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Abstract. This research investigates joint scheduling of maintenance and production
planning. This novel integrated problem takes bene�t of Reliability-Centered Maintenance
(RCM) for monitoring and managing maintenance function of a stochastic complex
production-planning problem, namely, Flexible Job Shop scheduling Problem (FJSP). The
developed RCM works based on stochastic shocking of machines during their process
time. In fact, it implements condition based maintenance approach regulated according
to stochastic reliability concept. Comparison of the system reliability with critical levels
determines the failure status of the machines. It activates two main types of reaction called
preventive and corrective maintenance. Considering breakdown of the system between
inspection intervals makes the proposed model more realistic. Moreover, maintenance
activity times and their duration are considered stochastically. Because of the high
complexity level of this joint system, Simulation-Based Optimization (SBO) approach is
proposed for solving the problem. This SBO searches the feasible area through Genetic
Algorithm (GA) and Biogeography Based Optimization (BBO) algorithm. Di�erent test
problems, statistical methods, and novel visualizations are used to discuss the problem and
the algorithm, explicitly.

© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Production plans and the maintenance activities are
joint concepts in real world. However, most of the
production and scheduling problems assume all times
machine availability [1]. In contrast to this assumption,
real world problems face many situations in which
machines break down or need maintenance. [2]. More-
over, ine�cient maintenance can cause one third of
maintenance costs being wasted due to unnecessary
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or improper maintenance activities [3]. Nonetheless,
maintenance issues are not a considerable portion of the
literature on production and manufacturing problems.

On the other hand, maintenance and reliability
have a signi�cant share of the literature on modeling
and optimization [4-9]. Thus, taking bene�t of this op-
portunity to realize and reinforce production-planning
problems is of interest. One of these opportunities
is a method called Reliability Centered Maintenance
(RCM). Actually, the main goal of this paper is
consistent introducing of RCM to production problem
because of its importance in real environment. RCM
has various industrial applications in the maintenance
and reliability literature, including power distribution
systems, subsea pulpiness, steel plants, chemical indus-
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try, transportation, water distribution, and concrete
bridge decks inspection [10-15].

RCM functionally controls the systems to reach
a desired level by monitoring their reliability [16].
Moreover, it prioritizes maintenance activities by rank-
ing the failures according to their e�ects on system
reliability. In fact, RCM continuously monitors the
reliability of the system and determines type of the re-
quired maintenance activities according to the levels of
reliability [16]. Condition-Based Maintenance (CBM),
in many cases, conducts the task of monitoring. CBM
development owes to the recent emerging technologies
such as radio frequency identi�cation (RFID), Micro-
Electro-Mechanical System (MEMS), wireless tele-
communication, and Product Embedded Information
Devices (PEID) [17]. In the next subsection, the litera-
ture on joint scheduling of maintenance and production
planning is reviewed.

1.1. Integration of maintenance and general
production problems

Graves and Lee [18] developed a single-machine
scheduling problem. They assumed certain intervals
for maintenance activities. Lee [19] studied the two-
machine ow shop scheduling problem under availabil-
ity constraint and developed dynamic programming
algorithm and heuristic solutions. Lee and Chen [20]
considered a scheduling model for parallel machines in
which jobs could be maintained only once during the
planning horizon. They also assumed two strategies:
machines could be maintained simultaneously or sepa-
rately. Schmidt [21] reviewed deterministic scheduling
problems with availability constraints. Espinouse et
al. [22] and Cheng and Liu [23] investigated a two-
machine ow-shop problem in a no-wait environment
with availability constraint. Liao and Chen [24] con-
sidered several maintenance periods in their single-
machine scheduling problem, which minimized the
maximum tardiness of jobs.

