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Abstract. In recent decades, many researchers have studied the cellular manufacturing
system with consideration of various issues such as scheduling, production planning, layout,
reliability, etc. However, limited research papers have investigated this problem in an
uncertain environment. The present paper addresses a stochastic problem in cellular
manufacturing systems considering simultaneous multiple routings and subcontracting. In
the developed problem, each part can be simultaneously produced in multiple processing
routes. It is also assumed that the unsatis�ed part demands as a result of limited
machine capacity or high manufacturing cost could be outsourced. A two-stage stochastic
programming approach is employed to take the uncertainty into consideration and
to formulate the problem. The objective function is to minimize the summation of
production, subcontracting, material handling, and machine idleness costs. A sample
average approximation method is applied as a solution method. Also, for further illustration
of the problem, a numerical example is solved and sensitivity analyses are conducted.
Finally, through some numerical examples extracted from related literature, the advantages
of constructing a stochastic optimization model for the problem are demonstrated.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Cellular Manufacturing System (CMS), as a manu-
facturing strategy, emanates from group technology
concept. In CMSs, each cell is composed of a group
of machines that are dedicated to the production of
a speci�c subset of parts called part family. The
main advantages expected from production using CMS
include a reduction in work-in-process inventories,
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setup times, lead times, material handling costs, and
tool requirements. Production using CMS also causes
a noticeable improvement in productivity, product
quality, and production control [1-3]. According to
what has been presented by Wemmerl�ov and Hyer [1],
the following decisions could be taken in the design
stage of CMSs:

1. Cell Formation (CF): Grouping parts with similar
processing requirements or design features (i.e.,
making part families) and categorizing machines
into machine cells based on the needed operations
for part families such that the inter-cell movement
of parts is minimized;

2. Group layout: Designing intra-cell layout (layout of
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machines inside cells) and inter-cell layout (layout
of cells regarding each other);

3. Group scheduling: Scheduling parts and part fami-
lies for production;

4. Resource allocation: Assigning tools, manpower,
materials, and other resources.

These issues have been investigated in many research
papers. For instance, the CF problem has been ad-
dressed in [4-7]. The layout of CMS has been discussed
in [3,8-11]. The cell scheduling problem has been
considered in [12-15].

In reality, the aforementioned decisions should
be taken in an uncertain environment. However,
limited studies have investigated the uncertainty issue
in designing CMSs. The uncertainty could appear in
demands, operational costs, resource capacities, etc.
Dealing with this issue, Wang et al. [16] surveyed a
facility layout problem in CMSs in which the demand
rate varied over product life cycle. In their problem,
the objective was to �nd the inter- and intra-cell
layouts such that the total material handling cost
was minimized. A simulated annealing algorithm was
applied to solve the presented problem. Jeon and
Leep [17] developed a two-phase procedure to con�gure
a CMS. In the �rst phase, they used a genetic algorithm
to obtain part families using a new similarity coe�-
cient. The proposed similarity coe�cient considered
the possibility of alternative processing routes during
machine failure. In the second phase, considering the
periodic demand changes, machines were assigned to
part families using multiple optimization processes. In
these optimization processes, sequential and simultane-
ous mixed integer programming models were employed
to minimize the total costs that were in connection with
the operational and scheduling aspects. Tavakkoli-
Moghaddam et al. [18] surveyed a facility layout prob-
lem in CMSs with normally distributed part demands.
The objective was to optimize the total inter- and intra-
cell material handling costs. Schaller [19] presented a
model for the CF problem considering periodic demand
variability. In their problem, the composition of cells
was allowed to change from period to period. Heuristic
algorithms were implemented to minimize the sum of
three cost components including the production cost
of parts, the amortized cost of machines, and the
relocating cost of machines during periods. Safaei
et al. [20] assumed that part demands and machine
capacities were fuzzy numbers. Then, they formulated
a dynamic CMS model. The objective of this model
was to determine the optimal cell con�guration in each
period in such a way that the sum of material handling,
machine constant/variable, and recon�guration costs
was minimized. They used a fuzzy programming based
method to solve the developed problem. Ar��kan and
G�ung�or [21] presented a multi-objective CMS model

in a fuzzy environment. In this study, part demands,
machine capacities, and Exceptional Elements (EEs)
elimination costs were considered as fuzzy numbers.
The objective functions that they considered included
the minimization of EEs elimination cost, the mini-
mization of inter-cell movements, and the maximiza-
tion of utilized machine capacity. Ghezavati and Saidi-
Mehrabad [22] addressed an integrated mathematical
model of CF and group scheduling problems in an
uncertain environment. It was assumed that the
processing time of parts on machines was a stochastic
parameter, which was represented by discrete scenar-
ios. The main goal of their model was to minimize the
total expected costs of maximum tardiness, EEs sub-
contracting, and resource under-utilization. A hybrid
genetic-simulated annealing algorithm was employed
as a solution method. Das and Abdul-Kader [23]
presented a bi-objective integer-programming model
for designing a CMS by considering dynamic changes
in machine reliability and parts demands. The �rst
objective function was to minimize the total system
costs including the manufacturing, inter-cell material
handling, machine under-utilization, and machine du-
plication costs. The second objective function was to
maximize the total system reliability. An "-constraint
solution method was used to solve the problem. Gheza-
vati and Saidi-Mehrabad [24] applied a queuing theory
approach to design a CMS with exponentially dis-
tributed service and arrival times. It was assumed
that each machine worked as a server and each part
was a customer that should be served by machines.
They formulated a mathematical model to maximize
the average utilization level of machines. A hybrid
method based on genetic and simulated annealing
algorithms was exerted to solve the problem. Rabbani
et al. [25] proposed a bi-objective CF problem in which
part demands were expressed by some probabilistic
scenarios. A two-stage stochastic programming model
was presented to undertake the uncertain demand of
parts. The expected variable cost of all machines
and the expected inter-cell material handling cost
were considered in the �rst objective function. The
total expected cell load variation was considered as
the second objective function. They applied a two-
phase fuzzy linear programming approach to solve
the presented problem. Forghani et al. [26] applied
an interval robust optimization approach to take the
uncertainty of part demands into consideration. Then,
an integrated CF and layout problem was formulated
to minimize the inter- and intra-cell material handling
costs.

