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Abstract. A dynamic integrated solution to three main problems through integrating
all metrics using SCOR is proposed in this research. This dynamic solution comprises
strategic decisions in high level, operational decisions in low level, and alignment of these
two decision levels. In this regard, a human intelligence-based process for high-level
decisions and machine-intelligence based Decision Support Systems (DSSs) for low-level
decisions are proposed using a novel approach. The presented operational model considers
important supply chain features thoroughly, such as di�erent echelons, several suppliers,
several manufacturers, and several products, during multiple periods. A multi-objective
mathematical programming model is then developed to yield the operational decisions with
Pareto e�cient performance values and solved using a well-known meta-heuristic algorithm,
i.e., NSGAII, the parameters of which are tuned using Taguchi method. Afterwards, an
intermediate machine-intelligence module is used to determine the best operational solution
based on the strategic idea of the decision maker. The e�ciency of the proposed framework
is shown through numerical example and then, a sensitivity analysis is conducted for
the obtained results so as to show the impact of the strategic scenario planning on the
performance of the considered supply chain.

© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

To make agile, responsive, sustainable, robust, e�ec-
tive, and competitive Supply Chain (SC), we need
to employ all models and technologies that ensure
pro�tability and stability. In this regard, Supply Chain
Management (SCM) decisions are categorized into two
levels in this research, i.e., human-intelligence and
machine-intelligence based decisions, based upon their
nature. We develop a process-based method for high-
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level decisions, a multi-objective method for low-level
decisions, and an intermediate multi-objective method
for aligning high- and low-level decisions using a novel
approach.

Due to SCM resource constraints, only a limited
number of objectives are able to take high priorities [1].
We employ a prioritization method to deal with the
multi-objective problem in the strategic level. This
paper aims at two main objectives: (1) improving
the Supply Chain Performance Management (SCPM)
by aligning di�erent decision levels in the integrated
process of transforming strategies into operational
programs; and (2) improving the SCPM by using
appropriate decision-making models in each level.

Performance management is a necessity for or-
ganizational competitiveness [2]. It determines what
must be maintained as the strong point and what
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needs to be overcome as the weak point [3]. The
important aspect that has impacts on the success and
e�ciency of optimization models is to design such
models based on reliable performance indicators. Sup-
ply Chain Operations Reference (SCOR) model is one
of the important models in performance management
that contains major processes, metrics, and standard
characteristics [4]. The SCOR model divides major
metrics into many partial indicators at lower levels.

Although the main goals of SCPM are pursued at
the strategic level, the activities that directly create
value-added products and services are involved in
the operational level [5]. Therefore, the alignment
of decisions is an important matter that should be
investigated [6]. However, most of the researches in
the literature consider that the decisions at di�erent
levels of SC are independent. As an attempt to
�ll the mentioned gaps, an SCOR based framework
for measuring, evaluating, and improving SCPM is
proposed in this research.

The remainder of this paper is organized as
follows. Section 2 presents a summary of recent and
major studies carried out on SCPM. In Section 3, the
main new framework of SCPM is described. Solu-
tion approach is presented in Section 4. Section 5
comprises problem description, in which a sample
SC is illustrated. Techniques and tools used in this
research are explained in Section 6. Experimental
design is explained in Section 7. Section 8 discusses
computational results, in which illustrative tables and
�gures are presented. Finally, Section 9 provides
the conclusions by discussing the advantages of the
proposed framework and further research areas as well.

2. Literature survey

2.1. Review papers
Because of the importance of SCPM, signi�cant studies
have been conducted on this topic and many models
have been developed so far. In this regard, Estampe
et al. (2013) classi�ed and discussed the most im-
portant frameworks for performance management in
a review paper [7]. They de�ned �ve levels for SC
maturity grid at �rst and then compared 16 frameworks
including type of usage, conditions and constraints,
degree of conceptualization, and established indicators.
They also presented the applications and limitations of
the selected frameworks. Singh and Acharya (2014)
investigated the e�ective factors on the performance
of SC [8]. Schaltegger et al. (2014) carried out a
structured review of the existing literature and re-
searches in the �eld of sustainable SC's measurement
and improvement [9]. A systematic literature review
of SCOR model applications with special attention to
environmental issues was carried out by Ntabe et al.
(2015) [10].

2.2. Concepts
Performance measurement provides important mea-
sures and tools for assessing the outputs and makes the
overall improvement in SC [9]. One of the key elements
in an e�cient and pro�table SCM is to employ an e�ec-
tive performance measurement system [11]. Kocao�glu
et al. (2013) emphasized the structural integration of
performance measurement and quanti�cation of models
for selecting SC strategies [12].

SCPM is an important issue in the competitive
business environments and plays a vital role in de�ning
the objectives, evaluating the results, and determining
the future measures. Because of the importance of
SCPM, signi�cant studies have been conducted on this
topic and many models have been developed so far. In
this regard, Estampe et al. classi�ed and discussed the
most important frameworks for performance manage-
ment in a review paper [7].

