�1;m

+ [10 + �h(Dl+1 �Dl�1)]gl;mg+ T̂l;m: (27)

If the singular terms, like 1
x , appear in functions D(x)

and/or g(x; y), unable to be evaluated at x = 0, the
following approximations are considered:

Dl�1 = D00 � hD10 +
h2

2
D20 �O(h3);

gl�1;m = g00 � hg10 +
h2

2
g20 �O(h3);

where gl;m = g00 = g(xl; ym), etc. Thus, by neglecting
the higher order terms and local truncation error,

Eq. (27) can be written as follows:

a1Ul;m + a2Ul+1;m + a3(Ul+1;m+1

+ Ul+1;m�1) + a4(Ul;m+1 + Ul;m�1)

+ a5Ul�1;m + a6(Ul�1;m+1 + Ul�1;m�1)

=k2f12g00 + h2[g20 + 2( � 5�)D00g10

+ 2(�+ )D10g00]g = Gl;m; (28)

where:

a1 =� 24�2 + 2�2h2D10 � 2(10 + 2�h2D10)

+ 4k2( � 5�)D00D00;

a2 =12�2 � �2h
�

6D00 +
h2

2
D20

�
� �2h2D102

�
1 + ( � 5�)hD00 + h2D10

�
� 2k2(�5�)D00D00�2hk2(�2�)D00D10;

a3 = 1 + ( � 5�)hD00 + h2D10;

a4 = 10 + 2�h2D10;

a5 =12�2 + �2h
�

6D00 +
h2

2
D20

�
� �2h2D10 � 2

�
1� ( � 5�)hD00 + h2D10

�
�2k2(�5�)D00D00+2hk2(�2�)D00D10;

a6 = 1� ( � 5�)hD00 + h2D10:

This modi�ed equation retains its order of accuracy
everywhere throughout the solution region, especially
in the vicinity of the singularity. Note that this
modi�ed scheme Eq. (29) is applicable to both singular
and non-singular elliptic equations of form (25).

4. Spline group explicit method

In 1986, Yousif and Evans [6] developed Group Explicit
(GE) iterative method, where a small group of 2, 4,
9, 16, and 25 points was constructed in the iterative
processes for solving the Laplace's equation. The nu-
merical results showed that the GE method is simpler
to program compared to block (line) iterative methods
and it requires less storage. However, this method
was solely formulated using the usual standard �nite-
di�erence discretization which restricts the solutions at
only certain points of the solution domain.
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Here, we adopt the idea in using non-polynomial
spline in the formulation of the group methods. By
applying Eq. (29) to any group of four points on the
solution domain (as shown in Figure 1), a (4�4) system
can be obtained as follows:2664a1 a2 a3 a4

a5 a1 a4 a6
a6 a4 a1 a5
a4 a3 a2 a1

3775
2664 ul;m
ul+1;m
ul+1;m+1
ul;m+1

3775 =

2664 Rl;m
Rl+1;m
Rl+1;m+1
Rl;m+1

3775 ;
(29)

where:

Rl;m =� a5ul�1;m � a3ul+1;m�1

�a6(ul�1;m+1+ul�1;m�1)�a4ul;m�1+Gl;m;

Rl+1;m =� a2ul+2;m � a3(ul+2;m+1 + ul+2;m�1)

� a6ul;m�1 � a4ul+1;m�1 +Gl+1;m;

Rl+1;m+1 =� a2ul+2;m+1 � a3(ul+2;m+2 + ul+2;m)

� a6ul;m+2 � a4ul+1;m+2 +Gl+1;m+1;

Rl;m+1 =� a5ul�1;m+1 � a3ul+1;m+2

�a6(ul�1;m+2+ul�1;m)�a4ul;m+2+Gl;m+1:

The (4 � 4) system in Eq. (30) can be inverted and
written in explicit forms:2664 ul;m

ul+1;m
ul+1;m+1
ul;m+1

3775=
1

det

2664b1 b2 b3 b4
b5 b1 b4 b6
b6 b4 b1 b5
b4 b3 b2 b1

3775
2664 Rl;m
Rl+1;m
Rl+1;m+1
Rl;m+1

3775 ;
(30)