Based on the above survey, the following short-
comings in the developed models can be more investi-
gated:

� Using normal probability distributions: In practice,
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uncertain parameters are not necessarily normally
distributed and may follow other distributions.
However, for simplicity, most papers assume that
random variables are normally distributed;

� Considering single process routing and other sim-
plifying assumptions: Most related papers usually
assume that each part has a unique process routing.
While, in practice, each part may have multiple pro-
cessing routes. Consideration of multiple processing
routes in the design of CMSs may enhance planning

exibility and throughput rates [27]. Furthermore,
other manufacturing parameters such as operation
sequences, processing times, resource capacities, and
operational costs are not usually addressed in the
existing mathematical models;

� Limitation on considering machine duplication: In
most current studies, the number of each machine
type is known a priori and there is not any capacity
limitation on machines. In other words, most
developed models do not make a decision about
the number of machines in the cell design process.
In reality, the capacity of machines is limited.
Therefore, each machine can be duplicated so as to
cope with the production requirement of parts;

� Neglecting outsourcing costs: Producing all parts in
CMSs may not be possible due to either limitation
on resource capacities or high manufacturing costs.
Accordingly, outsourcing some parts to external sup-
pliers may be preferred under certain circumstances.
However, this issue has been addressed only in few
research papers.

To deal with the shortcomings mentioned above,
in this paper, we propose a stochastic CMS model
considering subcontracting and simultaneous multi-
ple processing routes. Furthermore, practical design
parameters such as operation sequences, processing
times, and machines capacities are taken into account.
It is assumed that part demands and outsourcing
costs are stochastic parameters with known probability
distributions. In the suggested problem, each part
can be simultaneously produced in multiple processing
routes. Unsatis�ed part demands as a result of
limited machine capacity or high manufacturing cost
are outsourced. A two-stage stochastic programming
approach is applied to cope with the uncertainty and
formulate the problem. By considering the cell size,
machine capacity, and budget constraints, the �rst
stage decisions are the assignment of each machine to
a cell and the number of purchased machines of each
type. The second stage variables, which are dependent
on the various realizations of uncertain parameters
and the �rst stage decisions, are the amount of part
demands that should be outsourced and produced in
each processing route. The objective function is to

minimize the total variable cost, including the produc-
tion, subcontracting, material handling, and machine
idleness costs. A solution method based on Sample
Average Approximation (SAA) approach is suggested
to �nd suitable solutions to this stochastic model. To
illustrate the problem, a numerical example is solved
and sensitivity analyses are conducted. Finally, nu-
merical examples extracted from the related literature
are solved to illustrate the e�ciency of the model and
to demonstrate its advantages over other developed
models.

The remainder of this paper is organized as
follows: In Section 2, the proposed problem is explained
in detail and a non-linear two-stage stochastic model
is presented. Furthermore, a linearization method is
applied to linearize the model. In Section 3, the
SAA method is presented. In Section 4, in order to
clarify the proposed problem, an illustrative numerical
example is solved and sensitivity analyses are carried
out. In Section 5, by means of solving ten numerical
examples extracted from the literature, the e�ective-
ness of the solution method, as well as the advantages
of the constructed model, is examined. Finally, the
conclusions and hints for future studies are given in
Section 6.

2. Problem statement

In this section, a two-stage stochastic mathematical
programming model is developed for designing a CMS.
It is assumed that a set of parts, i = 1; :::; P , each
having an uncertain demand with a known probability
distribution, should be produced by a set of machine
types, k = 1; :::;M . Each machine type has a limited
capacity, which is known a priori. It is assumed that
there are Ri processing routes for the production of
part i. Each of these routings can be independently
implemented in the production of part i. In each
routing, the sequences of operations and processing
times are known a priori. Unsatis�ed part demands,
which can result from limited machine capacity or high
manufacturing costs, are outsourced. The suggested
subcontracting approach is similar to that proposed
by Mohammadi and Forghani [11]. The outsourcing
price of each part is also a random variable with a
known probability distribution. Machine duplication
(i.e., purchasing machines) is allowed and machines of
the same type are allocated to the same cell. Given
the budget constraint and cell size limit (the maximum
number of machines that can be assigned to a cell),
machines are grouped into a maximum of Cmax cells. A
schematic illustration of the proposed problem is given
in Figure 1.

Two-stage stochastic programming is one of the
methods which can be used to take the uncertainty into
consideration. It has two di�erent types of decision:
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Figure 1. An illustration of the proposed problem.

the �rst- and second-stage decisions. The �rst-stage
decisions, also called strategic decisions, are made
before the realization of the uncertain parameters.
In the second stage, where the uncertain parameters
are realized, operational and tactical decisions are
made [28]. In the suggested problem, we use this
method to tackle the uncertainty, which arises from
part demands and outsourcing costs.

2.1. Notations
The following notations are applied throughout this
paper.
Indices
i Index for parts (i = 1; :::; P , where P

is the number of parts),
j Index for processing routes (j =

1; :::; Ri, where Ri is the number of
processing routes of part i),

k Index for machine types (j = 1; :::;M ,
where M is the number of machine
types),

l Index for cells (l = 1; :::; Cmax, where
Cmax is the maximum number of cells
allowed),

s Index for scenarios (s = 1; :::; S, where
S is the number of scenarios).

Parameters
�[s] Probability of scenario s,
di[s] Demand of part i in scenario s,

cOi[s] Unit outsourcing cost of part i in
scenario s,

cPij Unit production cost of part i using
processing route j,

cAikk0 Unit intra-cell material handling
cost for transporting part i between
machine types k and k0,

cEikk0 Unit inter-cell material handling
cost for transporting part i between
machine types k and k0(cEikk0 � cAikk0),

fijkk0 Number of times that part i in
processing route j is transported
between machine types k and k0,

tijk Processing time of part i on machine
type k in processing route j,

cMk Purchase price of one unit of machine
type k,

Tk Available time on machine type k,

cIk Idleness cost of machine type k per
unit time,

Nmax
k Maximum number for machine type k

allowed to be purchased,
NM Maximum number of machine types

allowed in a cell,
B Budget available for purchasing

machines,
wS Estimated total variable cost based on

S scenarios.
First-stage decision variables
zkl If machine type k is assigned to cell l;

otherwise 0,
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nk Number of machine type k to be
purchased.