Flexibility, output, and resources are the three im-
portant aspects of SC performance [13]. However, Gu-
nasekaran et al. classi�ed the performance metrics into
strategic, tactical, and operational levels [14]. Some
researches presented administrative frameworks and
step-by-step methods for performance improvement.
Cai et al. introduced a framework for performance
management and proposed a new approach for selecting
key performance metrics (KPIs) in strategic level [15].
Elgazzar et al. suggested a performance assessment
framework based on a �nancial approach using SCOR
model and Analytic Hierarchy Process (AHP) [16].
Agami et al. proposed a performance improvement
model to determine the bottleneck of KPIs using a
successive �ve-step process [11].

2.3. Mathematical models
A given SC has a multi-level, multi-criteria, and
interrelated structure in which the performance im-
provement of one unit does not clearly assure the
optimized performance of the whole SC [17]. Agami
et al. developed a fuzzy model so as to identify the
critical KPIs [18]. In this regard, Blanco presented
an Integer Linear Programming (ILP) model including
three objectives and extended a solution approach for
solving the studied problem [19]. Liu and Papageor-
giou presented a multi-objective Mixed Integer Linear
Programming (MILP) model to optimize a multi-
period problem dealing with production, distribution,
and capacity planning in an SC in process industries
[20]. Hamta et al. developed a hybrid Particle Swarm
Optimization (PSO) algorithm for a multi-objective
assembly line balancing problem with 
exible operation
times, Sequence-Dependent Setup Times (SDST), and
learning e�ect [21]. Kolahan and Kayvanfar developed
a heuristic algorithm approach for scheduling of multi-
criteria unrelated parallel machines [22].

Celik et al. developed a solution method using
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the Genetic Algorithm (GA) to solve a multi-period
real-time model [23]. High usability and exciting
philosophy of Goal Programing (GP) for practitioners
and researchers in handling decision-making problems
with multi-objective structures made it very applicable
[24,25]. In [26], an interactive GP model was created
for virtual manufacturing cells procedure, while Mah-
davi et al. (2011) developed a fuzzy GP method for
solving a multi-objective model of production planning
in a virtual manufacturing system [27].

Wong developed a Decision Support System
(DSS) using fuzzy logic based on expert judgments
to select 3PL [28]. Xu et al. proposed a multi-
objective model to optimize a multi-period SC with
stochastic demand using a fuzzy method [29]. Cai et al.
developed a multi-objective optimization model based
on SCOR indicators and solved the problem using PSO
algorithm [30].

2.4. SCOR
Designing the models based on reliable performance
indicators is one of the most important aspects a�ect-
ing the success and e�ciency of optimization models.
SCOR model is the performance assessment frame-
work in the literature that provides the mentioned
comprehensiveness and reliability to respond to our
concerns. Zhang and Reimann used �ve high-level
indicators of SCOR, simultaneously, to optimize SC
performance and proposed a �ve-objective multi-period
mathematical model for planning a two-echelon SC
with deterministic demand by applying customized
indicators [31]. Kocao�glu et al. presented a multi-
objective model to align the operational decisions with
the strategic decisions using SCOR framework [12].
They determined the relative importance of di�erent
strategies using AHP and the hierarchical structure of
SCOR and then selected the best scenarios in which
SC performance was optimal by applying Technique
for Order of Preference by Similarity to Ideal Solution
(TOPSIS) method.

2.5. Research gap
Despite devoting many e�orts over the past decade,
there are still gaps in this area and, owing to some
shortcomings, the capabilities of SCPM frameworks are
not adequate [12,32]. Obviously, one element is not
able to optimize the whole SC. The question is how we
must manage such complex system to be able to achieve
continuous and acceptable productivity [33]. Attaining
appropriate optimization approach and continuous im-
provement as well as proper guarantee of them through
the SC is the critical issue that should be addressed
in di�erent levels of SC studies [34]. Management
strategies should be designed based on the changing
conditions of the market [35]. In many studies,
di�erent parts of the SC are assumed independent

and their internal relations and changing behaviors are
not considered. In addition, there are some defects
in analysis of feedback in design and implementation
stages in order to adapt the behavior of SC for the
environmental changes [36]. Many of the studies are
not comprehensive enough and cannot evaluate and
improve the performance based on the performance
indicators. Static nature of some proposed systems
for performance evaluation is one of the critical issues.
The proposed quantitative models mostly focus on
individual factors such as �scal measures to assess SC
performance [37]. The problem is how we can model
and analyze the strategic and operational objectives,
and connect them to each other appropriately [12].
According to Wang et al. [38], despite the ability
of SCOR to provide appropriate indicators, it has
not been used enough in the literature. According
to the recommendations in the literature, it is better
to employ comprehensive and reliable indicators such
as SCOR to develop the mathematical models for
performance management [39].

In conclusion, with respect to the importance of
SCPM and mentioned de�ciencies, more studies have
to be carried out to cover these research gaps. Finally,
the main problems and defects are presented according
to the literature. It can be claimed that most of the
current studies su�er from one or more of the following
shortcomings:

� Limited number of studies on the combination of
related concepts (keywords of this paper) and taking
advantage of their synergies;

� Inability to support the continuous improvement;
� Local optimization;
� Lack of comprehensive and acceptable performance

evaluation models.

