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Abstract. This study considers a multi-product, multi-machine economic production
quantity inventory problem in an imperfect production system that produces two types of
defective items: items that require rework and scrapped items. The shortage is allowed and
fully backordered. The scrapped items are disposed with a disposal cost, and the rework
process is done at the end of the normal production period. Moreover, a potential set of
available machines for utilization is considered, such that each has a speci�c production rate
per item. Each machine has its own utilization cost, setup time, and production rate per
item. The considered constraints are initial capital to utilize machines and production

oor space. The proposed inventory model is a mixed integer non-linear programing
mathematical model. The problem is solved using a bi-level approach; �rst, the set of
machines to be utilized and the production allocation of items on each machine are obtained
through a genetic algorithm. Then, using the convexity attribute of the second level
problem, the optimum cycle length per machine is determined. The proposed hybrid genetic
algorithm outperformed conventional genetic algorithm and a GAMS solver, considering
solution quality and solving time. Finally, a sensitivity analysis is also given.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

The inventory model was �rst considered in early
twentieth century by Harris [1], who introduced the
Economic Order Quantity (EOQ) inventory model.
Afterwards, industrialization and market competition
were the motivations to optimize the inventory system
considering production rate and demand. In this
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direction, Taft [2] improved the EOQ inventory model
considering production rate; the result was the Eco-
nomic Production Quantity (EPQ) inventory model.
Pacheco-Vel�azquez and C�ardenas-Barr�on [3] presented
an example of an extension of EPQ inventory model
by considering backorders and raw material inventory
costs.

Inventory models that consider multiple manufac-
turing products on a machine may date back to the
studies performed by Eilon [4] and Rogers [5]. Other
pioneering studies of this problem are Bomberger [6],
Madigan [7], Stankard and Gupta [8], Hodgson [9], and
Baker [10]. A multi-product single-machine problem
is considered in studies that are more recent; for
example, Taleizadeh et al. [11] considered a service
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level constraint when there is a stochastic scrapped
production rate and partial backordering. At the same
time, Taleizadeh et al. [12] developed the former model
while considering random defective items and repair
failure.

Afterwards, Taleizadeh et al. [13] studied a multi-
product single-machine problem with backorders and
rework. Simultaneously, Taleizadeh et al. [14] con-
sidered demand uncertainty and a special discount
situation. This study, followed by Taleizadeh et
al. [15], developed an EPQ inventory model with an
immediate rework process. Ramezanian and Saidi-
Mehrabad [16] solved a Mixed Integer Nonlinear Pro-
gramming (MINLP) model to optimize an unrelated
parallel machine scheduling problem with multiple
products considering imperfect products. Later on,
Neidigh and Harrison [17] studied this problem with
a non-linear production rate. At the same time,
Taleizadeh et al. [18] considered repair failure in a
system with random defective items. Subsequently,
they [19] considered the rework of a system with budget
and service level constraints. Moreover, Taleizadeh et
al. [20] considered interruption in the process when
the system copes with scrapping and rework processes.
On the other hand, Wu and Sung [21] considered
a multi-delivery policy in a production system with
scrapped items. In recent studies, Pasandideh et
al. [22] studied EPQ inventory model with rework and
scrapping permission; they considered several classes
of rework considering failure severity. Chiu et al. [23]
proposed an algebraic method to solve a multi-product
problem considering multi-shipment policy with re-
work. Sha�ee-Gol et al. [24] considered pricing and
production decisions with rework and discrete delivery.

On the other hand, due to the complexity of
supply chain systems, some researchers have utilized
heuristics or meta-heuristic algorithms. For instance,
Vahdani et al. [25] employed Simulated Annealing
(SA) to obtain optimal production size and schedule,
considering that there exist one deteriorating item
and several warehouses. Pasandideh et al. [26] used
Non-dominated Sorting Genetic Algorithm (NSGA-
II) and Multi-Objective Particle Swarm Optimization
(MOPSO) algorithm to optimize the warehouse space
and production cost in an imperfect production system
with rework and limited orders. Recently, Forouzan-
far et al. [27] employed Bee Colony Optimization
(BCO) and Genetic Algorithm (GA) to make decisions
about capacity and allocations in a closed-loop supply
chain, considering transportation time and production
costs. Mahmoodirad and Sanei [28] used three meta-
heuristics, i.e., Di�erential Evolution (DE), Particle
Swarm Optimization (PSO), and Gravitational Search
Algorithm (GSA), for designing a multi-level solid
supply chain with several products. In addition, it
is important to mention that multi-product multi-

machine problems have been considered in recent stud-
ies; for example, Neidigh and Harrison [29] extended
their former study. Moreover, studies of Sarkar and
Saren [30], Kang et al. [31], and Tayyab and Sarkar [32]
are instances of some recent studies that considered the
existence of defective items in di�erent environments.
Studies of Jaggi et al. [33] and Jaggi et al. [34] are
some instances of recent extensions of inventory models
related to non-instantaneous deteriorating items in two
storage facilities. Finally, Nobil et al. [35] developed a
multi-product, multi-machine problem by considering
utilization and allocation decisions. They employed a
hybrid genetic algorithm using convexity property of a
multi-product single-machine problem.