Second-stage decision variables
pij[s] Amount of part i to be produced using

processing route j in scenario s,
oi[s] Amount of part i to be outsourced in

scenario s,
uk[s] Unused capacity (time) of machine

type k in scenario s.

2.2. Mathematical model
The two-stage mathematical model of the proposed
problem is given below:

ws = min
sX
s=1

�[s]

 
PX
i=1

RiX
j=1

cPijpij[s]

+
PX
i=1

cOi[s]oi[s] +
MX
k=1

cIkuk[s]

+
M�1X
k=1

MX
k0=k+1

PX
i=1

RiX
j=1

fijkk0pij[s]

"
cAikk0

CmaxX
l=1

zklzk0l

+ cEikk0
�

1�
CmaxX
l=1

zklzk0l
�#!

;
(1)

subject to:

nk
Nmax
k

�
CmaxX
l=1

zkl � 1; 8k; (2)

CmaxX
l=1

zkl � nk; 8k; (3)

MX
k=1

zkl � NM; 8l; (4)

oi[s] +
RiX
j=1

pij[s] = di[s]; 8i; s; (5)

PX
i=1

RiX
j=1

tijkpij[s] + uk[s] = Tknk; 8k; s; (6)

MX
k=1

cMk nk � B; (7)

nk 2 f0; : : : ; Nmax
k g ; 8k; (8)

zkl 2 f0; 1g ; 8k; l; (9)

pij[s]; oi[s]; uk[s] � 0; 8i; j; k; s: (10)

In the proposed model, objective function (1) min-
imizes the estimation of the expected total variable
cost, which is composed of production, subcontracting,
idleness, and material handling costs (i.e., intra- and
inter-cell material handling costs), according to di�er-
ent realizations of uncertain parameters. Constraints
(2) and (3) jointly represent that if a machine type
is purchased, it is only assigned to a single cell.
Constraint (4) restricts the number of purchased ma-
chines in each cell. Constraint (5) ensures that under
various scenarios, the demand of parts is satis�ed using
production and outsourcing. Constraint (6) guarantees
that machine capacity is not exceeded. To be more
precise, the amount of used and unused time of machine
type, k, should be equal to its total available time.
Constraint (7) presents the budgetary limitations on
purchasing machines. Constraint (8) states that the
number of each machine type is an integer variable;
also, it limits the number of each machine type. Finally,
Constraints (9) and (10) indicate the types of other
decision variables.

2.3. Mathematical model linearization
The mathematical model presented in Subsection 2.2
is a mixed-integer nonlinear program (MINLP) due to
the existence of a nonlinear term in the fourth cost
component of objective function (1). Therefore, a
linearization method is applied to transform the model
into a Mixed-Integer linear Program (MIP), which is
very e�cient to optimally solve using high-performance
solvers such as GURUBI, XPRESS, or CPLEX. In
doing so, objective function (1) is rewritten as Eq. (11):

min
sX
s=1

�[s]

 
PX
i=1

RiX
j=1

cPijpij[s]

+
PX
i=1

cOi[s]oi[s] +
MX
k=1

cIkuk[s]

+
M�1X
k=1

MX
k0=k+1

PX
i=1

RiX
j=1

fijkk0cEikk0pij[s]

!

�
M�1X
k=1

MX
k0=k+1

CmaxX
l=1

 
ZklZk0l

PX
i=1

RiX
j=1

SX
s=1

�[s]fijkk0(cEikk0 � cAikk0)pij[s]
!
: (11)

Then, a new auxiliary variable, �kk0l, is de�ned to
replace with the nonlinear term:

zklzk0l
PX
i=1

RiX
j=1

SX
s=1

�[s]fijkk0
�
cEikk0 � cAikk0

�
pij[s];
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in Eq. (11). Eq. (11) aims at minimizing the negative
coe�cient of this nonlinear term; therefore, inequality:

�kk0l � min
�
BMzkl; BMzk0l;

PX
i=1

RiX
j=1

SX
s=1

�[s]fijkk0
�
cEikk0 � cAikk0

�
pij[s]

�
; 8k0 > k;

is valid, where BM is an upper bound on
PP
i=1

RiP
j=1

SP
s=1

�[s]fijkk0
�
cEikk0 � cAikk0

�
pij[s] (it is reasonable to let

BM =
PP
i=1

RiP
j=1

SP
s=1

�[s]fijkk0
�
cEikk0 � cAikk0

�
di[s],

because pij[s] � di[s]; 8j, see Constraint (5)). On
the other hand, according to Constraints (2) and (9),

we know that
CmaxP
l=1

zklzk0l � 1, 8k0 > k. Therefore,

inequality:

CmaxX
l=1

�kk0l �
PX
i=1

RiX
j=1

SX
s=1

�[s]

fijkk0
�
cEikk0 � cAikk0

�
pij[s]; 8k0 > k;

is also valid. Furthermore, we know that cEikk0 � cAikk0 ;
thus, it is correct to derive inequality �kk0l� 0;8k0 >
k. Now, based on these three sets of inequalities,
Constraints (13)-(16) are added to the model in order
to complete the linearization. The linearized mathe-
matical model of the problem is given below:

WS = min
sX
s=1

�[s]

 
PX
i=1

RiX
j=1

cPijpij[s]

+
PX
i=1

cOi[s]oi[s] +
MX
k=1

cIkuk[s]

+
M�1X
k=1

MX
k0=k+1

PX
i=1

RiX
j=1

fijkk0cEikk0pij[s]

!

�
M�1X
k=1

MX
k0=k+1

CmaxX
l=1

�kk0l: ;
(12)

subject to Eqs. (2)-(10):

CmaxX
l=1

�kk0l �
PX
i=1

RiX
j=1

SX
s=1

�[s]fijkk0(cEikk0 � cAikk0)pij[s];

8k0 > k; l; (13)

�kk0l �
 

PX
i=1

RiX
j=1

SX
s=1

�[s]fijkk0

�
cEikk0 � cAikk0

�
di

!
zkl; 8k0 > k; l; (14)

�kk0l �
 

PX
i=1

RiX
j=1

SX
s=1

�[s]fijkk0

�
cEikk0 � cAikk0

�
di

!
zkl; 8k0 > k; l; (15)

�kk0l � 0; 8k0 > k; l: (16)

It should be mentioned that the model above, which
is also called the SAA problem, includes 3=2 M(M �
1) Cmax + 3M + Cmax + S(P + M) + 1 constraints,
S(M+P+

P
iRi)+M=2(M�1)Cmax positive variables,

MCmax binary variables, and M integer variables.