As an attempt to �ll the mentioned gaps, an
SCOR based framework for measuring, evaluating, and
improving SCPM is proposed in this research. The
presented framework is comprehensive, dynamic, and
continuous. It applies sciences, techniques, and tools,
namely, SCPM, strategic planning, multi-objective
optimization, and SCOR model, to a new SCPM.

3. A SCOR-based dynamic SCPM framework

To design an integrated SCPM structure, SCOR model
has been used. The SCOR model divides major
metrics into many partial indicators at lower levels.
Given the hierarchical structure of SCOR, achieving
higher values for performance indicators at any level
enables better performance through the entire SC.
This detailed structure enables us to design acceptable
and comprehensive multi-objective functions. Figure 1
shows the new SCPM proposed in this study.
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Figure 1. The logical design for integrated SCOR-based SCPM framework.

Figure 2. The human-intelligence based decision-making.

Given such adaptive approach, we assume that
all internal and external changes a�ecting decisions
are detected and proper responses for these events are
then presented. Therefore, for adaptation to the latest
changes, related decisions will be updated. In other
words, event-driven policy is used. Based on the nature
of events and type of decisions, the new de�nition
proposed in this paper categorizes decisions into two
groups. The �rst category is human-intelligence based
decisions. Such decisions are taken at the highest level
of SCPM and in
uence all the lower levels. The second
group of decisions is machine-intelligence based deci-

sions. These decisions are less complex than human-
intelligence ones and more structured. Typically,
problems such as inventory control, and production and
distribution planning are considered at this level.

A process model is usually used for decisions
on strategy planning in the literature, which only
matches the capabilities of human intelligence [11]. In
this paper, a speci�c process is developed for human-
intelligence based decisions. The main phases of the
proposed process of human-intelligence based decision-
making are illustrated in Figure 2.

The �rst phase (P1) de�nes the strategic objec-
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tives. In this step, we employ a prioritization method
to deal with the multi-objective problem. In the
second phase (P2), the current performance of each
metric is evaluated and the gap between actual and
target values is measured (according to Table 1). In
the third phase (P3), the results of operations and
analysis of metrics are demonstrated in a dashboard
to determine which performance metric does not meet
predetermined expectations. Such metrics are iden-
ti�ed as performance bottlenecks. The performance
results which are the \operational level's output" have
impact on strategic design of the next level. In the
�nal phase (P4), according to the results, management
takes appropriate measures to improve and achieve
higher levels of performance metrics in subsequent
operations.

Table 1 employs the �rst level of SCOR's metrics
and shows the analysis of the current condition, the
strategy setting, priority of performance objectives,
and the gap between current condition and target
value. First, numerical column shows the current
condition of the SCPM. The next three columns show
the benchmark values of each metric in three levels, i.e.,
parity, advantage, and superior [40]. Grey cells indicate
the priority of each of the �ve objectives. Finally, the
last column shows the gap between current condition
and target value. Once Table 1 is set, a new strategic
plan can be designed. By determining the SC objective
priorities, all plans and programs are designed using
these priorities while we try to �ll the gap. This is the
main approach to align all SCPM decisions.

To deal with operational planning problems, we
can develop DSSs using machine-intelligence. All
quantitative models including Linear Programing (LP),
Non-Linear Programing (NLP), fuzzy, meta-heuristic,
simulation, deterministic, stochastic, or a combination
of them can be used at machine-intelligence level.

Once any change or update comes up on decision-
making modules in the strategic and operational levels,
an intermediate decision-making module is updated to
align high- and low-level decisions (Figure 3). In this
case, the module selects a solution from the Pareto
optimal solutions provided by the mathematical model
at the low level which has the highest alignment with
the strategic objectives of SCM. This module has

Figure 3. The relationship between human- and
machine-intelligence based decisions.

been developed on the basis of machine intelligence.
In this case, the multi-objective function of opera-
tional plan should be adjusted according to strategic
goals and priorities. Fuzzy and TOPSIS approaches
could be employed so as to develop this module as
well.

4. Solution approach

Any change in parameters will be detected as a new
event and, therefore, will cause change in inputs of
the decision model. Consequently, the optimization
model is run again in the correspondent level and the
best decision will be updated. Then, the decisions
in all levels will be aligned with each other using the
appropriate decision models.

4.1. Levels of decision
Strategy setting: First, the SC's priorities are de-
termined. For some objectives, worse values than the
corresponding single-objective optimum values might
be considered. In such a condition, accessibility to so-
lutions with higher values for higher priority objectives

Table 1. Determining the strategy and objectives of SCOR [40].
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increases. In another situation, similar to what is ex-
plained in Table 1, one can consider the least acceptable
values for \Advantage" and \Parity" objectives and
optimize one of the objectives as \superior" at the most
possible value. Each of these approaches is a di�erent
strategic scenario, which could be taken in high level
of SC and applied to the lower levels. The multi-
objective mathematical model is initially separated into
the single-objective problems. In other words, in order
to obtain the best possible value for each objective, one
should optimize each objective separately. By doing so
and setting the SC's priorities as described above, the
ideal solutions are obtained, which will then be used
by TOPSIS method (Machine decisions or operational
decisions).

Operational decisions: On the other hand, in the
second step, the multi-objective problem is solved in
parallel with NSGAII algorithm to achieve the feasible
solutions to the entire problem regarding all con-
straints. These solutions are not optimum with respect
to the obtained optimum values from the �rst step.
The solutions gained at this step are sorted based on
non-domination method and the best Pareto solutions
could be chosen by the decision maker (Operational
decisions).