This study presents a multi-product, multi-
machine Economic Production Quantity (EPQ) in-
ventory model for an imperfect production system
considering allocation of products to machines. The
imperfect production system produces two types of
poor-quality items, which require rework and scrap-
ping. The rework process is done after the termination
of normal production period, and scrapped products
are disposed. Moreover, in this study, the shortage is
allowed and fully backordered. Further, a potential set
of production machines is at hand in which each one
can manufacture products at di�erent rates. The uti-
lization price of these machines and their performance
are di�erent with a distinct setup time for each product
on each machine. The initial capital to buy machines
and the production hall are limited. Therefore, in
the studied problem, three fundamental questions exist
that must be answered in order to minimize the total
cost, including utilization, installation, production,
rework, shortages, warehouse construction, and holding
costs. These questions are as follows:

1. What machines should be utilized?
2. Which items should be allocated to each utilized

machine?
3. What are the optimum amounts of production and

shortage for each item?

A genetic algorithm is applied to solve this mixed
integer linear programming (MINLP) problem. In
this paper, �rst, the MINLP problem is transformed
into a bi-level problem, where, in the �rst level, there
are mixed integer linear programming and continuous
nonlinear problems in the �rst and second levels,
respectively.

2. Problem statement

This study extends two former studies of Nobil et
al. [35] and Pasandideh et al. [26]. On the one hand,
Nobil et al. [35] presented a multi-product, multi-
machine economic production quantity problem with
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scrapped items. They studied a defective production
system in which some of its products were disposed
after normal production time. In their study, several
potential machines for allocation of items were consid-
ered to be utilized, shortage was not permitted, and
some constraints, such as budget and initial capital to
buy the machines, were studied. They assumed that
the items assigned to each machine have a common
cycle time. The study aimed to answer the following
questions with regard to minimizing the total cost
including the cost of utilization, setup, production,
maintenance, and scrapping: What machines should be
purchased? What products should be allocated to each
machine? How many of each item should be produced?

On the other hand, Pasandideh et al. [26] pro-
posed a model for a single-machine, multi-product
economic production quantity problem with defective
items. In the studied problem, proportion of defective
items requires rework, and the rest are scrapped items.
The items requiring rework are classi�ed into di�erent
categories based on the failure severity and associated
rework rate. In their study, the shortage is permitted
and fully backordered, and the items are manufactured
on a single machine with limited capacity. The objec-
tive of the current study is to �nd the optimum amount
of production and shortage of each item considering
total costs minimization including setup, production,
rework, scrapping, shortage holding, and warehouse
construction costs.

This study considers a multi-product, multi ma-
chine economic production quantity problem for a de-
fective production system with respect to the allocation
of items to each machine. The defective items may
be scrapped or require rework. The objective is to
minimize the total cost including utilization, installa-
tion, production, rework, scrapping, shortage, holding,
and warehouse construction costs. The constraints
of this problem are initial capital, 
oor space for
machines, and production machines capacity. Machine
i produces item j with production rate of Pij , and
the defective items are �ij percent of the produced
items. The ratio of rework required by the produced
items is that �ij and �ij items are scrapped. In other
words, �ij = �ij + �ij . Moreover, the items that
require rework immediately are repaired after ordinary
production cycle with a higher production rate (�ij
times faster). Other assumptions about the proposed
inventory model are made as follows:

1. The shortage is permitted and fully backordered;

2. Proportion of defective items need rework and the
rest are scrapped;

3. The rework ratio is a coe�cient greater than one of
ordinary production ratio;

4. Rework costs are di�erent from ordinary production
costs;

5. Rework process starts immediately when ordinary
production stops and no scrapped items are pro-
duced during rework period;

6. The scrapped items should be disposed; therefore,
the system faces disposal cost for each scrapped
item;

7. The disposal of scrapped items occurs when the
ordinary process stops;

8. There are di�erent types of production machines to
manufacture items;

9. Decision-maker faces maximum budget and pro-
duction 
oor constraints on purchasing production
machines;

10. The items allocated to each machine have the same
production cycle; in other words, Ti1 = Ti2 = � � � =
Tin = Ti;

11. All parameters of this problem are known;
12. The warehouse space for item j includes storeroom

plus passageways. The passageways for item j are
a coe�cient less than one of its storeroom.