Aggoune [25] in a ow shop problem considered
two variants of the non-preemptive jobs. Allaoui and
Artiba [26] integrated hybrid ow shop scheduling
problem and maintenance constraints minimizing the
ow time. Cassady and Kutanoglu [27] proposed a
mixed model of single-machine model with periodic
or preventive maintenance, which was followed by
Sortrakul t al. [28]. Liao et al. [29] developed a
two-parallel-machines problem considering preventive
maintenance. Mauguiere et al. [30] studied unavail-
ability in job-shop scheduling problem and single-
machine model. Allaoui and Artiba [31] investigated
one-machine ow shop with availability constraints.
Lin and Liao [32] studied hybrid parallel machine
problem and maintenance a�airs. Ruiz et al. [33]
studied a permutation ow shop problem with pre-
ventive maintenance. Chen [34] implemented exible

and periodic maintenance in his models. Liao and
Sheen [35] considered parallel machine scheduling with
availability and eligibility constraints, simultaneously.
Berrichi et al. [36] studied parallel machines focusing
on makespan and unavailability, simultaneously. Zribi
et al. [37] integrated job-shop scheduling problem with
availability constraints.

Naderi et al. [38] scheduled a sequence-dependent
setup time job-shop with preventive maintenance. Mel-
louli et al. [39] developed an integrated parallel ma-
chine scheduling problem with preventive maintenance.
Chen [40] studied a single machine with several mainte-
nance periods and minimized the maximum tardiness
of jobs. Mati [41] focused on the integration of job-
shop scheduling problem and availability constraints.
Pan et al. [42] considered variable maintenance time
subjected to machine degradation to make their single
machine compatible with preventive maintenance. Low
et al. [43] considered single machine with periodic
maintenance. Safari et al. [44] developed CBM for
ow shop scheduling problem. They did not develop
mathematical model and only simulated the concept.
Moreover, their simulation did not assume the pos-
sibility of breakdown between inspection times. Ben
Ali et al. [45] proposed a multi-objective job shop
problem that optimized maintenance cost in addition
to makespan. Ramezanian and Saidi-Mehrabad [46]
developed parallel machine with rework process. Zhou
et al. [47] proposed a multi-component system under
changing job shop with preventive maintenance con-
sideration. Ozkok [48] investigated hull structure pro-
duction process in a �xed-position shipyard company
with machine breakdown consideration.

Chouikhi et al. [49] integrated a single-unit system
with CBM and optimized the cost of maintenance
and inspection time by determining the optimal in-
spection. They assumed that both corrective and
preventive maintenance actions were perfect, which
means after such actions, the system became as good
as the new one. Besides, they assumed that durations
of inspection, corrective maintenance, and preventive
maintenance could be negligible. Kim and Ozturkoglu
[50] developed a joint scheduling of single machine
problem with multiple preventive maintenances. They
proposed ant colony optimization and particle swarm
optimization in order to solve this problem. Ying
et al. [51] introduced di�erent SMPSs considering
maintenance activity between two sequential jobs.
Lin et al. [52] evaluated reliability of a multistate
FLexible FSSP with stochastic capacity. Huang and
Yu [53] developed a two-stage multiprocessor FSSP
with maintenance and clean production aims. Cui and
Lu [54] investigated exible maintenance in SMPS and
solved their problem through the Earliest Release Date-
Longest Processing Time (ERD-LPT), and Branch and
Bound (B&B) algorithm.
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1.2. Integration of maintenance and Flexible
Job Shop scheduling Problem (FJSP)

Flexible job shop scheduling problem is a popular
and complex exible manufacturing problem [55,56].
In classical FJSP, most researches assume that all
machines are available during their working process.
Both areas of the optimization problems, i.e., model
development [57-61] and solving method extension [62-
76], can be found in the classical literature on FJSP.
Demir and Isleyen [77] performed a comprehensive eval-
uation of the various mathematical models presented
for the FJSP.

Zribi and Borne [78] assumed unavailability of ma-
chines due to preventive maintenance. Gao et al. [79]
proposed preventive maintenance for FJSP in which
the period of maintenance tasks was non-�xed and
should be determined during the scheduling procedure.
Wang and Yu [80] developed FJSP considering mainte-
nance activities either exible in a time window or �xed
beforehand. Moradi et al. [81] integrated FJSP and
preventive maintenance by optimizing unavailability
and makespan. Mokhtari and Dadgar [82] introduced
a joint FJSP and PM model that assumed the failure
rates were time varying. In their model, the duration
of PM activities was �xed. Ahmadi et al. [83] studied
random machine breakdown in FJSP with simulation
considerations. The related important studies are
summarized in Table 1.