3. The SAA method

SAA is a Monte Carlo simulation-based solution
method in which large numbers of generated scenarios
are used to �nd bounds of the objective function
of a stochastic problem. In the proposed model,
outsourcing costs and part demands are stochastic
parameters with known probability distributions. In
this section, the stochastic model is formulated in a
concise form such that the implementation of the SAA
method can be easily explained. To do so, by ignoring
the indices of the parameters and the decision variables,
they are presented in a bold form (e.g., zkl is denoted
by z). The stochastic parameters are presented by
���(!)=(co(!), d(!)) where ! 2 
 (
) is the set of
all scenarios with a known probability distribution
P) denotes a scenario which becomes known while
making second-stage recourse decision (p; o; u). Also,
the objective value under decision (z; p; o; u) and a
particular realization of uncertain parameter, co, is
indicated by w(z; p; o; u; co(!)). Now, assume that
X1 denotes the set of constraints that are not a�ected
by the uncertainty; this kind of constraints is called
the �rst-stage constraints. Similarly, assume that
X2(z; n; �(!)) denotes the set of constraints a�ected
by the uncertainty and the �rst-stage decision; this
kind of constraints is also called the second-stage
constraints. According to these de�nitions, the concise
form of the proposed stochastic problem is as follows:

w� = min
(z;nz;nz;n)2X1

EP [Q(z; n; �z; n; �z; n; �(!))]; (17)

where:

Q(z; n; �z; n; �z; n; �(!)) =
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minfw(z; p; o; u; cz; p; o; u; cz; p; o; u; c(!))j(p; o; up; o; up; o; u) 2 X2(z; n; dz; n; dz; n; d(!))g:
(18)

In Eq. (17), the vector of binary and integer variables, zzz
and nnn, corresponds to the �rst-stage strategic decisions,
and Q(z; n; �z; n; �z; n; �(!)) represents the optimal total variable
cost associated with the given strategic decision (zzz;nnn)
and a particular realization of uncertain parameter
���(!).

Given the probability distribution P;S sample
scenarios are generated from 
 using Monte Carlo
simulation (the samples are denoted by !1; !2; :::; !S)
in order to approximate the expected value function
E[Q(z; n; �z; n; �z; n; �(!))]. Then, a deterministic optimization
problem (also called the SAA problem) speci�ed by the
generated samples is solved. The following is the SAA
problem in a concise form:

wS = min
(z;n)(z;n)(z;n)2X1

1
S

SX
s=1

Q(z; n; �z; n; �z; n; �(!s)): (19)

In fact, the problem above (i.e., Eq. (19)) is a con-
cise form of the model presented in Subsection 2.3
(where X1 is the set of Constraints (2)-(4) and (7)-(9);
X2(z; n; dz; n; dz; n; d(!)) is the set of Constraints (5), (6), (10),
and (13)-(16); and �[s] = 1=S).

It is worth mentioning that to provide a good
statistical estimation of w�, the approximation pro-
cess should be repeated several times using di�erent
independent sample scenarios. At each experiment, the
best solution, as well as the estimation of the upper and
lower bounds of the objective function, is calculated.
This process is repeated until a satisfactory optimality
gap is achieved. According to Shapiro and Homem-
de-Mello [29], the steps of the SAA method can be
summarized as follows:

Step 1. Randomly generate T independent samples
of stochastic parameters each with S scenarios, i.e.,
!1
t ; !2

t ; :::; !St for t = 1; :::; T . Solve the two-stage
problem (i.e., Eq. (19)) T times with S scenarios to
obtain objective values w1

S ; w2
S ; :::; wTS and candidate

solutions (zzz1;nnn1 ),(zzz2;nnn2); :::; (zzzT ;nnnT ).
Step 2. Calculate the average of T optimal objective
values by:

�wS =
1
T

TX
t=1

wtS ; (20)

where �wS is an unbiased estimator of E[wS ]. It is
well-known that the expected value of wS is less than
or equal to the optimal objective value of the true
problem, that is, E[wS ] � w� (for example, see [30]).
Thus, �wS provides a statistical estimate for a lower
bound on the optimal value of the true problem. The
standard deviation of �wS can be estimated by:

�̂T;S =

vuut 1
(T � 1)T

TX
t=1

(wtS � �wS)2: (21)

An approximate 100(1��)% con�dence lower bound
on E[wS ] or w� can be calculated by:

wL = �wS � t�;T�1�̂T;S ; (22)

where t�;T�1 is the �-critical value of the t-
distribution with T � 1 degrees of freedom.
Step 3. Randomly produce S0 (S0 should be quite
larger than S) independent samples of stochastic
parameters, i.e., !1; !2; :::; !S

0
. Based on these S0

scenarios, compute the estimated objective value of
candidate solution (zzzt;nnnt), 8t = 1; :::; T , using the
following estimator:

bwS0(zzzt;nnnt) =
1
S0

S0X
s=1

Q(zzzt;nnnt; ���(!s));

8t = 1; : : : ; T: (23)

Note that for each candidate solution, this step
involves solving S0 independent second-stage sub-
problems given in Eq. (18). Choose (ẑ̂ẑz�; n̂̂n̂n�) as one
of the candidate solutions (zzz1;nnn1)(zzz2;nnn2); :::; (zzzT ;nnnT )
which has the smallest estimated objective value, that
is:

(ẑ̂ẑz�; n̂̂n̂n�) 2 f(zzzt� ;nnnt�)jt� 2 arg min
t=1;:::;T

bwS0(zzzt;nnnt)g:
Calculate an approximate 100(1 � �)% con�dence
upper bound on the true objective value of solution
(ẑ̂ẑz�; n̂̂n̂n�), that is, w(ẑ̂ẑz�; n̂̂n̂n�) by:

wU = bwS0(ẑ̂ẑz�; n̂̂n̂n�) + ��1(1� �)�̂S0 ; (24)

where �(:) is the cdf of the standard normal distri-
bution and �̂S0 is computed by:

�̂S0 =vuut 1
(S0 � 1)S0

S0X
s=1

�
Q(ẑ̂ẑz�; n̂̂n̂n�; ���(!s))� bwS0(ẑ̂ẑz�; n̂̂n̂n�)�2

:
(25)

Step 4. Obtain a statistically valid bound with
the con�dence of at least 100(1 � 2�)% on the true
optimality gap of solution (ẑ̂ẑz�; n̂̂n̂n�) by:

ĝ(ẑ̂ẑz�; n̂̂n̂n�) = wU � wL: (26)

If the estimated optimality gap is small enough,
the obtained solution is almost optimal for the �rst-
stage decision on the true stochastic problem. Other-
wise, the values of S or T should be increased and all
the above steps should be repeated until a satisfactory
optimality gap is achieved.
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4. An illustrative example

In this section, a numerical example adopted from [2]
is used to illustrate the proposed problem. Also, by
using this example, sensitivity analyses are carried out
to investigate the behavior of the solution in terms of

the budget constraint and the SAA parameters. This
numerical example includes 20 parts, 10 machine types,
and 36 processing routes. Tables 1 and 2 contain the
original data plus the additional ones that we have
generated. The maximum number of cells (Cmax)
is assumed to be 2, and the maximum number of

Table 1. Data related to the parts in the illustrative example�.

Machine type (processing time)
i j �d yi cPij ($) cAikk0 ($) cEikk0 ($) Op1 Op2 Op3 Op4 Op5

1 1 150 13 0.5 1.5 2 (2) 3 (3) 4 (2)
2 11 0.5 1.5 3 (1) 4 (3) 9 (2)

2 1 226 10 0.5 1.5 1 (2) 2 (3) 3 (4) 7 (3)
3 1 335 15 0.5 1.5 3 (2) 6 (3) 8 (4) 9 (2)
4 1 446 12 0.5 1.5 3 (3) 4 (2) 5 (4) 9 (2)

2 12 0.5 1.5 3 (3) 4 (3) 9 (2) 10 (2)
5 1 274 8 0.5 1.5 1 (2) 8 (3) 10 (4)

2 8 0.5 1.5 2 (3) 8 (3) 10 (4)
6 1 171 14 0.5 1.5 1 (2) 2 (3) 7 (2) 8 (1) 10 (5)

2 12 0.5 1.5 1 (2) 2 (3) 8 (2) 10 (5)
7 1 218 11 0.5 1.5 3 (3) 4 (2) 9 (3) 7 (1) 10 (2)

2 11 0.5 1.5 3 (3) 4 (2) 5 (2) 9 (3) 10 (2)
3 10 0.5 1.5 3 (3) 5 (2) 9 (2) 7 (1) 10 (2)

8 1 273 8 0.5 1.5 6 (2) 1 (3) 9 (1) 10 (2)
2 8 0.5 1.5 1 (3) 6 (2) 9 (1) 10 (2)

9 1 307 14 0.5 1.5 1 (3) 6 (1) 8 (4) 9 (2) 10 (3)
2 13 0.5 1.5 1 (3) 6 (2) 9 (3) 10 (3)

10 1 414 10 0.5 1.5 1 (3) 6 (2) 9 (2) 10 (1)
2 11 0.5 1.5 6 (3) 8 (2) 9 (2) 10 (2)

11 1 223 11 0.5 1.5 1 (2) 2 (3) 9 (4) 10 (1)
2 11 0.5 1.5 1 (2) 2 (3) 8 (5) 10 (1)

12 1 378 6 0.5 1.5 2 (3) 3 (2) 9 (1) 7 (1)
2 6 0.5 1.5 2 (3) 3 (2) 4 (1) 7 (1)

13 1 328 7 0.5 1.5 8 (3) 9 (2) 10 (4)
2 7 0.5 1.5 6 (2) 9 (3) 10 (4)

14 1 280 8 0.5 1.5 1 (1) 9 (3) 10 (2)
2 9 0.5 1.5 2 (2) 9 (3) 10 (2)

15 1 270 6 0.5 1.5 3 (1) 5 (2) 9 (1) 7 (1)
2 7 0.5 1.5 3 (1) 5 (2) 9 (1) 10 (2)

16 1 182 9 0.5 1.5 1 (2) 2 (3) 8 (2) 10 (3)
17 1 244 8 0.5 1.5 1 (3) 2 (2) 3 (3) 10 (4)
18 1 152 7 0.5 1.5 1 (5) 2 (4) 3 (2) 4 (2)
19 1 366 10 0.5 1.5 3 (4) 4 (1) 9 (1) 10 (1)

2 9 0.5 1.5 3 (3) 4 (1) 9 (1) 7 (1)
20 1 226 7 0.5 1.5 4 (1) 9 (1) 10 (2)

2 6 0.5 1.5 3 (1) 4 (1) 9 (1)
*di� Normal ( �di, �di=3 and cOi � Uniform (1:25�maxj cPij ; 1:75�maxj cPij)($).

y �di is the part demands given in [2].
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Table 2. Data related to the machine types in the
illustrative example.

k Tk cMk ($) cIk ($) Nmax
k

1 3000 106 0.11 3
2 3000 136 0.14 3
3 3000 65 0.07 3
4 3000 140 0.14 3
5 3000 103 0.10 3
6 3000 61 0.06 3
7 3000 126 0.13 3
8 3000 93 0.09 3
9 3000 94 0.09 3
10 3000 70 0.07 3

machines allowed in a cell (NM) is assumed to be 5.
The available budget for purchasing machines (B) is
limited to $1500. In order to show the capability
of the proposed problem in considering various dis-
tributions, it is assumed that the demand of part i
is normally distributed with mean �di and standard
deviation �di=3. Also, it is assumed that the outsourcing
cost of part i is uniformly distributed over the interval�
1:25 maxj cPij ; 1:75 maxj cPij

�
. This example is solved

using the SAA method at con�dence level of 95%
(� = 0:025) assuming S = 30, and S0 = 2000. A
summary of the results is provided in Table 3. It
should be noted that the mathematical model of the
SAA problem is coded in the GAMS 24.5, and the
GUROBI 6.0 is selected as the default MIP and LP
solver. Computations are performed on a PC having
Microsoft Windows 10 operating system with Intel(R)
Core (TM) i7-4790K 4.00 GHz CPU and 16GB of
RAM. In order to use all the available CPU cores (4
cores and 8 threads), we set `threads = 0' in the GAMS
option (this can lead to considerable saving of the CPU
time).