3. Formulated problem

The following parameters, decision variables, and no-
tations are employed in this paper for machines i;
i = 1; 2; � � � ;m, and items j; j = 1; 2; � � � ; n:

m Number of machines
n Number of products
Dj Demand rate of the jth product

(units/unit time)
Pij Production rate of the jth product on

machine i (units/unit time)
Sij Setup time of the ith machine to

produce the jth product (unit time)
�ij Proportion of manufactured reworked

items of the jth product on machine i
(%)

�ij Proportion of manufactured scrapped
items of the jth product on machine i
(%)

�ij Proportion of manufactured imperfect
quality products j on machine i (%)
�ij = �ij + �ij

�ij Binary parameter, �ij = 1 if
(1 � �ij)Pij � Dj > 0; otherwise,
�ij = 0

�ij Ratio of the rework rate of the jth
product to the jth item production
rate on machine i (�ij � 1)
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Ij Maximum on-hand inventory of the
jth product based on which the regular
production process stops (units)

Hj Maximum on-hand inventory of the
jth product based on which the rework
process stops (units)

�j Space required per unit of the jth
product for holding (ft2/product)

vj Ratio of the aisle space to the
maximum level of on-hand inventory of
the jth product

Ki Required space of the ith machine
(ft2/machine)

R Maximum available space for the
production 
oor space (ft2)

F Maximum available budget ($)
fi Fixed cost of the utilization of the ith

machine ($/machine)
Aij Setup cost of the ith machine to

produce the jth product ($/setup)
cij Unit production cost of the jth product

on machine i ($/unit)
rij Unit rework cost of the jth product on

machine i ($/unit)
dj Disposal cost of scrapped product j

per unit ($/unit)
hj Unit holding cost of the jth product

per unit time ($/unit/unit time)
�j Unit backorder cost of the jth product

per unit time ($/unit/unit time)
wj Unit warehouse construction cost of

the jth product per unit space ($/
unit)

TC Total cost ($)
Ni Number of cycles per unit time for the

ith machine; dependent variables
Qj Production lot size of the jth product

in a cycle (units); dependent variables
Bj Total shortage quantity of the jth

product in a cycle (units); decision
variables

Ti Cycle length of the ith machine (unit
time); decision variables

yi yi = 1 if machine i is utilized;
otherwise, yi = 0; decision variables

xij xij = 1 if the jth product manufactured
by machine i; otherwise, xij = 0;
decision variables.

Figure 1 shows the inventory on hand and short-
age of item j in each cycle, which is produced by

machine i. During t1j and t5j , machines produce the
jth item; during t2j , t3j , and t4j rework of item j, no
production or rework is done. Based on Figure 1, these
periods in each cycle of product j are calculated using
Eqs. (1)-(5) as follows:

t1j =
Ij

(1� �ij)Pij �Dj
=
Qj
Pij
� Bj

(1� �ij)Pij �Dj
;
(1)

t2j =
Hj � Ij

�ijPij �Dj
=
�ijQj
�ijPij

; (2)

t3j =
Hj

Dj
; (3)

t4j =
Bj
Dj

; (4)

t5j =
Bj

(1� �ij)Pij �Dj
: (5)

Moreover, based on Figure 1, it is obvious that:

Ij = [(1� �ij)Pij �Dj ]
Qj
Pij
�Bj ; (6)

and:

Hj = Ij + �ij(�ijPij �Dj)
Qj

�ijPij
: (7)

Therefore, the cycle length is obtained as follows:

Ti = Tij = t1j + t2j + t3j + t4j + t5j =
(1� �ij)Qj

Dj
: (8)

Hence:

Qj =
DjTi

(1� �ij) : (9)

Total cost of the production system is the sum of total
utilization cost, total setup cost, total production cost,
total rework cost, total disposal cost, total backorder
cost, total warehouse construction cost, and total
holding cost of all products. These costs are derived
as follows:

� Utilization cost: Utilization cost of machine i is
equal to fi, and yi is the variable that indicates the
utilization of this machine. So, the total utilization
cost can be calculated as follows:

Utilization cost =
mX
i=1

fiyi: (10)

� Setup cost: The setup cost of machine i to produce
item j is equal to Aij . Therefore, the total cost of
setting up machines can be obtained through the
following equation:
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Figure 1. The inventory position of the jth item in a cycle that is produced by machine i.