1.3. Gap analysis
According to the literature, a rare portion of the
production studies is devoted to FJSP, CBM, and
RCM. Therefore, this research reinforces FJSP prob-
lem through RCM concept. Real world assumptions,
rarely considered in the literature, are assumed in the
developed RCM. For instance, breakdown possibility is
assumed between inspection intervals. Also, this study
considers maintenance occurrence and duration time

stochastically. In addition, it stochastically assumes re-
covery level of the system after preventive maintenance.
Moreover, we use both types of maintenance strategies,
called Corrective Maintenance (CM) and Preventive
Maintenance (PM). CBM is used to detect the level
of reliability [84].

The structure of the paper is as follows. Section
2 presents the related literature review of the problem.
Section 3 discusses the elements of the proposed joint
problem. The simulation-based approach related to the
proposed RCM is developed in Section 4. Section 5
presents the proposed problem and its solving method-
ology through numerical examples. Finally, Section 7
concludes the paper.

2. Preliminaries of the developed joint
problem

The considered production problem is a stochastic
version of the simple FJSP. FJPS has two tasks,
namely, allocating operations to machines and deter-
mining the sequence of allocated operations to each
machine [72,79]. Simple FJSP consists of n jobs, J
(Ji; i 2 f1; 2; :::; ng); each job, i (J1; :::; Jn), includes ni
operations, O(Oij ; j 2 f1; 2; :::; nig), that are processed
on m machines, M(Mk; k 2 f1; 2; :::;mg). The FJSP
objective function of this paper is makespan (Cmax)
given below:

Cmax = maxfCkjk = 1; :::; ng; (1)

where Ck denotes complementation time of machine
k [74].

Figure 1 illustrates the FJSP example with 3 jobs,
4 machines, and 9 operations. This �gure includes a ta-
ble and a related Gant chart. In the table, the numbers
present the processing times of operations on machines
in addition to their sets of capable machines. The

Figure 1. The machine capability table and Gant chart of a related feasible solution.
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Table 1. Literature review of the integration of scheduling and maintenance.

Ref. # Year Scheduling types Objectives Types of maintenance Solving
methodologies

CM PM CBM RCM Meta-heuristics Exact SBO
Grave and
Lee [18]

1999 Single machine Cmax
Lateness

* DP

Cassady and
Kutanoglu [27]

2005 Single machine TWCT * Heuristic TE

Sortrakul
et al. [28]

2005 Single machine TWCT * GA

Mauguiere
et al. [30]

2005 Single machine & job shop Cmax * B&B

Chen [34] 2008 Single machine Cmax * Heuristic
Chen [40] 2009 Single machine Cmax * Heuristic B&B

Pan et al. [42] 2010 Single machine MWT * Heuristic
Low et al. [43] 2010 Single machine Cmax * Heuristic

Kim and
Ozturkoglu [50]

2013 Single machine
Cmax
TCT

TWCT
* GA

Ying et al. [51] 2016 Single machine T, ML, TFT, MT * Heuristic

Cui & Lu [54] 2017 Single machine * B&B, ERD-LPT

Lin and
Liao [32]

2007 Parallel machine Cmax * Heuristic

Liao and
Sheen [35]

2008 Parallel machine Cmax * BSA

Berrichi
et al. [36]

2009 Parallel machine Cmax
Unavailability

* NSGAII

Mellouli
et al. [39]

2009 Parallel machine TCT * DP, B&B

Lee [19] 1999 Flow shop Cmax * Heuristic DP

Espinouse
et al. [19]

2001 Flow shop Cmax * Heuristic

Cheng and
Liu [20]

2003 Flow shop Cmax * Heuristic

Aggoune [25] 2004 Flow shop Cmax * TS GA

Allaoui and
Artiba [26]

2004 Flow shop Flow time * Heuristic *

Ruiz et al. [33] 2007 Flow shop Cmax * Random, NEH,
SA, GA, ACO

Safari
et al. [44]

2010 Flow shop Cmax * * * SA-TS *

Naderi et al. [38] 2009 Flexible ow shop Cmax * AIS, GA

Huang &
Yu [50]

2016 Flow shop Cmax * PSO, ACO
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Table 1. Literature review of the integration of scheduling and maintenance (continued).