Decisions alignment: Finally, in the third step,
we need to align the strategic decisions with the
operational ones. To do so, the Pareto set solutions are
used in TOPSIS method, as a multi-criteria decision
analysis, to yield the best compromise solutions which
satisfy the di�erent objectives to the possible extent.
Actually, TOPSIS compares the gained feasible solu-
tions of Pareto set with the ideal solutions. In other
words, TOPSIS stands on the concept that the selected
alternative should have the shortest geometric distance
from the positive ideal solution while there should be
the longest geometric distance from the negative ideal
one.

5. Problem formulation

In order to demonstrate how the new proposed frame-
work performs, a sample SC is suggested and a nu-
merical example is then solved and described to show
the e�ciency of the proposed approach. Suppose a
two-echelon SC including several suppliers and manu-
facturer. Several products of a family are produced in
this SC and planning is accomplished during multiple
periods. A multi-objective multi-period two-echelon
mathematical model for the considered SC is proposed
in this section. The other assumptions are summarized
as follows:

� The parameters in each period are assumed to

be known, deterministic, and �xed throughout the
planning periods;

� The objective of the proposed model is to minimize
the total cost of logistics and maximize the agility
and reliability in the considered SC, simultaneously;

� In each period, demands are given and determined;
� Both �xed and variable transportation costs from

suppliers to manufacturers are considered.

5.1. The mathematical model
Notations
Indices
I Number of suppliers;
J Number of plants;
L Number of products;
N Number of materials;
T Number of periods;
Parameters
Dljt The demand of product l from plant j

in period t;
Urnl The amount of material n to produce

one unit of product l;
Capsnit Capacity of supplier i to supply

material n in period t;
Cappljt Capacity of plant j to produce product

l in period t;
V mrj The volume of raw materials at plant

warehouse;
V mpj The volume of the �nished product at

plant warehouse;
Pclj Production cost of one unit of product

l (with the exception of raw material)
by plant j;

Prni Price of material n determined by
supplier i;

Hmrnj Inventory holding cost of material n at
plant j;

Hmplj Inventory holding cost of product l at
plant j;

Qpl Required space per unit of product l;
Qrn Required space per unit of material n;
Fcrnij Fixed transportation cost for handling

material l from supplier i to plant j;
V crnij Transportation cost for handling a unit

of material l from supplier i to plant j;
Tdrnijt Delivery time of a unit batch of

material n from supplier i to plant j in
period t;

Trmaxnijt Due date for delivering a unit batches
of material n from supplier i to plant j
in period t;
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Bsmni Batch size of material n at supplier i;
SSmnjt Safety stock of material n at plant

warehouse j in period t;
Cbllj Backlog unit cost of product l in plant

j in period t;
�ljt Maximum backlog amount of product

l at plant j in period t (percent of
unsatis�ed demand);

Decision variables
Xnijt Amount of supplied material n by

supplier i to plant j in period t;
Yljt Amount of produced product l by

plant j in period t;
IRmnjt Inventory level of material n at plant j

at the end of period t;
Ipmljt Inventory level of product l at plant j

at the end of period t;
TRnijt Receiving time of material n from

supplier i by plant j in period t;
Wnijt 1, if plant j orders material l from

supplier i in period t; 0, otherwise;
BLgljt Backlog level of product l at plant j in

period t;
Qljt Sale amount of product l at plant j in

period t;
Objective functions
TC The cost of supply chain;
TCs(Cost) The costs of the suppliers;
TCp(Cost) The costs of the plants;
Ag(Agility) Flexibility: Surplus capacity;
Ags(Agility) Flexibility: Surplus capacity of

suppliers;
Agp(Agility) Flexibility: Surplus capacity of plants;
Rel(Reliability)Perfect order ful�lment;

Mathematical model
Minimize TC (Cost)

TC = TCs + TCp; (1)

TCs =
X
t

X
n

X
i

X
j

Xnijt:P rni

+
X
t

X
n

X
i

X
j

Wnijt:F crnij

+
X
t

X
n

X
i

X
j

Xnijt:V crnij

+
X
t

X
n

X
j

Hmrnj :IRmnjt (2)

TCp =
X
t

X
l

X
j

Yljt:P clj

+
X
t

X
l

X
j

Hmplj :Impljt

+
X
t

X
l

X
j

Cbllj :BLgljt: (3)

Maximize Ag(Agility)

Ag = Ags+Agp; (4)

Ags =
X
t

X
n

X
i

0@Capnit �X
j

Xnijt

1A; (5)

Agp =
X
t

X
l

X
j

Capljt � Yljt: (6)

Maximize Rel(Reliability)

Rel =
X
t

X
l

X
j

Reltlj ; (7)

Reltlj � Yljt+Ipmljt 8l;j and 8t 2 [1; T ] ; (8)

Reltlj � Dljt 8l;j and 8t 2 [1; T ] : (9)