Setup cost =
mX
i=1

nX
j=1

AijNixij : (11)

Based on a joint production policy (Ni = 1=Ti):

Setup cost =
mX
i=1

nX
j=1

Aijxij
Ti

: (12)

� Production cost: The amount of items that can be
produced per cycle is Qj ; the production cost for
each unit of item j on machine i is equal to cij .
Therefore, the total production cost can be obtained
as follows:

Production cost =
mX
i=1

nX
j=1

cijNixijQj

=
mX
i=1

nX
j=1

cijxijQj
Ti

: (13)

Inserting Qj into Eq. (9) results in:

Production cost =
mX
i=1

nX
j=1

cijNixijQj

=
mX
i=1

nX
j=1

cijDjxij
(1� �ij) : (14)

� Rework cost: The items requiring rework per cycle
are �ijQj , and rework cost for item j on machine i
is rij . Thus, the rework cost can be calculated as
follows:

Rework cost =
mX
i=1

nX
j=1

rijNixij�ijQj

=
mX
i=1

nX
j=1

rijxij�ijDjxij
(1� �ij) : (15)

� Disposal cost: The amount of disposed items in each
cycle equals �ijQj , and disposal cost per unit is dj .
Thus, the disposal cost can be calculated as follows:

Disposal cost =
mX
i=1

nX
j=1

djNixij�ijQj

=
mX
i=1

nX
j=1

(
dj�ijDjxij
(1� �ij) : (16)

� Backorder cost: In this study, the shortage is fully
backordered; moreover, with respect to Figure 1,
the backorder cost for all items can be calculated
as follows:

Backorder cost =
nX
j=1

�jNixijBj

 
t4j + t5j

2

!

=
nX
j=1

�jxijBj
Ti

 
t4j + t5j

2

!
: (17)

Substituting t4j and t5j into Eqs. (4) and (5), respec-
tively, results in:

Backorder cost =
mX
i=1

nX
j=1

 
�j(1� �ij)Pij

2(1��ij)PijDj�D2
j

!

(xij)

 
B2
j

Ti

!
: (18)

� Warehouse construction cost: The decisions about
warehouse area are made based on each item's space
and aisles requirement. Therefore, the warehouse
construction cost for all items can be obtained
through the following relation:

Construction cost=
mX
i=1

nX
j=1

wj�j(1+vj)Hjxij : (19)
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Substituting Hj into Eq. (7) results in:

Construction cost =
mX
i=1

nX
j=1

"
wj�j(1 + vj)

 
((1� �ij)Pij �Dj)Dj

1� �ij)Pij

+
�ij(�ijPij �Dj)Dj

(1� �ij)�ijPij
!
Ti

� wj�j(1 + vj)Bj

#
xij : (20)

� Holding cost: Based on Figure 1, the total holding
costs are as follows:

Holding cost =
mX
i=1

nX
j=1

Nihj

 
Ij
2

(t1j )

+
Hj + Ij

2
(t2j ) +

Hj

2
(t3j )

!
xij : (21)

Substituting t1j , t2j , and t3j into Eqs. (1), (2), and (3),
respectively, results in:

Holding cost =
mX
i=1

nX
j=1

Nihj

 
Ij
2

 
Qj
Pij

� Bj
(1� �ij)Pij �Dj

!
+
Hj + Ij

2

�
�ijQj
�ijPij

�
+
Hj

2

�
Hj

Dj

�!
xij : (22)

Substituting Ij and Hj into Eqs. (6) and (7),
respectively, results in:
Holding cost =

mX
i=1

nX
j=1

"
hj((1� �ij)Pij �Dj)D2

j

2P 2
ij(1� �ij)2 (Ti)

+
hj(�ijPij �Dj)(�ijDj)2

2�2
ijP 2

ij(1� �ij)2 (Ti)

+
hj�ij((1� �ij)Pij �Dj)D2

j

�ijP 2
ij(1� �ij)2 (Ti)

+
hj((1� �ij)Pij �Dj)2Dj

2P 2
ij(1� �ij)2 (Ti)

+
hjDj(�ij(�ijPij �Dj))2

2�2
ijP 2

ij(1� �ij)2 (Ti)

+
hj�ij((1��ij)Pij�Dj)(�ijPij�Dj)Dj

�ijP 2
ij(1� �ij)2 (Ti)

+
hj(1� �ij)Pij

2(1� �ij)PijDj �D2
j

 
B2
j

Ti

!
� hj(1� �ij)Pij

Pij(1� �ij) (Bj)

� hj�ij((�ijPij �Dj) +Dij)
�ijPij(1� �ij) (Bj)

#
xij : (23)

Therefore, based on Eqs. (10), (12), (14), (15), (16),
(18), (20), and (23), the total cost is calculated by:

TC =
mX
i=1

fiyi +
mX
i=1

nX
j=1

"
Aij

�
1
Ti

�
+ Z1

ij(Ti)

+ Z2
ij

 
B2
j

Ti

!
+ Z3

ij � Z4
ij(Bj)

#
xij ; (24)

where:

Z1
ij = wj�j(1 + vj)�
�ij((1��ij)Pij�Dj)Dj+�ij(�ijPij�Dj)Dj)

�ij(1� �ij)Pij
�

+
hj(1� �ij)PijDj

2Pij(1� �ij)2

+
hjDj�ijPij(�ij)2(�ijPij �Dj)

2�2
ijP 2

ij(1� �ij)2

+
hj�ijDj((1� �ij)Pij �Dj)

Pij(1� �ij)2 � 0; (25)

Z2
ij =

(�j + hj)(1� �ij)Pij
2(1� �ij)PijDj �D2

j
� 0; (26)

Z3
ij =

(cij + rij�ij + dj�ij)Dj

(1� �ij) � 0; (27)

Z4
ij =wj�j(1 + vj)

+
hj [�ij(1��ij)Pij+�ij((�ijPij�Dj)+Dij)]

�ijPij(1��ij)
� 0: (28)

The problem's constraints include allocation, setup, the
maximum budget, maximum available 
oor space, and
production capacity. These constraints are expressed
as follows:
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� Item allocation constraint: This constraint limits
the allocation of items, such that each item type
will not be produced by more than one machine:

nX
j=1

�ijxij = 1 i = 1; 2; � � � ;m; (29)

where �ij is a binary coe�cient that shows the
availability of machine i for producing the jth item.(

�ij = 1 (1� �ij)Pij �Dj > 0
�ij = 0 otherwise

� Machine utilization constraint: This constraint lim-
its item production by a utilized machine:

xij�yi i=1; 2; � � � ;m; j=1; 2; � � � ; n: (30)

� Budget constraint: Eq. (31) limits machines' utiliza-
tion cost, such that the total cost would not to be
greater than the maximum available budget.

mX
i=1

fiyi � F: (31)

� Production 
oor space constraint: Eq. (32) limits
a decision-maker to utilize machines, such that the
total required space would not be greater than
maximum available space.

mX
i=1

Kiyi � R: (32)

� Capacity of the single machine constraint: Eq. (33)
shows the sum of the production, rework, and setup
times for all items manufactured by the ith machine
which must be smaller than or equal to the common
cycle length of the ith machine:

nX
j=1

(t1j + t2j + Sij)xij � Ti i = 1; 2; � � � ;m: (33)

Substituting t1j and t2j into Eq. (1) and (2), respec-
tively, results in:

Ti �
8>><>>:

nP
j=1

Sijxij � nP
j=1

Bjxij
(1��ij)Pij�Dj

1� nP
j=1

�
1 + �ij

�ij

�
Djxij

(1��ij)Pij
= Tmin

i

9>>=>>;
i = 1; 2; � � � ;m: (34)

Therefore, based on the objective function in Eq. (24)
and the constraints in Eqs. (29) to (32), and (34), the
proposed MINLP is formulated as follows:

min TC =
mX
i=1

fiyi +
mX
i=1

nX
j=1

"
Aij

�
1
Ti

�
+ Z1

ij(Ti)

+ Z2
ij

 
B2
j

Ti

!
+ Z3

ij � Z4
ij(Bj)

#
xij ;

s.t.
nX
j=1

�ijxij = 1 i = 1; 2; � � � ;m;

xij � yi i = 1; 2; � � � ;m; j = 1; 2; � � � ; n;
mX
i=1

fiyi � F;
mX
i=1

Kiyi � R;

Ti � Tmin
i i = 1; 2; � � � ;m;

Ti > 0 i = 1; 2; � � � ;m;
Bj � 0 j = 1; 2; � � � ; n;
yi 2 f0; 1g i = 1; 2; � � � ;m;
xij 2 f0; 1g i=1; 2; � � � ;m; j=1; 2; � � � ; n;

(35)

where yi is a binary variable that shows machine
utilization, i.e., yi = 1 if machine i is utilized and
yi = 0 otherwise. In addition, xij is a binary variable
that shows item allocation to machines, i.e., xij = 1 if
item j allocated to machine i is utilized, and xij =
0 otherwise. Moreover, Bj is a continuous decision
variable that represents the backorder quantity of item
j. Finally, Ti is a continuous decision variable that
represents the cycle time of machine i.