Ref. # Year Scheduling types Objectives Types of maintenance Solving
methodologies

CM PM CBM RCM Meta-heuristics Exact SBO
Zribi et al. [34] 2008 Job shop Cmax * Heuristic GA *

Mati [38] 2010 Job shop Cmax * Heuristic

Ben Ali [45] 2011 Job shop Cmax
Cost

* MOEA

Zhou et al. [47] 2012 Job shop Cmax
Cost

* DP

Zribi and
Borne [78]

2005 FJSP Cmax * Hybrid GA

Gao et al. [72] 2006 FJSP
Cmax
TWL
CWL

* GA

Wang and
Yu [73]

2010 FJSP Cmax

Moradi et al. [74] 2015 FJSP Cmax
Unavailability

* NSGAII

Mokhtari, and
Dadgar [82]

2015 FJSP Cmax * SA *

Ahmadi et al. [83] 2016 FJSP Cmax
Stability

* NSGAII NRGA

This Study FJSP Cmax * * * * BBO & GA *

symbol `inf ' implies that the machine cannot operate
the corresponding operation. The Gant chart depicts
combination of the sequence and the assignment for a
sample solution.

This research realizes the basic FJSP production-
planning problem through considering the real stochas-
tic nature of the maintenance function. The main
concept of the proposed approaches is RCM. RCM
determines and classi�es the failure modes and tries
to keep the reliability of the system in a level that the
occurrence of these modes is prevented [16]. In fact, it
monitors the system status predictively to recognize
the mode and do the required quali�ed actions in
consequence [85-87].

The monitoring mechanism of the proposed RCM
is based on the CBM approach. CBM determines the
maintenance activities according to the actual condi-
tion of the systems [85]. In addition, the developed
RCM mimics the shocking process [86] that degrades
the considered reliability function of the machines,
stochastically. In other words, CBM monitors the
reliability degradation caused by stochastic shocking
process. Simultaneously, it predicts and determines
the appropriate maintenance actions according to the
reliability status of the machines [16,85]. The failures
considered in the research are of both types of CM and

PM. Now, in case the reliability status falls beneath
the �rst critical threshold, L, CBM suggests to have
PM, and if it gets inferior to failure rate LL, a failure
or breakdown occurs [87].

Figure 2 illustrates reliability deteriorating and
failure modes, schematically. This �gure plots the man-
ner of reliability from two aspects. In the upper part,
it introduces the stochastic variables of the problem,
while in the lower part, on a generally similar �gure, it
focuses on the maintenance activities according to the
state of reliability. The S values in the �gure denote
the shock times that reduce machine reliability within
simulation process. This example encompasses seven
shocks, i.e., S1 to S7, presented on the horizontal axis.
The M values, i.e., M1 and M2, denote the time of the
jth maintenance activity on the machine.

After shocks S1 to S3, reliability of the machine
is still higher than L. Therefore, the machine does not
require maintenance activity. Then, the fourth stochas-
tic shock (S4) decreases the reliability of machine
to the preventive maintenance bound L. Therefore,
on the inspection time of 2T , the PM maintenance
activity is recognized. The PM maintenance activity
recovers and improves the degradation level in M1.
The machine works at this level of reliability until
S5 occurs. Since the reliability level of machine after



S.H.A. Rahmati et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 2788{2806 2793

Figure 2. The maintenance activities due to the degradation level.