The �rst main objective minimizes total costs of
system, including costs of suppliers and manufacturers
(Eq. (1)). Supply costs (Eq. (2)) comprise raw material
costs, �xed transportation costs of raw materials and
variable transportation costs of materials to facilities,
and holding cost of raw materials at plants in each
period. Eq. (3) signi�es production costs including
manufacturing costs, holding costs of �nished products
at plants, and backlogged costs in each period. The
second main objective maximizes the system agility
(Eqs. (4)-(6)). The most signi�cant metric to measure
agility of an SC is 
exibility, which re
ects the ability
of reacting to external in
uences. According to Sabri
and Beamon (2000) [41], 
exibility could be measured
through surplus capacity. In this paper, in order to
evaluate 
exibility, the maximum extra demand, which
could be satis�ed through surplus capacity of the SC,
is considered. The third main objective maximizes
reliability of the system. Reliability could be de�ned as
ability of satisfying customer demands on time with the
right quantity. Perfect order ful�llment could be called
the �rst-level metric of reliability (Eq. (7)). The perfect
order ful�llment depends on the minimum of products
available (Eq. (8)) and demands (Eq. (9)) in the same
period. The applied constraints of the considered SC
are as follows:
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Subject to:

Inventory level
Note: Inventory in the initial time period (period 0) is
zero:

IRmnjt = IRmnj;t�1 +
X
i

Xnijt �X
l

Urnl:Yljt;

8t;n;j ; (10)

IPmljt = IPmlj;t�1 + Yljt �Qljt; 8t;l;j ; (11)

IRmnjt � SSmnjt; 8t;n;j ; (12)

Volume warehouseX
n

Qrn:IRmnjt � V mrj ; 8t;j ; (13)

X
l

Qpl:Ipmljt � V mpj ; 8t;j : (14)

Product capacityX
j

Xnijt � Capnit; 8n;i;j;t; (15)

Yljt � Capljt; 8l;j;t: (16)

Delivery time

Tdrnijt � (Xnijt/Bsmni) � Trmax
nijt

; 8n;i;j;t;
(17)

where:

Tdrnijt:Xnijt/Bsmni = TRnijt; 8t;l;j : (18)

Backlog demand

BLgljt = BLglj;t�1 +Dljt �Qljt; 8t;l;j ; (19)

BLgljt � �ljt:Dljt; 8t;l;j ; (20)

Dljt �Qljt � BLgljt; 8t;l;j : (21)

Logical

Wnijt:M1 � Xnij ; M1;A very big number; (22)

Wnijt 2 f1; 0g ; 8n;i;j ; (23)

Xnijt; Yljt; IRmnjt; Ipmljt; TRnijt;Wnijt;

BLglt; Qljt � 0; 8n;l;i;j : (24)

Constraint sets (10) and (11) de�ne the inventory
balancing equations for raw materials and �nished

products at the warehouses of the manufacturer, re-
spectively. Constraint (12) demonstrates the balance of
raw material safety stock at the warehouse of the man-
ufacturer. Constraints (13) and (14) specify the limited
storage spaces of raw materials and �nished products at
the warehouses of the manufacturer, respectively. The
row material capacity of each supplier for each material
in each period is ensured through Constraint (15).
The production capacity of each manufacturer for each
product in each period is ensured through Constraint
(16). Constraints (17) and (18) deal with on time
delivery and guarantee the limited delivery time for
the manufacturers. Constraint (17) shows that the
delivery time of raw materials by suppliers is less
than the maximum acceptable time determined by
manufacturers. Constraint (18) demonstrates delivery
time of raw materials from suppliers to manufacturers
in each period. Constraints (19)-(21) are concerned
with the amount of backordered demand. In this
context, Eq. (19) shows the balance of backordered
numbers of products in any two consecutive periods.
Constraints (20) and (21) demonstrate the boundary
of backordered amounts of each product with respect
to its demand for the manufacturers. Constraint (22)
ensures that the supplied raw material n will be
delivered to manufacturer j from supplier i if and only
if the corresponding supplier is established. Finally,
Constraints (23) and (24) show the binary variables
and non-negativity constraint, respectively.

6. Technique and tools

6.1. Non-dominated sorting genetic
Algorithm II

Optimization of con
icting objectives could be in-
vestigated in terms of multi-objective optimization.
Evolutionary Algorithms (EAs) are potent stochastic
search methods which mimic the Darwinian principles
of natural selection and are adequate to solve opti-
mization problems with large search space (Anagnos-
topoulos and Mamanis, 2010). Up to now, numerous
Multi-Objective Evolutionary Algorithms (MOEAs)
have been suggested in the literature. Non-dominated
Sorting Genetic Algorithm II (Deb et al., 2002) [42]
is one of the most commonly used multi-objective
algorithms among researchers. In this research, an
e�ort is made to apply NSGAII to the considered multi-
echelon SC problem.

6.2. Solution representation
It is obvious that all demand values are integer and pos-
itive. In order to represent di�erent points of solution
space, a general structure with capability of showing
di�erent variables is used. This matrix-based structure
has a dimension of 2��. Since decision variables of the
considered problem are more than one, there are di�er-
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ent matrices with di�erent values of �. For example,
Xnijt is four-dimensional variable and � represents N�
I�J�T . The contents of the �rst and second columns
indicate \the value of this variable in that point" and
\variable index," respectively. As an instance, `27'
denotes that the number of 27 units of material n are
supplied by supplier i to manufacturer j in period t. A
similar structure with di�erent dimension is employed
for the rest of variables, such as IRmnjt, so as to
represent the chromosome (variable). It is obvious that
� is di�erent for the matrix that shows other variables.
Figure 4 shows the structure of solution representation.
By using the above-mentioned structure, a random
initial population is generated. These generated solu-
tions should be �rstly sorted based on non-domination,
which is explained in the next subsection.