Figure 1. Computational molecule.

where:

det =a4
1 � 2a2

1a
2
4 + a4

4 � 2a2
1a2a5 + 4a1a3a4a5

� 2a2a2
4a5 + a2

2a
2
5 � a2

3a
2
5 � 2a2

1a3a6

+ 4a1a2a4a6 � 2a3a2
4a6 � a2

2a
2
6 + a2

3a
2
6;

and:

b1 =a3
1�a1a2

4�a1a2a5+a3a4a5�a1a3a6+a2a4a6;

b2 = �a2
1a2 + 2a1a3a4 � a2a2

4 + a2
2a5 � a2

3a5;

b3 = �a2
1a3 + 2a1a2a4 � a3a2

4 � a2
2a6 + a2

3a6;

b4 =�a2
1a4+a3

4+a1a3a5�a2a4a5+a1a2a6�a3a4a6;

b5 = �a2
1a5 � a2

4a5 + a2a2
5 + 2a1a4a6 � a2a2

6;

b6 = 2a1a4a5 � a3a2
5 � a2

1a6 � a2
4a6 + a3a2

6:

The Gauss-Seidel technique is employed to accelerate
the convergence process. Iterations are generated in
the groups of four points over the entire spatial domain
until the convergence test is satis�ed.

Applying System (31) to each of the group in
natural row ordering (Figure 2) will lead to a linear
system:

Au = b;

where the matrix of coe�cient A is given by:

A =

24D U
L D U

L D

35 ; (31)

with:

Figure 2. Points ordering for non-polynomial spline
group explicit method.
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D =

24R0 R2
R5 R0 R2

R5 R0

35 ; U =

24R4 R3
R6 R4 R3

R6 R4

35 ;
L =

24R04 R03
R06 R04 R03

R06 R04

35 :
The submatrices are given by:

R0 =

2664a1 a2 a3 a4
a5 a1 a4 a6
a6 a4 a1 a5
a4 a3 a2 a1

3775 ; R2 =

2664 0 0 0 0
a2 0 0 a3
a3 0 0 a2
0 0 0 0

3775 ;
R3 =

2664 0 0 0 0
0 0 0 0
a3 0 0 0
0 0 0 0

3775 ; R4 =

2664 0 0 0 0
0 0 0 0
a6 a4 0 0
a4 a3 0 0

3775 ;
R5 =

26640 a5 a6 0
0 0 0 0
0 0 0 0
0 a6 a5 0

3775 ; R6 =

26640 0 0 0
0 0 0 0
0 0 0 0
0 a6 0 0

3775 ;
R03 =

26640 0 0 0
0 0 0 a3
0 0 0 0
0 0 0 0

3775 ; R04 =

26640 0 a3 a4
0 0 a4 a6
0 0 0 0
0 0 0 0

3775 ;
R06 =

26640 0 a6 0
0 0 0 0
0 0 0 0
0 0 0 0

3775 :
In order to derive the explicit formulae, matrix A is
transformed into AE and vector b is modi�ed into bE ,
where:

AE = diagfR�1
0 gA;

bE = diagfR�1
0 gb:

The block structure of AE is the same as that of
matrix A with nonzero block R0 replaced by identity
matrices, I and blocks Ri and R0j , replaced by R�1

0 Ri,
i = 0; 2; 3; 4; 5; 6 and R�1

0 R0j , j = 3; 4; 6, respectively.
Since coe�cient matrix (32) is block tridiagonal with
non-vanishing diagonal element, it is �-consistently

Figure 3. Types of points in non-polynomial spline group
explicit for Nx = Ny = 8.

ordered and has property-A(�) [24]. Thus, the theory
of block SOR is also applicable to the non-polynomial
spline group explicit iterative method and, therefore, is
convergent.

Here, the computational complexity of the non-
polynomial spline iterative method is examined to show
the e�ciency of the proposed method. We assume that
the solution domain is discretized into even intervals,
Nx and Ny in x- and y-directions, respectively. There-
fore, we have (nx � 1)(ny � 1) Grouped Points (GP)
and (nx + ny � 1) ungrouped points (UGP), where
nx = Nx � 1 and ny = Ny � 1. This can be shown
as in Figure 3.