Figure 3. The proposed reliability modi�cation model.

shock S5 is higher than L; no maintenance activity
is required. However, S6 degrades the machine to
even less than LL; thus, corrective maintenance should
be done. This corrective maintenance has two main
distinctive di�erences with PM, namely 1) happening
between the inspection intervals that cause breakdown
of the machines, and 2) improving the reliability to a
new machine reliability level or reliability zero in M2.

In Figure 2, the number represents the stochastic
event types that occur during the working process of
the machine as follows.

Number 1 is a stochastic variable that denotes
machine reliability level (Relm) or rel and follows ex-
ponential distribution with parameter (RL � Exp(�)).
In fact, this number is a function of degradation of
machine at each time (Dm(t)) according to the function
in Eq. (2). In this equation, �0 and �1 are reliability
deterioration rates and weighted average of critical
levels, i.e., DM = (L+ 4�LL)=5. Machine degradation
(DLm) or Dm(t) follows exponential distribution with
parameter (DLm � Exp(�)). It should be noticed that
in the equations of this paper, DLm and Dm(t) denote
machine degradation and RLm and Relm(t) denote
machine reliability.

Relm(t) =
e��0Dm(t)

1 + e�1(Dm(t)�DM) : (2)

Number 2 denotes PM Duration (PMD) and
it follows lognormal distribution (PMD � log
normal(�PM ; �PM )).

Number 3 represents the improving or recovery
level through PM (RLPM) activity, calculated through
Eq. (3), and it follows lognormal distribution (RLPM�
log normal(�PM 0 ; �PM 0) ).

Relnew = Relold +RLPM ;

LL < Relold � L: (3)

Number 4 denotes the CM Duration (CMD)
and it follows lognormal distribution (CMD �
log normal (�CM ; �CM ).

Number 5 represents the improving or Recov-
ery Level through CM (RLCM) activity, calculated
through Eq. (4), that either entirely removes the
reliability of machine or makes it one.

Relnew = Relold +RLCM ; Relold � LL: (4)

Number 6 denotes the stochastic time between two
shocks (TBS) and it follows an exponential distribution
(TBS � Exp(�)).

Figure 3 illustrates a brief explanation of the
explained reliability modi�cation process.
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Figure 4. The proposed solution habitat (solution) vector of the example in Figure 1.

Figure 5. The proposed hybrid SSV operator of the habitat.

3. Simulation-Based Optimization (SBO)
algorithm

The proposed SBO has two main elements, namely,
optimization algorithm and simulation process. Two
di�erent meta-heuristic algorithms, namely, GA and
BBO, conduct the optimization algorithm. Accord-
ingly, this section is classi�ed into three parts. The �rst
two parts introduce the mentioned elements, respec-
tively, and the third one integrates the whole elements
and operators with each other.

3.1. Optimization algorithm of the SBO
Before developing the optimization algorithms, sepa-
rately, let us explain them, comparatively. GA and
BBO, as population-based algorithms, have many sim-
ilarities. Both algorithms include a set of individuals,
called chromosomes and habitats, respectively. The
�tness values of the individuals are called �tness and
High Suitability Index (HSI), respectively. Other
detailed comparisons of the algorithms are provided
in [84].

3.1.1. The BBO algorithm
BBO mimics the migration term of biogeography sci-
ence [88,89]. The solution or habitat structure in this
paper is a vector equal in length to the number of op-
erations or total number of operations (TNOP). Each
cell of this vector is an ordered pair in which the upper
object is the operation name and the lower object is
the assigned machine to that operation. Moreover, the
�rst row of the solution structure shows the sequence
of operations for operating on machines. Figure 4
illustrates a sample of solution structure related to the
Gant chart of Figure 1.

BBO implements di�erent strategies in its mu-
tation operator. In Sequencing Sub-Vector (SSV), it
applies a hybrid strategy, including swap, reversion,
and insertion, through a random process, as shown in
Figure 5.

For the assignment sub-vector (MASV), BBO
performs through machine changing from the capable
table of each operation as in Figure 6.

For executing the migration, in sequencing part,
permutation operator conducts the migration as in
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Figure 6. MASV operator of BBO.