4. Hybrid solution procedure

In this study, a heuristic method is employed to solve
the proposed mixed integer non-linear programming
model. It uses a genetic algorithm and the convexity
attribute of a single machine problem to �nd a near-
optimal solution. In this method, for the �rst step,
Problem (35) is converted into a bi-level problem as
follows:

min TC =
mX
i=1

fiyi + '(xij ; Ti; Bj);

s.t.
nX
j=1

�ijxij = 1 i = 1; 2; � � � ;m;

xij � yi i = 1; 2; � � � ;m; j = 1; 2; � � � ; n;
mX
i=1

fiyi � F;
mX
i=1

Kiyi � R;
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yi 2 f0; 1g i = 1; 2; � � � ;m;
xij 2f0; 1g i=1; 2; � � � ;m; j=1; 2; � � � ; n;

(36)

and:

min '(xij ; Ti; Bj) =
mX
i=1

nX
j=1

"
Aij

�
1
Ti

�
+ Z1

ij(Ti)

+ Z2
ij

 
B2
j

Ti

!
+ Z3

ij � Z4
ij(Bj)

#
xij ;

s.t. Ti �
nP
j=1

Sijxij � nP
j=1

Bjxij
(1��ij)Pij�Dj

1� nP
j=1

�
1 + �ij

�ij

�
Djxij

(1��ij)Pij

i = 1; 2; � � � ;m;
Ti > 0 i = 1; 2; � � � ;m;
Bj � 0 j = 1; 2; � � � ; n: (37)

The �rst level of this problem is a mixed integer non-
linear model, which can be solved using a genetic
algorithm. In this level, the decision variables are xij
and yi; therefore, the number of variables equals m(n+
1), and the number of constraints is m(n+1)+2. After
obtaining xij and yi values, the second level problem
is solved considering xij as an input parameter. The
problem to be solved in the second level (Eq. (37)) is
a non-linear continuous problem that can be optimized
using derivatives. The decision variables in the second
level are Ti and Bj ; thus, the number of variables and
constraints is m+ n and m, respectively.

Using the bi-level procedure, utilization and al-
location are obtained randomly (using GA rules) in
Eq. (36). Then, knowing that Eq. (37) is a convex
NLP (see Appendix A), the optimum cycle length per
machine and shortage value per item are calculated by
derivatives method. Using this method, the necessity
of searching for the optimal solution through contin-
uous variables can be obviated. A general scheme of
obtaining a new solutions' structure (chromosomes) is
represented in Figure 2. In addition, the following steps
for derivatives method are employed:

1. If
Pn
j=1 Sijxij � Pn

j=1
Bjxij

(1��ij)Pij�Dj and 1 �Pn
j=1(1 + �ij

�ij ) Djxij
(1��ij)Pij are simultaneously either

positive or negative, then go to step 2. Otherwise,
the solution is infeasible, and go to step 7;

2. If (
Pn
j=1 Z

1
ijxij �Pn

j=1
(Z4
ij)

2

4Z2
ij
xij) is positive, then

go to Step 3. Otherwise, the solution is infeasible,
and go to Step 7;

Figure 2. The structure of each solution (chromosome).

3. The following Ti and Bj are calculated based on
xij value (a detailed calculation is represented in
Appendix B):

Ti =

vuuuuuut
nP
j=1

Aijxij 
nP
j=1

Z1
ijxij �

nP
j=1

(Z4
ij)2

4Z2
ij
xij

!
i = 1; 2; � � � ;m; (38)

Bj =
mX
i=1

Z4
ijxij

2Z2
ij
Ti j = 1; 2; � � � ; n: (39)

4. The lower bound of Tmin
i is obtained as follows:

Tmin
i =

nP
j=1

Sijxij � nP
j=1

Bjxij
(1��ij)Pij�Dj

1� nP
j=1

�
1 + �ij

�ij

�
Djxij

(1��ij)Pij

i = 1; 2; � � � ;m: (40)

5. If Ti � Tmin
i , then go to T �i = Ti. Otherwise, T �i =

Tmin
i and go to step 6;

6. Based on the value of T �i , obtain B�j using Eq. (39)
and go to step 7.

7. Terminate the procedure.

Regarding Figure 2, yi and xij are obtained ran-
domly using GA, and then optimum values of Ti and Bj
are calculated based on xij by the derivative method.
Then, the inventory system's total cost is determined
based on these values. To solve the MINLP problem,
a Hybrid Genetic Algorithm (HGA) is employed that
combines GA and the derivatives method. The solution
procedure of the proposed inventory model using the
hybrid genetic algorithm is as follows:
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Figure 3. The 
owchart of the proposed Hybrid Genetic Algorithm (HGA).

1. In the genetic algorithm, the chromosomes are pro-
duced randomly in the �rst step of the algorithm,
called the initial generation production;

2. After producing the initial generation, the crossover
and mutation operators are used to reproduce new
chromosomes. Further, a percentage of better
chromosomes of the last generation is saved;

3. Elite selection transfers the best chromosomes to
the next generation per iteration;

4. This procedure repeats until solution convergence
is met.

A 
owchart and a general procedure of the proposed
hybrid genetic algorithm are proposed in Figures 3 and
4, respectively.