The estimation of this computational complexity
is based on the arithmetic operations performed at
each iteration for the Additions/Substractions (A/S)
and Multiplications/Divisions (M/D) operations [6].
Therefore, the number of operations required per
iteration for non-polynomial spline group explicit is
given as in Table 1. The total number of arithmetic
operations can be obtained by multiplying the number
of arithmetic operations for each iteration with the
number of iterations.

5. Numerical results

In this section, some benchmark test problems with
the known exact solution are solved by the proposed
combination of Non-polynomial Spline and Group Ex-
plicit iterative method (NSGE), which is approximately

Table 1. The number of arithmetic operations per iteration for non-polynomial spline group explicit iterative method.

Internal points A/S M/D

GP (nx � 1)(ny � 1) 8(nx � 1)(ny � 1) 8(nx � 1)(ny � 1)
UGP (nx + ny � 1) 8(nx + ny � 1) 6(nx + ny � 1)
Total nxny 8nxny 8nxny � 2(nx + ny � 1)
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O(k2+h4). To demonstrate the method is of the fourth
order; so, we take k = h2. Relation (12) is suitable for
solving Eq. (1), provided that it satis�es the consis-
tency condition; that is, when �+ 2+� = 1, which is
equivalent to equation tan(!=2) = !=2. This equation
has in�nite numbers or roots, the smallest positive
nonzero root being given by ! = 8:986818916 � � � [25].

The results are then compared with those ob-
tained by the:

� Combination of non-polynomial spline with stan-
dard point Gauss-Seidel iterative method (NSPT);

� Combination of Central Di�erence scheme with
Group Explicit iterative method (CDGE).

where the CDGE scheme is of O(h2 + k2), which
can be derived by substituting the partial derivative
into Eq. (1) with the central di�erence approximation,
similar to the one adopted in [6]. In all cases, we assume
that u(0) = 0 as the initial guess and the iterations are
stopped when the estimated error is below tolerance,
that is, when ju(s+1) � u(s)j � 10�12 is achieved.
All the experiments are implemented on a PC with
Intel(R) Core(TM)2 Quad CPU Q9400 @ 2.66 GHz,
3 GB of RAM running Windows 7 using Matlab 7.10.0
(R2010a).

Example 1. Consider the following two-dimensional
Poisson's equation:

@2u
@x2 +

@2u
@y2 = (x2 + y2)exy; 0 < x; y < 1;

with Dirichlet boundary conditions satisfying exact
solution u(x; y) = exy. The solutions can be obtained
by substituting the above approximations (Eqs. (14a)-
(14c)), m̂l;m = m̂l+1;m = m̂l�1;m = 0 and g(x; y) =
(x2 + y2)exy into the di�erence scheme (Eq. (26)) and
solved as in Section 4. The graphs of the numerical
and exact solutions are plotted in Figure 4(a) and (b),
respectively, for h = 1=16 and k = 1=20. The max-
imum errors and execution timings of NSGE method
compared with those of NSPT method are tabulated
in Table 2, while the maximum errors and execution

Figure 4. Simple Poisson's equation for h = 1=16 and
k = 1=20.

timings obtained by the proposed NSGE method and
the existing central di�erence group scheme CDGE are
shown in Table 3. The total arithmetic operations
needed for both NSGE and NSPT are displayed in
Table 4.

Example 2. Consider the convection-di�usion equa-
tion:
@2u
@x2 +

@2u
@y2 = �

@u
@x
; 0 < x; y < 1;

where constant � > 0 represents the ratio of convection

Table 2. Maximum absolute errors for Example 1 (k = h2).

h k

O(k2 + h4)-method, NSGE O(k2 + h4)-method, NSPT

Maximum
absolute errors

Time
(seconds)

Maximum
absolute errors

Time
(seconds)

1
4

1
16 0.66375E-05 0.01 0.66375E-05 0.01

1
8

1
64 0.41322E-06 0.12 0.41317E-06 0.22

1
16

1
256 0.24756E-07 13.00 0.23968E-07 17.64

1
32

1
1024 0.23371E-07 1520.14 0.43323E-07 2119.32
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Table 3. Maximum absolute errors for Example 1 (k = h2).