Figure 7. Proposed migration of sequencing.

Figure 8. Proposed migration of assignment.

Figure 7, and in assignment part, mask operator plays
the role as in Figure 8.

3.1.2. The Genetic Algorithm (GA) operators
GA implements reproduction, mutation, and crossover
as the conductive operators for searching the search
space. Reproduction operator copies a set of elite
chromosomes to the next generation [90].

3.2. The simulation agent of the algorithm
As mentioned in the developed scheduling model, the
proposed FJSP contains di�erent stochastic compo-
nents, such as RL, PMD, RLPM, CMD, RLCM, or
TBS, to encompass a realistic version of the RCM.
These variables change the states of the solutions
dynamically.

SBO, as a powerful tool of optimization, is
involved in almost every aspect of stochastic pro-
gramming [84]. Two general classes of stochastic
optimization problems exist in the literature, namely,
the parametric (static) and the control (dynamic)
ones. The static optimization includes a set of static

parameters for all states. However, in the control
optimization, solutions change according to dynamic
states [84]. Here, because of the stochastic nature
of problem, dynamic strategy controls the simulation
process. Figure 9 plots the general structure of the
proposed SBO.

The input to Figure 8 is a solution from the
optimization process and its output is the simulated
version of the objective function. This SBO conducts a
loop of simulation runs (Numsim) to obtain average
and standard deviation of solutions for reporting a
more robust solution. In this owchart, dt regulates
sample time of the simulation. Moreover, V T and
LV T denote predetermined length between visit times
and the obtained last visit time, respectively. Besides,
the terms IJSfjg(i), IJFfjg(i), and IMB(m) in
Figure 10 to Figure 12 are binary logical variables
that represent `is operation j of job i started,' `is
operation j of job i �nished,' and `is machine m busy,'
respectively.

The reliability updating function of Figure 10
determines the level of reliability for machines and the
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Figure 9. The overall owchart of the proposed simulation part of SBO.

maintenance decision. Figure 11 includes the logic of
the maintenance decision determination.

According to schedules, machine and job status
determination functions are activated as given in Fig-
ure 12 and Figure 13, respectively. These functions de-
termine the start and �nish status of jobs plus the busi-
ness status of machines at each moment of simulation.

The job status function includes the shocking
time determination functions. Figure 14 illustrates the
proposed shocking logic. SBO at these shock times
updates the reliability level of machines during the
operating times for the related assigned operations.
Certainly, they have impact on the types of the
maintenance decisions according to the reliability level
obtained after the shock times.

4. Computational results

This section provides us with the numerical examples

of the problem to have a detailed view of the developed
stochastic problem and the simulation based algo-
rithms. The general information of these test problems
is provided in Section 2 and their detailed descriptions
are in a �le, called RCM, placed in ResearcheGate site
of the �rst two authors. In this section, the proposed
SBO is compared with Genetic Algorithm (GA).

4.1. Parameter tuning
Parameters of the algorithms are tuned through
Taguchi method [91].

Tables 2 and 3 show the determined levels of
parameters of BBO and GA.

4.2. Outputs of the algorithms
Tables 4 and 5 present the outputs of the algorithms
for the developed stochastic problem for GA and BBO,
respectively. Moreover, these tables include the results
of the algorithms for simple version of the problem as
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Figure 10. Proposed reliability updating function.

Figure 11. The proposed maintenance decision function.

Figure 12. The proposed machine status determination function.
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Figure 13. The proposed job status determination function.

Figure 14. The proposed shock creation function.

Table 2. The factor levels of BBO.

A:
Iteration size

B:
Population size

C:
Mutation rate

D:
E rate

A:
I rate

10 10 0.1 0.8 0.8

30 30 0.2 1 1

50 50 0.3 1.2 1.2

Table 3. The factor levels of GA.

A:
Iteration size

B:
Population size

C:
Crossover rate

D:
Mutation rate

10 10 0.5 0.1

30 30 0.6 0.2

50 50 0.7 0.3
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Table 4. Outputs of the algorithms for test problems.