It took almost 351 seconds for the SAA method

to solve the illustrative example, with an estimated
total variable cost ( bwS0(ẑ�n̂�ẑ�n̂�ẑ�n̂�)) equal to $65385.243.
Refer to Table 3 to see the machine cells and the
number of each machine type in each cell. According
to Eqs. (22) and (24), the lower bound on the optimum
total variable cost (wL) and the upper bound on the
true total variable cost of the SAA solution (wU ) are
equal to $64886.883 and $65617.360, respectively. This
also means that the optimal total variable cost of the
stochastic model (w�) lies in the interval [65100.815,
65226.736] with 95% con�dence. Based on these
bounds, the estimated optimality gap (ĝ(ẑ�; n̂�ẑ�; n̂�ẑ�; n̂�)) is
obtained as 730.478. Also, by dividing ĝ(ẑ�; n�ẑ�; n�ẑ�; n�) by
wU , the relative estimated optimality gap is 1.11%.

In order to verify the solution sensitivity to the
available budget, the attempted example is investigated
considering di�erent budgets (starting from $0 to $2250
by increments of $250) and the results are plotted in
Figure 2. As it can be seen in this �gure, the total

Figure 2. Solution sensitivity in terms of the available
budget.

Table 3. Summary of the results at con�dence level of 95% for the illustrative example (B = $1500).

Cell 1 1(2), 6(1), 8(1), 9(3), 10(3)
Cell 2 2(1), 3(2), 4(1), 5(1), 7(1)
Estimated production cost $44855.988
Estimated subcontracting cost $9441.630
Estimated idleness cost $769.085
Estimated material handling cost $10318.540
Estimated total variable cost ( bwS0 (ẑ�; n̂�ẑ�; n̂�ẑ�; n̂�)) $65385.243
�̂S0 158.415
�̂T;S 118.429
Estimated upper bound on w (ẑ�; n̂�ẑ�; n̂�ẑ�; n̂�) (wU ) $65617.360
Estimated lower bound on w� (wL) $64886.883
Estimated optimality gap (ĝ(ẑ�; n̂�ẑ�; n̂�ẑ�; n̂�)) 730.478
Relative estimated optimality gap (ĝ(ẑ�; n̂�ẑ�; n̂�ẑ�; n̂�)=wU ) 1.11%
CPU time 351s
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variable cost is very sensitive to the budget within the
interval [250,1250]. Such a plot can provide a useful
outlook to make decision on the budget constraint.

The solution quality and the computational time
are highly in
uenced by the number of scenarios in
the SAA problem (S) and the number of samples
(T ). Therefore, by solving the attempted example,
a sensitivity analysis is conducted based on di�erent
values of these two parameters. The CPU times and the
relative optimality gaps (regarding S= 5, 10, 15, 20, 25,
and 30, and T= 5, 10, 15, 20, 25, and 30) are depicted in
Figures 3 and 4, respectively. From Figure 4, it is seen
that at T = 5, there is a signi�cant di�erence between
the relative optimality gaps obtained for S = 5 and
S = 30. However, as T increases, S loses its signi�cance
in the solution quality. On the other hand, it can be
seen in Figure 3 that at T = 5, the computation times

Figure 3. CPU time sensitivity in terms of the number of
samples and scenarios.

Figure 4. Relative estimated optimality gap sensitivity in
terms of the number of samples and scenarios.

in terms of various values of S are not much di�erent,
while by increasing T to 30 samples, the di�erence
in the computation times increases. As a conclusion,
by considering a trade-o� between the solution quality
and the computation time, it is reasonable to solve the
mentioned example with S = 5 or 10 and T = 30.

5. Computational results

In this section, 10 numerical examples extracted from
the literature are considered to demonstrate the suit-
ability of the proposed stochastic model and the e�-
ciency of the �nal solution compared to those derived
from the literature. The missing data in the source
papers are generated and added to the original data
set. In these problems, we assume that the stochastic
parameters (i.e., the demands and outsourcing costs)
are independent random variables with uniform dis-
tribution. Table 4 includes the speci�cations of the
problems, as well as the parameter values of the SAA.
It should be noted that all the computations are
performed on the same PC mentioned in Section 4.

5.1. SAA method versus the expected value
problem

In order to highlight the merit of solving the proposed
stochastic problem against the expected value problem
(the problem in which the stochastic parameters are
substituted with their expected values), a common
measure called Value of Stochastic Solution (V SS) is
taken into consideration. Let (�z; �n�z; �n�z; �n) denote the optimal
solution to the expected value problem. Thus, in our
problem, V SS is de�ned by V SS = w(�z; �n�z; �n�z; �n) � w�,
where w(�z; �n�z; �n�z; �n) is the true objective value of solution
(�z�z�z; �n) and w� is the optimum objective value of the
true stochastic problem. Now, we can apply the same
S0 scenarios (used in the SAA method) to estimate
V SS. Let vss denote the estimated value of V SS;
thus, vss = bwS0(�z; �n�z; �n�z; �n)� bwS0(ẑ�; n̂�ẑ�; n̂�ẑ�; n̂�) where (ẑ�; n̂�ẑ�; n̂�ẑ�; n̂�) is the
solution derived from the SAA method. Based on these
explanations, we made a comparison between these two
approaches by solving the numerical examples given in
Table 4. A summary of the comparison results, as well
as the number of constraints, and positive and discreet
variables (including binary and integer variables) in
each model is provided in Table 5. In this table,
validation model' refers to the model with S0 scenarios,
which is used to estimate the true objective value of a
given solution. The estimated optimality gap reported
in column `ĝ' has been obtained at con�dence level
of 95%, that is, � = 0:025. The CPU time of the
SAA method is the overall time of solving T number
of SAA and validation problems. For the sake of time
saving, in some problems, we use smaller number of
scenarios (to see the SAA parameter values, refer to
Table 4). Also, the CPU time of the expected value
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Table 4. Speci�cations of the selected problems from the literature.