6.3. Non-dominated sorting algorithm
To sort a population according to the level of non-
domination, each solution should be compared with
every other solution in the population to recognize
whether it is dominated or not. In fact, the idea behind
non-dominated sorting procedure is using a ranking
selection method to highlight good points and a niche
method should be employed so as to retain steady sub-
populations of good solutions. Owing to determining
solutions of the �rst non-dominated front, in a naive
approach, each solution could be compared with others
in the population to realize whether it is dominated or
not. Consequently, all individuals located in the �rst
non-dominated front are found in this step. In order

to determine the individuals in the second and higher
non-dominated levels, the solutions of the �rst front
are discounted temporarily and the above procedure is
repeated (Deb et al., 2002) [42].

6.4. Diversity mechanism
Accompanied by convergence on the Pareto-optimal
set, �nding good solutions spread in the obtained
set of solutions by an EA is preferred. To acquire
an approximation of solutions' density surrounding
a speci�c individual in the population, the average
distance of two points on either side of this point
along each of the objectives should be computed. The
quantity idistance, named \crowding distance," is an
estimate of the size of the largest cuboid comprising
the point i without any other point in the population.
In point of fact, the value of total crowding distance
is computed as the sum of individual distance values
corresponding to each objective. A solution positioned
in a less dense cuboid is permitted to have a higher
probability to survive in the next generation. The
crowded-comparison operation (Figure 5) or (� n)
must be employed, after allocating a crowding distance
to all individuals with the intention of comparing two
individuals for their extent of nearness to other ones,
which directs the selection procedure at the various
stages of the algorithm toward a uniformly spread-out
Pareto-optimal front (Deb et al., 2002) [42].

6.5. Selection mechanism
Parent population, named P0, should be �rstly ran-

Figure 4. Representation of the structure of chromosomes in the considered problem.

Figure 5. Pseudo-code of crowding distance procedure in non-dominated set.
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domly generated, which is sorted based on the non-
domination. Each individual is then assigned a �tness
or rank equal to its non-domination level. Selection op-
erator chooses a set P 0 � P0 of the chromosomes (bet-
ter members of the population with better �tness val-
ues), which will be given the chance of mating and mu-
tating. The common binary tournament selection op-
erator based on the crowded-comparison operator �n
is employed in this research so as to encode NSGAII.

6.5.1. Crossover and mutation operators
Generating o�spring by taking two parent chromo-
somes from the mating pool is called crossover. This
process is carried out with the intention of �nding
better solutions. The crossover operator is applied
according to a probability pc over the opted o�spring
attained through roulette wheel method. Among
several common crossover operators, a standard two-
point crossover is applied in this study with the
purpose of generating two o�spring from two parent
solutions. Having randomly selected two points in a
string, the sub-strings between the crossover points are
interchanged. Figure 6 depicts applying the crossover
operator to the two selected parents.

Mutation operator is commonly utilized with
the purpose of diversifying the population to avoid
premature convergence on multiple copies of one in-
dividual. Once the o�spring is attained, a mutation
operator with a probability pm could be employed.
Among various types of mutation operators, the swap
mutation had the best performance in the problem at
hand. This operator swaps two genes in the selected
chromosomes; also, it keeps away from getting stuck
in local suboptimal solutions and is very helpful to
maintain the wealth of the population in dealing with
large-scale problems. Figure 7 shows the mutation
operator used in this paper.

6.6. Software speci�cation
All mathematical models are coded in GAMS 24.1.2
and solved by the CPLEX in terms of three separate

Figure 6. Applied two-point crossover operator.

Figure 7. Applied mutation operator.

single-objective problems. Also, the generated test
instances are implemented in MATLAB 7.11.0 and
run on a PC with a 3.4 GHz Intel® CoreTM i7-2600
processor and 4 GB RAM memory.

7. Experimental design

Parameter tuning has an important e�ect on the
e�ciency of the meta-heuristic algorithms. Among
several ways of calibrating the algorithms, one can
mention full factorial experiment [43]. This approach
is not always e�ective, especially when the number
of factors becomes considerably large. With the
intention of reducing the number of required experi-
ments, a Fractional Factorial Experiment (FFE) was
developed [44]. FFE allows only a segment of the total
possible combinations to approximate the main e�ect
of the factors and some of their interactions. Taguchi
(1986) developed a family of FFE matrices which
�nally diminished the number of experiments, but still
provided satisfactory evidence [45]. Orthogonal arrays
are employed in Taguchi method to study a large
number of decision variables with a small number of
tests.