4.1. Initial de�nitions
- Chromosome: Solutions of model are called chromo-

somes;

- Generation population: Number of chromosomes in
an iteration (npop);

- Crossover probability (Pc): Crossover chance per

chromosome. Therefore, Pc � npop is the number
of crossovers per generation;

- Mutation probability (Pm): Mutation chance per
chromosome. Therefore, Pm � npop is the number
of mutations per generation;

- Maintenance probability (Pr): The probability of
maintenance per generation. Therefore, Pr � npop
is the number of maintained chromosomes per gen-
eration.

4.2. Chromosome scheme
Each chromosome is composed of a number of genes.
These problem solutions, i.e., chromosomes, consist of
two types of genes: xij and yi. A schematic overview
of an arbitrary chromosome is represented in Figure 5.

4.3. Initial population
npop chromosomes are generated randomly and stored
in POP to form an initial generation. To do so,
random numbers from f0; 1g are generated considering
Constraints (31) and (32) to create genes related to yi.
Afterwards, random numbers from f0; 1g are generated
considering Constraints (29) and (30) to create genes
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Figure 4. The proposed hybrid genetic algorithm's general procedure.

Figure 5. The example of chromosome.

related to xij . Moreover, some rules to improve
feasibility and optimality are employed as follows:

1. If yi = 1, then at least an item should be produced
on machine i;

2. An item should be set up only on one machine;

3. Machines investment (
P
8i fiyi) should not exceed

the total budget;

4. Whole 
oor space that machines occupy, i.e.,
(
P
8iKiyi), should be less than or equal to available


oor space.

4.4. Crossover operator
One-point crossover is applied to generate two o�spring
(new chromosomes) from two parents (randomly cho-
sen chromosomes). To do so, a random number from
f1;m� 1g is generated and parents are cut from there
for both yi and xij . This method is able to generate
P2 = Pc � npop new chromosomes, such that all P2
members are feasible.

4.5. Mutation operator
A randomly chosen o�spring is mutated by reversing a
random gene of yi based on Eq. (41). Then, considering
Constraints (29) and (30), P3 = Pm� npop genes are
generated randomly from f0; 1g to form xij , such that

all P3 members are feasible:

yo�spring
i = 1� yparent

i : (41)

4.6. Maintenance operator
P4 = Ph�npop chromosomes from a former generation
are maintained.

4.7. Fitness function
Ti and Bj are computed for a chromosome based on yi
and xij employing the derivatives method (the second
level). Moreover, chromosomes' �tness function can be
calculated as follows:

minTC =
mX
i=1

fiyi + '(xij ; Ti; Bj);

'(xij ; Ti; Bj) =
mX
i=1

nX
j=1

"
Aij

�
1
Ti

�
+ Z1

ij(Ti)

+ Z2
ij

 
B2
j

Ti

!
+ Z3

ij � Z4
ij(Bj)

#
xij :

(42)

It is possible to have infeasible solutions during cal-
culation of Ti and Bj using the derivatives method,
i.e., the �rst step. As a result, for infeasible solutions
(chromosomes), the following penalty function to the
�tness function is added:

Penalty = �inf; (43)

where inf is a su�ciently large number.

4.8. Selection operator
P2, P3, and P4 are merged per iteration to obtain
npop better solutions featuring smaller �tness functions
and forming next generation. Finally, if there is no
obvious enhancement with respect to the solutions for
nIt iterations, then the algorithm is terminated.
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Table 1. Comparison of algorithms.

Size Proposed HGA Conventional GA GAMS solver Couenne

n�m Total cost
($)

CPU time
(second)

Total cost
($)

CPU time
(second)

Total cost
($)

CPU time
(second)

1 2� 2 127565.7781971 45.6279 127565.7781971 87.6438 127565.7781971 0.0202
2 2� 3 136978.5888335 49.8007 136982.7001745 92.2613 136980.9735568 0.0989
3 2� 5 165920.4156557 56.4961 165997. 3489096 102.2991 | |
4 3� 6 284632.6823419 59.5632 288915.0912641 118.2832 | |
5 3� 10 289473.8272197 61.7463 292038.0537104 147.2121 | |
6 4� 10 494736.1758372 68.5492 529472.6951114 167.0090 | |
7 5� 12 542800.5102909 85.5382 581082.0475678 249.3129 | |
8 6� 15 905370.2278785 96.1931 951113.2076686 320.4512 | |
9 6� 20 1022337.5288482 107.7371 1126859.6852671 352.6391 | |
10 7� 25 1291611.2514883 156.0021 1380281.4415222 423.8735 | |

Table 2. Input parameters of the proposed problem.