h k
O(k2 + h4)-method, NSGE O(h2 + k2)-method, CDGE

Maximum
absolute errors

Time
(seconds)

Maximum
absolute errors

Time
(seconds)

1
4

1
16 0.66375E-05 0.01 0.10415E-03 0.05

1
8

1
64 0.41322E-06 0.12 0.27036E-04 0.12

1
16

1
256 0.24756E-07 13.00 0.67558E-05 11.25

1
32

1
1024 0.23371E-07 1520.14 0.16749E-05 1425.48

Table 4. Total arithmetic operations needed to generate the above results.

h k
O(k2 + h4)-method, NSGE O(k2 + h4)-method, NSPT

Number of
iterations

Total arithmetic
operations

Number of
iterations

Total arithmetic
operations

1
4

1
16 224 153,664 311 167,940

1
8

1
64 2408 16,658,544 4124 21,824,208

1
16

1
256 32362 1,963,143,644 56953 2,614,142,700

1
32

1
1024 445889 225,308,603,478 783787 298,274,845,572

to di�usion and the exact solution is given by:

u(x; y)=e
�x
2

sin�y
sinh�

h
2e
��
2 sinh�x+sinh�(1�x)

i
;

where �2 = �2 + �2

4 . The boundary conditions can
be obtained from the exact solution. (4 � 4) matrix
system can be obtained by substituting D00 = �,
D10 = D20 = 0 and Gl;m = Gl+1;m = Gl+1;m+1 =
Gl;m+1 = 0 into Eq. (30). The graphs of the numerical
and exact solutions are plotted in Figure 5(a) and (b),
respectively, for � = 10, h = 1=16, and k = 1=20.
Table 5 displays the comparison of maximum errors
and execution timings of the NSGE method with those
of the NSPT method. Meanwhile, Table 6 depicts the
maximum errors and execution timings obtained by
the proposed NSGE method compared with those of
the existing central di�erence group scheme CDGE [6].
Table 7 shows the total arithmetic operations needed
for both NSGE and NSPT.

Example 3. Given the two-dimensional Poisson's
equation in polar cylindrical coordinates in r�z plane:

@2u
@r2 +

@2u
@z2 +

1
r
@u
@r

=cosh z
�
5r cosh r+2(2+r2) sinh r

�
;

where 0 < r; z < 1. The exact solution is u(r; z) =
r2 sinh r cosh z. The solutions can be approximated
by replacing variables (x; y) by (r; z) and substituting
g(r; z) = cosh z(5r cosh r+2(2+r2) sinh r) and D(r) =
� 1
r into the above scheme (Eq. (29)). The graphs of the

numerical and exact solutions are plotted in Figure 6(a)
and (b), respectively, for h = 1=32, and k = 1=40.
The maximum errors and execution timings of the
proposed NSGE method compared with those of NSPT
are displayed in Table 8, while the maximum errors

Figure 5. Convection-di�usion equation for � = 10 and
h = 1=16.

and execution timings of NSGE method compared
with those of CDGE are tabulated in Table 9. The
total arithmetic operations needed for both NSGE and
NSPT are shown in Table 10.
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Table 5. Maximum absolute errors for k = h2, and � = 10.

h k
O(k2 + h4)-method, NSGE O(k2 + h4)-method, NSPT

Maximum
absolute errors

Time
(seconds)

Maximum
absolute errors

Time
(seconds)

1
4

1
16 0.35075E-00 0.01 0.35075E-00 0.03

1
8

1
64 0.21113E-01 0.07 0.21113E-01 0.09

1
16

1
256 0.10942E-02 5.68 0.10942E-02 8.05

1
32

1
1024 0.68663E-04 657.93 0.68655E-04 889.61

Table 6. Maximum absolute errors for k = h2, and � = 10.

h k
O(k2 + h4)-method, NSGE O(h2 + k2)-method, CDGE

Maximum
absolute errors

Time
(seconds)

Maximum
absolute errors

Time
(seconds)