Problem # GA BBO
CmaxMean Time 1 CmaxSTD CmaxMean Time 1 CmaxSTD

FJSP1 108 440.02 0 108 873.81 0.0011
FJSP2 193 924.09 15.202 173.5 1907.36 98.005
FJSP3 93 683.67 0 93 1429.61 0
FJSP4 146.75 728 13.22 141.05 1365.07 16.97
FJSP5 167.7 1255.8 25.243 212.35 2871.43 30.759
FJSP6 76 690.4 0 76 1222.08 0
FJSP7 261.9 1277.74 4.596 265 2347.27 21.637
FJSP8 169.2 1197.9 12.727 183.1 2200 3.889
FJSP9 266.95 2702 30.193 252.8 5244.42 47.16
FJSP10 204.05 2496.35 8.414 203.09 4550.73 21.99
Average 168.655 1239.597 10.959 170.789 2401.178 26.14111

Table 5. Outputs of the algorithms for test problems.

Problem # GA BBO
Cmax Time 2 Cmax Time 2

FJSP1 108 2.17 108 8.36
FJSP2 149 2.65 147 14.03
FJSP3 93 2.67 93 13.57
FJSP4 133 2.73 118 14.79
FJSP5 154 3.66 146 19.09
FJSP6 76 6.02 76 19.15
FJSP7 203 6.82 194 20.51
FJSP8 139 7.45 120 20.07
FJSP9 167 11.37 167 28.72
FJSP10 154 11.7 139 30.64
Average 137.6 5.724 130.8 18.893

a lower bound validation. The lower bound model is
the simple version of the FJSP with any stochastic
parameter or maintenance consideration. Obviously,
in such situation, both Cmax and execution time of the
algorithm present lower bound values for the developed
stochastic problem. The simple problem does not
encounter PM, CM, or breakdown. Moreover, it does
not need inspection. Therefore, Cmax values are only

dependent on the main operations and are in the worst
case equal to the stochastic version. In terms of
execution time, low time is required for processing only
some operations in comparison with the case in which
di�erent maintenance components are also inserted
besides the operations.

In each table, for the main developed problem,
because of the stochastic nature of the problems, each
test problem is run several times and the average
(CmaxMean), standard deviation of Cmax (CmaxSTD)
values, and average execution times (Time) are re-
ported. In the simple model part of the tables, Di�1 is
di�erence value of Cmax in stochastic model and simple
lower bound model (i.e., Di�1 = CmaxMean � Cmax).
Similarly, Di�2 shows di�erence of time values of the
models (i.e., Di�2 = Time 1� Time 2).

In both Tables 4 and 5, the last columns represent
the average values of the columns. Since Cmax,
standard deviation, and time objective functions are all
to be minimized, the smallest values are the best ones.

Figure 15 compares the algorithms regarding
three metrics of average Cmax (CmaxMean), average
time, and average standard deviation for the obtained
simulated solutions. As it is clear, GA is better
than BBO only in time metric. Figure 16 carries
out the comparison of the obtained outputs from the

Figure 15. Comparison of algorithms for the stochastic problem with maintenance considerations.
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Figure 16. Comparison of algorithms for the simple problem without maintenance considerations.

Figure 17. Comparison of algorithms regarding their obtained lower bounds.

algorithms for the deterministic version or the lower
bound problem.

As can be seen in Figure 17, algorithms do not
have di�erence on Cmax. Besides, although they have
the same trend in time, the vertical dimensions of the
outputs of algorithms are di�erent.

Tables 6 and 7 conduct the statistical tests for the
simple and stochastic versions. In fact, they prove that
the algorithms in terms of Cmax are non-dominated
and in terms of time, GA is superior.

Figures 18 compares the convergence plots of

GA and BBO for the stochastic and simple problems
regarding the mentioned metrics. Moreover, the
real-time novel reliability monitoring illustration is
presented in Figure 19 for problem FJSP9. GA
is used for drawing these �gures. This developed
and innovative �gure illustrates the developed
reliability-centered maintenance approach in detail. In
this �gures, whenever a task is assigned to a machine,
its reliability decreases during the task operation.
Then, according to the mentioned logic behind the
PM and CM, suitable maintenance reaction is taken.