Taguchi separates the factors into two main
categories: controllable factors (S) and noise factors
(N). Noise factors, as it is implied in the name, are
those that one cannot directly control. Since it is
impossible to completely eliminate the noise factors,
the Taguchi method tries to minimize the e�ect of noise
and, simultaneously, determine the optimal level of the
important controllable factors based on the concept
of robustness [46]. Besides determining the optimal
levels, Taguchi established the relative importance of
individual factors in terms of their main e�ects on the
objective function [47].

Taguchi created a conversion of the repetition
data to another value, which was the measure of
variation. This conversion is called signal-to-noise
(S=N) ratio, which describes why this type of param-
eter design is named a robust design [48]. The term
`signal' shows the desirable value (response variable)
and `noise' indicates the undesirable value (standard
deviation). Accordingly, the S/N ratio determines
the amount of existing variation within the response
variable (Eq. (25)). Here, maximization of the signal-
to-noise ratio is addressed.

S/N ratio = �10 log
�
MID
sp

�2

; (25)

where sp signi�es spacing, which measures the stan-
dard deviation of the distances among solutions of
the Pareto front [49] and MID signi�es \mean ideal
distance" and measures the convergence rate of Pareto
fronts to a certain point [50]. These two measures are
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Table 2. Factor levels for sample instances.

common measurement factors considered in calculating
S=N ratio, since in Pareto-based multi-objective algo-
rithms, two main goals comprising \good convergence"
and \diversity" are sought [51].

7.1. Data generation and setting
An experiment is conducted to test the performance of
the used algorithms. Three factors are considered as
control factors in this research, namely, crossover rate
(pc), mutation rate (pm), and population size (npop),
each of which has three levels. Table 2 shows the factor
levels for the applied sample problems.

Since there are three three-level factors in this
research, the total number of trials required for each
group would be a full combination of 27 (33) trials,
rather than 9 trials, by the orthogonal array L9(33).

7.2. NSGAII parameters tuning based on
Taguchi method

As already mentioned, parameter tuning can signif-
icantly increase the solutions quality of the meta-
heuristic algorithms. An e�ort has been put to tuning
the parameters for the aforementioned factors, i.e.,
crossover rate (pc), mutation rate (pm), and population
size (npop). Table 3 shows the Taguchi orthogonal

Table 3. Taguchi orthogonal array design.

array design applied in this research, which has been
extracted from Minitab software.

After obtaining the results of the Taguchi ex-
periment for all the trials, all objective functions are
individually transformed into S=N ratios. Figure 8
illustrates the e�ect plot for S=N ratio obtained at
each level for the sample problems. In this research,
each test instance is run 3 times and the average
solution values are obtained and used for performance
evaluations. As indicated in Figure 8, the optimal
level of factor A is A(1), while the optimum level
of factor B is B(2). Also, C(3) could be selected

Figure 8. Main e�ect plot for S=N ratios.
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as the optimum level of factor C; however, C(1) has
comparable performance.

8. Computational results

The computation steps of the decision-making process
in this research consist in the following three parts:

Step 1. Transforming the multi-objective mathe-
matical model into several single-objective models
and solving them separately to obtain the best/ideal
solutions for each objective. The obtained values are
then used to tune the boundaries of criteria, namely,
\superior," \parity," and \advantage." Strategic
decisions are applied to lower levels as scenarios to
tune their parameters.

They are run only once and their results are used
in all scenarios;
Step 2. Solving the multi-objective model using
NSGAII so as to achieve the feasible solutions to the
entire problem.

They are run only once and their results are used
in all scenarios;
Step 3. Applying TOPSIS method in order to
determine the best solutions/individuals based on
the decision maker's idea with respect to minimum
distance from the ideal solutions.

They should be run independently for each
scenario to specify the results of any speci�c scenario.
The computational results are obtained from the
three sections.

The decision-making structure, how decisions are
aligned based on a top-down approach, and numerical
results are presented in Tables 4 and 5. Table 4
shows the consequences of running the �rst step. Non-
numerical rows show the multilevel integrated model
structure. Columns A to L represent the concept of
each number in rows. Each of the numbered rows
shows a complete decision-making scenario including
the strategy setting and the operational plan that are
aligned with each other.

Columns A to C represent a strategic scenario. In
the highest level of SCPM, human-intelligence deter-
mines the objective priorities based on SCOR metrics.
These priorities de�ne the strategies in the next period.
All programs in low levels are implemented based on
these priorities.

In columns D to F, the optimum objective func-
tions for the strategic scenario are presented. Columns
G to L show the values of objective functions in
a discrete form for the supplier and manufacturer.
Note that the manufacturer cannot produce without
components and, as a result, the reliability of the
supplier is constant for all scenarios and, therefore,
is not considered in calculations. Each record in

operational level suggests an operational production
and supply plan, which is not described here for the
sake of brevity.

In Table 4, rows 1 to 3 present the scenarios in
which each of the objectives has been optimized in a
single-objective form. The second row is explained for
more clarity. In the designed scenario, SC's strategy
is to maximize the agility; therefore, W2 becomes 1
and other weights become 0. By setting these weights
for the multi-objective model and solving the model,
the maximum value of 176 is obtained for agility. In
this scenario, cost is 479 and reliability is 17. Agility
of the third scenario deviates by 56 units from the
second scenario's agility, which optimizes reliability.
Reliability in the third scenario with the best possible
program for this metric is 30.