Problemy SAA
parameters

Added parameters to the original data set�

# Source Size
(M � P )

P
i Ri Cmax NM T S S0 Nmax

k
�di cPij cIk cAikk0 cEikk0 Tk cMk B tijk

1 [5] 7� 10 23 3 3 30 30 2000 3 A a+ U(1; 3) 0:01� c 0.5 3� cAikk0 A 3� 104 1� b A

2 [31] 8� 13 26 3 3 30 30 2000 3 A a+ U(1; 3) 0:01� c 0.2 3� cAikk0 100 3� 104 2� b U(0:1; 0:9)
3 [2] 10� 20 36 1 10 30 30 2000 4 A a+ U(1; 3) 3� c 0.3 3� cAikk0 A A 2164 A

4 [10] 12� 20 26 3 5 30 20 2000 3 A a+ U(1; 3) 0:01� c 0.2 3� cAikk0 250 3� 104 2� b U(0:1; 0:9)
5 [10] 14� 20 45 3 5 30 10 2000 3 100 a+ U(1; 3) 0:01� c 0.25 3� cAikk0 150 3� 104 2� b U(0:1; 0:9)
6 [32] 15� 15 27 3 6 30 30 2000 3 100z a+ U(1; 3) 0:01� c 0.2 3� cAikk0 30 3� 104 2:5� b A

7 [33] 17� 16 402 2 10 30 5 1000 3 A a+ U(1; 3) 0:01� c 0.5 3� cAikk0 200 3� 104 2� b A

8 [10] 17� 30 61 4 5 30 15 2000 3 A a+ U(1; 3) 0:01� c 0.35 3� cAikk0 250 3� 104 2� b U(0:1; 0:9)
9 [10] 18� 30 59 3 7 30 5 2000 3 100z a+ U(1; 3) 0:01� c 0.4 3� cAikk0 150 3� 104 2�b U(0:1; 0:9)
10 [34] 20� 20 51 5 5 30 5 2000 3 100 a+ U(1; 3) 0:01� c 0.5 3� cAikk0 100 3� 104 2� b U(0:1; 0:9)
AThe data of this �eld is available in the source paper.
� a = number of operations in route j of part i, b =

P
k cMk , and c = cMk =Tk .

y For all the problems, di[s] = U(0; 2 �di) and cOi[s] = U(1:25; 1:75)�maxj cPij ; 8i; s.
z In this problem, the demands in the original data set are multiplied by 100.

Table 5. Comparison between the solution of the stochastic model and the solution of the expected value model.
Expected

value model
Two-stage

model
Validation

model
SAA method Expected value

approach
Problem

#
nca npb ndc nc np nd nc np �wS bwSAAS0 �̂T;S �̂SAAS0 ĝ CPU

time
bwEVS0 �̂EVS0

CPU
time

vss

1 232 104 28 725 1264 28 34001 80001 1880.1 1870.1 9.7 7.0 23.5 142 1870.1 7.0 2 0.0
2 302 132 32 911 1495 32 42001 94001 7594.0 7585.7 31.3 26.5 107.7 174 7680.7 26.5 2 94.9
3 198 112 20 1068 2026 20 60001 132001 57382.2 57447.0 185.4 175.5 788.0 242 57778.2 184.5 4 331.2
4 667 257 48 1275 1359 48 64001 116001 17275.8 17197.9 67.7 54.9 168.2 674 17288.6 51.3 4 90.7
5 900 353 56 1206 1064 56 68001 158001 16608.0 16479.0 101.5 46.3 169.2 2444 16523.5 44.4 10 44.5
6 1025 373 60 1895 2026 60 60001 114001 33580.5 33743.4 158.3 125.7 732.9 3463 34075.6 112.8 33 332.2
7 904 708 51 1036 2448 51 33001 435001 3622.9 3607.5 31.9 16.4 82.0 5496 3850.5 11.8 30 243.1
8 1736 653 85 2394 2165 85 94001 216001 26589.8 26437.9 99.1 58.3 165.2 7635 26590.3 57.0 14 152.4
9 1484 567 72 1676 995 72 96001 214001 24442.9 24317.6 169.8 56.9 333.4 10358 24486.7 51.5 28 169.1
10 2957 1042 120 3117 1406 120 80001 182001 15136.2 15202.5 115.5 38.9 378.8 5473 15407.0 33.6 19 204.5

anc: number of constraints; bnp: number of positive variables; cnd: number of discrete variables.

approach is the overall time of solving the expected
value and validation problems. According to the results
given in Table 5, we can see that the SAA method
has solved the problems with satisfactory estimated
gap in relatively acceptable time (even when a smaller
number of scenarios were used in the SAA problem).
The relative estimated optimality gap of the SAA
solution for each problem is also plotted in Figure 5
(relative optimality gap =ĝ=wU , wU is obtained by Eq.
(24)). In this plot, the �rst and the second numbers
in the horizontal axis denote the problem number and
the number of scenarios used in the SAA problem,
respectively. According to this plot, we can see that the
relative estimated optimality gap of all the problems is
below 2.5%. On the other hand, according to Table 5,
vss in all the problems is a positive number, except for
Problem 1. In order to ensure that the true value of the
optimality gap (i.e., V SS) is also a positive number,
we examine null hypothesis H0 : V SS > 0 against
H1 : V SS � 0, by obtaining the p-value of test statistic

z0 = vss=

s�
(�̂SAAS0 )2 + (�̂EVS0 )2

�
=(S0 � 1). According

to the test, except for Problem 1, the p-value of the
remaining problems was almost 0. This implies that
solving the stochastic problem using the SAA method
gives a better solution in terms of the expected total

Figure 5. Relative estimated optimality gap of the SAA
solution.
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variable cost than using the expected value approach
does.