Table 6. T-test for comparing GA and BBO regarding the metrics of Table 4.

Metric name P -value Description

Cmax (CmaxMean) 0.943 They are not considerably di�erent
Time 1 0.044 GA outperforms BBO
Standard deviation (CmaxSTD ) 0.150 They are not considerably di�erent

Table 7. T-test for comparing GA and BBO regarding the metrics of Table 5.

Metric name P -value Description

Cmax 0.926 They are not considerably di�erent

Time 2 0.000 GA outperforms BBO
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Figure 18. Comparison of convergence plots of GA and
BBO for three problems.

4.3. Discussion

As mentioned in Figure 2, our RCM problem assumes
two determining levels, i.e., L and LL. These levels are
tuned to 0.81 and 0.11, respectively. According to this
�gure, 6 stochastic components are considered in the
proposed RCM to make it realistic. These components
and variables are also shown in Figure 20 for the main
selected problem of FJSP9. In fact, this �gure is same
as Figure 19, but in reliability part, it only reports the
outputs of Machine 2 for presentation simplicity.

Number 1 or RL and number 6 or TBM in Figure
20 depict a set of reliability degradations and set of
shocks, respectively, due to activation of operation 1.1
on Machine 2. However, since the values of these
variables are very small, the associated values are
presented all together for a speci�c operation. RL is
regulated according to the function in Figures 3 and
10. Shock times of TBM are generated according to
Figure 14. Besides, the (3) values show the e�ect of PM
(RLPM) on the reliability level of machine and they
cause PM with duration denoted by number 2. The PM
occurs when the degradation level goes less than the L
level at the inspection times or before them. Inspection
times are presented in Gant chart part of the �gure.
CM recovery levels (RLCM) and their durations are
pointed by numbers 5 and 4, respectively. CM happens
when the reliability level violates LL level. Activation
of PM or CM and their durations are denoted by the
maintenance decision function given in Figure 11. In
the Gant chart part of the �gure, machines and jobs

Figure 19. Real-time reliability level according to the Gant chart evolution for FJSP9.
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Figure 20. Description of the main results of the outputs for FJSP9.

are scheduled through Figures 12 and 13, respectively.
Figure 9 manages the whole simulation task.

Numbers 7 and 8 in this �gure show the wasted
time according to the maintenance requirement rec-
ognized with the autonomous detection engine of the
simulation algorithm. It means that during the periods
shown by numbers 7 and 8, operations O3;3 and
O4;4 have been started, respectively, since they were
degraded in the reliability �gure. However, since their
reliability levels have become less than LL and L,
respectively, they require CM and PM. Therefore, their
main operations are interrupted and the maintenance
operations are started. Certainly, since the jobs are not
resumable in our problem, they are started from the
beginning after their maintenance activities. To sum
up, these �gures prove that the designed algorithm can
control the process autonomously.

5. Conclusion

This research focused on the maintenance consider-
ation in production problems. A stochastic FJSP
was developed by considering a modern maintenance
system called RCM. This autonomous RCM monitored
reliability level permanently and decided which main-
tenance activity should be done. Since the devel-
oped problem needed real-time checking of stochastic
events, it was so complicated. Therefore, two SBO
mechanisms, namely, GA and BBO, were developed
to conduct the optimization problem. The required
main and sub functions of the proposed algorithms were
described in detail with su�cient examples. According

to the results, the proposed RCM took bene�t from
its considered CBM concept properly. Moreover, it
handled the considered assumptions and constraints
during the optimization process completely. Moreover,
di�erent innovative and novel visualization techniques
illustrated the proposed logics of the stochastic prob-
lem explicitly. Future work following this research
may control the cost term of the maintenance within
a multi-objective problem or develop other stochastic
techniques, based on decomposition, to handle the
same problem.
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