Once the best possible solution is given for each
objective, they are used to determine the benchmark
levels. As shown in Table 1, levels of metrics can
be classi�ed into three benchmark levels. There are
four methods that can be used to set performance
targets: theoretical targets, historical based, external
benchmarks, and internal benchmarks (internal \best
in class" practice) [52,53]. This example only tries
to show the operation mechanism of the proposed
framework. For determining parity and advantage
values, the objective values of 1 to 3 are used for
the scenario. We assume that this set provides good
internal range for determining superior, advantage, and
parity values (the end of Table 4).

The complete calculations of Step 2 are not pre-
sented for the sake of brevity. However, the complete
results of Step 3 are presented in Table 5.

Each record of Table 5 has two main parts.
Columns A, B, and C determine simultaneous strategy
so as to get the speci�ed level of three main objectives.
Columns D to L signify the best operational decision
to reach the determined strategy. In this regard, the
operational decision is output of Step 3.

This solution is determined by comparing all
obtained Pareto solutions from Step 2 considering given
strategic priorities (according to Figure 3). However,
depending on strategists' priorities for the objectives,
di�erent scenarios will be generated. As an example,
in the presented scenario in row 9, the most impor-
tant objective (S = Superior) is minimizing cost, the
second most important goal is maximizing agility (A
= Advantage), and maximizing reliability is the least
important one (P = Parity). According to this strategy
and by implementing the third computational step, the
best solution among Pareto solutions is determined. In
this solution, the total cost is 364, agility is equal to
138, and reliability is 17; the values of 8 sets of model
variables are speci�ed as well. In Table 6, only the
values of Xnijt of scenario #9 are presented for the
sake of brevity and the rest of values are zero.



M. Rezaei et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 2807{2823 2819

Table 4. De�ned target values for strategic objectives.

Table 5. Strategic scenarios for performance, values of objectives, and operational programs.
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Table 6. Xnijt (the amount of supplied material n by supplier i to plant j in period t).

8.1. Sensitivity analysis
As already mentioned, the �rst and second compu-
tational steps in all scenarios are implemented only
once. The third step should be run again by any
change in strategies. Model sensitivity with respect
to these changes is investigated in this section. Such a
sensitivity investigation clearly illustrates the relation
between operational and strategic levels.

In Figure 9, the e�ects of bound variations of
`superior,' `parity,' and `advantage' in strategic level
are shown. Changing the selected numbers within
acceptable range of strategic objectives in the third
last record of Table 4, the behavior of the model in
choosing the optimum point changes. In this condition,
the changes have no impact on the generation of Pareto
solutions. These changes a�ect weights of the ideal
point in TOPSIS model and lead to creation of di�erent
�nal alternatives among a �xed Pareto set of solutions
as the �nal selected point by the comprehensive model.
In Figure 9, the acceptable levels of objectives are
divided into 10 parts and, consequently, 10 di�erent
points are speci�ed so as to determine the strategy level
(Table 7).

Applying these 10 points in weighting ideal TOP-

Figure 9. Pareto optimal non-dominated solutions
obtained via NSGAII.

SIS, we illustrate how one can select di�erent points
in a Pareto set with 10 members/solutions through
changing acceptable levels. The results are shown in
a 3-dimensional space in Figure 9.

9. Conclusions and future studies

This study presented a comprehensive framework for
SC performance improvement using a dynamic align-
ment of strategic and low-level decisions. Generally,
to the best of the authors' knowledge, there is no
outstanding research in the literature in which the men-
tioned criteria have simultaneously been investigated.

Two echelons consisting of suppliers and man-
ufacturers were considered in the proposed SC. The
presented operational model carefully considered im-
portant SC features such as several suppliers, several
plants, several materials, and several products during
multiple periods. The operational model aimed at
minimizing the supply cost and production cost as well
as maximizing supply agility, production agility, and
SC reliability.

The results of computational experiments demon-
strated the operation of the proposed solution method.
Then, a sensitivity analysis was conducted on the
parameters, and scenarios of the proposed approach
and the results were discussed. The main contributions
of this framework could be classi�ed as follows:

1. Improved performance indicators by aligning all SC
decisions;

2. Using SCOR model for presenting an integrated,
simultaneous, and connected framework for perfor-
mance evaluation and improvement at the whole
SCM levels;

3. Providing a human-intelligence based decision-
making process for strategic plan setting;

Table 7. The acceptable levels.
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4. Providing a machine-intelligence based decision-
making process for quantitative modelling of the
low levels.

Moreover, the main contributions of the opera-
tional model can be listed as follows:

1. Considering cost, agility, and reliability as objec-
tive functions in a two-echelon SC, simultaneously,
according to SCOR model;

2. Analyzing the behavior of the proposed approach
using a sensitivity analysis considering several sce-
narios.

Due to using di�erent methodologies and scienti�c
concepts, the proposed Supply Chain Performance
Management (SCPM) framework provides a reliable
structure and has many practical applications in dif-
ferent areas. However, based on the capabilities of
this framework, the following future developments are
proposed:

1. Expansion of the model under stochastic program-
ming or fuzzy set theory by taking into account the
parameters of demand, cost, and processing times;

2. Adding other SC features such as \distribution" to
the proposed model.
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