1
4

1
16 0.35075E-00 0.01 0.24230E-00 0.04

1
8

1
64 0.21113E-01 0.07 0.78743E-01 0.06

1
16

1
256 0.10942E-02 5.68 0.17155E-01 5.72

1
32

1
1024 0.68663E-04 657.93 0.43934E-02 544.28

Table 7. Total arithmetic operations needed to generate the above results.

h k
O(k2 + h4)-method, NSGE O(k2 + h4)-method, NSPT

Number of
iterations

Total arithmetic
operations

Number of
iterations

Total arithmetic
operations

1
4

1
16 116 74,356 231 135,135

1
8

1
64 1201 7,778,877 2129 12,205,557

1
16

1
256 15513 881,712,381 27663 1,375,542,675

1
32

1
1024 214623 101,643,091,947 380024 156,672,114,456

Table 8. Maximum absolute errors for k = h2.

h k
O(k2 + h4)-method, NSGE O(k2 + h4)-method, NSPT

Maximum
absolute errors

Time
(seconds)

Maximum
absolute errors

Time
(seconds)

1
4

1
16 0.18086E-01 0.04 0.18086E-01 0.04

1
8

1
64 0.60070E-03 0.21 0.60070E-03 0.23

1
16

1
256 0.26865E-04 22.51 0.26866E-04 22.92

1
32

1
1024 0.77407E-05 2544.47 0.77324E-05 2694.46

Table 9. Maximum absolute errors for k = h2.

h k
O(k2 + h4)-method, NSGE O(h2 + k2)-method, CDGE

Maximum
absolute errors

Time
(seconds)

Maximum
absolute errors

Time
(seconds)

1
4

1
16 0.18086E-01 0.04 0.22704E-01 0.10

1
8

1
64 0.60070E-03 0.21 0.64553E-02 0.24

1
16

1
256 0.26865E-04 22.51 0.17345E-02 20.40

1
32

1
1024 0.77407E-05 2544.47 0.45895E-03 2616.19
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Table 10. Total arithmetic operations needed to generate the above results.

h k
O(k2 + h4)-method, NSGE O(k2 + h4)-method, NSPT

Number of
iterations

Total arithmetic
operations

Number of
iterations

Total arithmetic
operations

1
4

1
16 219 150,234 278 175,140

1
8

1
64 2494 17,253,492 4183 25,825,842

1
16

1
256 34002 2,062,629,324 59211 3,170,749,050

1
32

1
1024 468712 23,6841,111,024 818361 363,337,553,502

Figure 6. Poisson's equation for h = 1=32 and k = 1=40.

6. Discussion

It can be observed that for all the model problems,
the graph of the numerical solutions almost coincide
with that of the exact solutions for di�erent values of
x and y, indicating that the computed solutions are
in good agreement with the exact ones. As depicted
in Tables 2, 5, and 8, the proposed NSGE converges
faster than the existing NSPT, which is due to the
lower computational complexity of the NSGE method.
From Tables 3, 6, and 9, it can be seen that the
proposed NSGE produces more accurate results than

CDGE which is of O(h2+k2), while maintaining almost
the same execution timings for all the examples. The
total arithmetic operations needed for both NSGE and
NSPT, for Examples 1, 2, and 3, are tabulated in
Tables 4, 7, and 10. It is clear that the total number of
arithmetic operations for NSGE is lower than that of
NSPT in all cases due to the grouping strategies in the
former method. The gains in the execution timings of
NSGE over the NSPT are in the range of 26.3%-45.5%
in Example 1, 22.2%-66.7% in Example 2, and 1.8-8.7%
in Example 3.

7. Conclusions

In this paper, a new method, which incorporates a non-
polynomial spline with the four-point group explicit
iterative scheme, was formulated for solving the elliptic
boundary value problems. The results show that the
proposed method is capable of producing high-accuracy
solutions with lesser computation timing compared
to the non-polynomial spline standard point Gauss-
Seidel method (NSPT) due to its lesser computational
complexity. A more accurate result can be obtained
by decreasing the step size. However, the computation
time (computation cost) will be increased. In addition,
the proposed method is superior to the original Central
Di�erence Group Explicit (CDGE) iterative method [6]
in terms of accuracy, but with almost similar execution
timings. In conclusion, the proposed method is a viable
alternative approximation tool to solve the elliptic
partial di�erential equations.
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