5.2. Comparison with the solutions in the
literature

One of the di�erences between the proposed approach
and the ones in the literature is that in this study,
there is not any routing selection concept; in fact, parts
can be produced using multiple routings. On the other
hand, in similar problems extracted from the literature,
even though there exist multiple routes in producing
a particular part, a single route is chosen through
a routing selection procedure and, �nally, parts are
produced by means of a single routing. Therefore,
in order to conduct a comparison, the following two
approaches are considered:

A) Single routing approach based on the solution in
the literature: In this approach, the cell formation
result (�z�z�z) and the routing selection result are
extracted from the literature, and then according
to this information and the mean values of the
stochastic parameters (ccc and ddd), a mathematical
model is solved to determine the number of each
machine type in each cell (�n�n�n). Afterwards, based
on S0 scenarios used in the SAA method, the
validation model is solved to estimate the objective
value of (�z; �n�z; �n�z; �n), which is denoted by wLSS0 .

B) Multiple routings approach based on the solution
in the literature: In this approach, according to
the cell formation result (�z�z�z) of the solution in the
literature and the mean value of the stochastic
parameters (ccc and ddd), a mathematical model (in
which the production through multiple routings
is allowed) is solved to determine the number of
each machine type in each cell (�n�n�n). Afterwards,
the estimated objective value of solution (�z; �n�z; �n�z; �n),
(for this approach, let it be denoted by wLMS0 ) is
obtained by solving the validation model.

Now, a comparison is carried out between the
approach proposed in this research, and approaches

A and B. The solutions of the 10 numerical examples
as well as ensuing improvements in consequence of
using any of the intended approaches are reported in
Table 6. As it can be inferred from the table, the results
of solving the problems using the proposed approach
show considerable improvements in comparison with
approaches A and B, especially A (see columns `Imp1'
and `Imp2' in Table 6). Also, we can see that allowing
production through multiple routings (approach B)
resulted in improvement in the estimated total variable
cost in comparison with single routing approach (see
`Imp3' in Table 6).

6. Conclusions

In this paper, a new problem was attempted to de-
sign a CMS considering stochastic part demands and
stochastic outsourcing costs. The idea of simultaneous
multiple processing routes along with subcontracting
was addressed in the proposed problem. According to
this idea, each part can be produced simultaneously
in multiple processing routes, and unsatis�ed part
demands (as a result of limited machine capacity or
high manufacturing cost) are outsourced. The problem
was formulated as a two-stage stochastic program and
a solution procedure based on the SAA method was
suggested. The objective function aimed at mini-
mizing the summation of the production, outsourc-
ing, material handling, and machine idleness costs.
To clarify the problem, an illustrative example was
investigated in the case that uniform and normal
distributions were used for the outsourcing costs and
the part demands, respectively. Based on this example,
a sensitivity analysis was carried out to study the
behavior of the resulting solution in terms of various
available budgets. Furthermore, some experiments
were performed to evaluate the solution quality and the
computation time in terms of the number of samples
and scenarios in the SAA method. Then, we used 10
numerical examples from the literature to demonstrate

Table 6. Comparison results between the proposed approach and the conventional approaches.
Literature solution

Problem Proposed approach Multiple routings approach Single routing approach Imp1 Imp2 Imp3

# TP TO TU TH wSAAS0 �̂S0 TP TO TU TH bwLMS0 �̂S0 TP TO TU TH bwLSS0 �̂S0 (%) (%) (%)

1 1070 383 157 260 1870 7 1076 381 156 295 1908 7 975 572 348 178 2071 7 1.99 9.72 7.89
2 5267 1341 346 632 7586 27 5003 1641 439 597 7681 26 4885 2298 803 409 8395 27 1.24 9.64 8.51
3 50171 1668 1127 4481 57447 176 49979 1753 2073 4510 58315 172 49950 2150 2160 4474 58734 173 1.49 2.19 0.71
4 9990 4879 445 1884 17198 55 11632 2530 957 2222 17341 48 10963 3739 1041 2005 17748 50 0.82 3.10 2.30
5 10310 2961 566 2642 16479 46 10387 2871 559 3206 17023 46 8918 5915 798 2344 17974 50 3.20 8.32 5.29
6 15811 13030 915 3987 33743 126 18375 9133 2013 4639 34160 112 16885 11966 1547 4353 34751 123 1.22 2.90 1.70
7 1945 981 124 557 3607 16 2190 406 538 962 4096 12 1428 2108 880 612 5028 18 11.93 28.25 18.53
8 18766 2024 918 4730 26438 58 18687 2468 1167 4267 26590 57 18470 3155 1908 3977 27510 56 0.57 3.90 3.34
9 11176 9111 400 3631 24318 57 13753 5267 772 4831 24624 52 13398 6298 1133 4373 25201 53 1.24 3.50 2.29
10 8272 3841 762 2328 15203 39 9140 2517 1417 2514 15587 33 8525 3951 1869 1900 16245 35 2.47 6.42 4.05

Imp1 = 100 ( bwLMS0 - bwSAA
S0 )= bwLMS0 ; Imp2 = 100 ( bwLSS0 )- bwSAA

S0 )= bwLSS0 ; Imp3 = 100 ( bwLSS0 )- bwLMS0 )= bwLSS0 ;
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the performance of the solution method. The compu-
tation results indicated that the SAA method could
produce e�cient solutions with a satisfactory gap in
a relatively reasonable computational time. Also, a
common measure called V SS was used to highlight the
advantage of the proposed stochastic approach over the
expected value approach. The results demonstrated
that solving the stochastic problem using the SAA
method was reasonably justi�ed. Moreover, through
these numerical examples, a comparison was executed
between the obtained solutions and the ones reported
in the literature. The comparison results showed that
allowing production through multiple routings could
lead to an improvement in the estimated total variable
cost as compared to the single routing approach.

Finally, to provide some directions for future
research, the following issues are recommended:

� In this research, we used the SAA method to solve a
stochastic CF problem. Even though this method is
e�cient in solving small and medium-size instances,
for larger problems, the computational time is a
concern. To overcome such a di�culty, addressing
the Bender's decomposing algorithm in the SAA
method could be a possible remedy;

� Subcontracting, simultaneous multiple process rout-
ings, and machine duplication were the main issues
that we addressed in the CMS design problem.
However, these issues could be considered in an inte-
grated problem in which the layout and scheduling
problems are also incorporated;

� In order to deal with the uncertainty, we used a
two-stage stochastic programming model. However,
multi-stage stochastic programming methods could
also be used to formulate the problem in an uncer-
tain and dynamic environment.
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