Pij � U(15000; 25000);�ij � U(0:01; 0:05);�ij � U(0:001; 0:007);�ij � U(1; 4);Aij � U(100; 300)
fi � U(120000; 220000);Dj � U(1000; 3000);hj � U(10; 20);wj � U(2; 10);�j � U(2; 10); �j � U(2; 5)
vj � U(0:2; 0:8); cij � U(200; 300); rij � U(10; 30); dj � U(20; 40);Sij � U(0:03; 0:08);
F � U(300000; 400000);R � U(1000; 2000);Ki � U(400; 800)

Note: U is uniform distribution.

5. Numerical examples

In this section, the numerical results of the proposed
mixed integer linear programming problem and sensi-
tivity analysis are discussed. The model is solved using
three di�erent approaches, i.e., hybrid genetic algo-
rithm, conventional genetic algorithm, and a software,
i.e., GAMS solver Couenne, for 10 sample problems
of di�erent sizes proposed in Table 1. In these 10
instances, the input parameters are randomly selected
from Table 2. As seen from Table 1, for small-
sized instances, three methods obtain almost equal
solutions. However, increasing problem dimension
a�ects the accuracy and running time, and solutions'
quality decreases dramatically. Contrary to GAMS,
the conventional GA and proposed hybrid GA can
obtain an acceptable solution to large dimensions of
this MINLP problem. By comparing the results of
two GAs, it is obvious that the proposed hybrid GA
outperforms conventional GA in terms of solution
quality and solving time. Therefore, based on Table 1,
it can be concluded that the proposed hybrid genetic
algorithm has an appropriate performance for this
MINLP.

There is a vast literature concerning sensitivity
analysis of multi-product non-linear problems on the
e�ect of production rate, demand rate, and cost param-
eters on inventory system total costs (see [18,19,22,35]).
Therefore, this problem focuses on the parameters
central to the production system which have an impact
on total costs. These parameters are as follows:

rework ratio, disposal ratio, and rework speed. To
do so, a 2 � 5 problem is considered, and these three
parameters change based on Table 3 to study their
impact on the total cost and �nal solution. Based
on Table 3, it is obvious that increasing rework speed
decreases the total cost. By contrast, increasing
rework and scrapping ratio leads to higher system
costs.

6. Conclusion and future research directions

This paper proposes a Mixed Integer Non-Linear Pro-
graming (MINLP) mathematical model and its opti-
mization procedure for a multi-product, multi-machine
Economic Production Quantity (EPQ) inventory prob-
lem in an imperfect production environment. The
considered system produced two types of defective
items: items that need rework and scrapped items. The
shortage was allowed such that demands for unavailable
items were totally backordered. The scrapped items
were disposed with a disposal cost, and rework process
was done after �nishing the normal production period.
Moreover, the system was considered when there was
a potential set of available machines with a speci�c
production rate along with its utilization cost as well
as setup time per item. This system was studied
under some constraints such as initial capital for
machines' utilization and production 
oor space. A bi-
level method was used to solve this problem. First,
a set of machines to be utilized and a production
allocation of items to each machine were obtained
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Table 3. Sensitivity analysis of three parameters: rework ratio, disposal ratio, and rework speed.

Parameter % changes The proposed HGA
Total cost ($) % changes in

Initial problem 0 165920.41565577 0

�ij
+100 166180.509967279 1.00156758473923
{50 165788.089543842 0.999202472393738
{100 165654.260980893 0.998395889536408

�ij
+100 166016.570453697 1.00057952360803
{50 165872.699892375 0.999712417768444
{100 165825.222680232 0.999426273281912

�ij
+100 165858.860829722 0.999629009933439
+50 165879.354287614 0.999752523714495
{50 166044.198464805 1.00074603724048

by the genetic algorithm. Then, using the convexity
attribute of the second level problem, the �nal solution
was calculated. Furthermore, a comparison made
among the proposed hybrid genetic algorithm, a con-
ventional genetic algorithm, and a GAMS solver was
presented. The outcomes suggest that the proposed
method outperformed other methods considering both
solution quality and solving time. The proposed
inventory model was applicable to real-world instances
in which corporate's managers deal with procurement
of facilities as well as their allocation to corporate
operations. In the aforementioned environment, a
manager should make a decision based on technological
advantages of available facilities, i.e., production rate,
failure rate, rework rate, and so forth. Moreover,
another concern that a decision-maker should take
into the account is the demand rate of each item,
shortage costs, budget constraint, desired quality, and
facilities production and procurement costs. In this
study, a mathematical model was proposed to make
a near-optimal decision about facilities procurement
and product allocation considering system costs. To
do so, a multi-item production system with defective
products and shortage with a set of potential machines
was optimized by utilizing single machine speci�cations
and GA altogether.

It is signi�cant to consider other objectives, such
as maximizing the pro�t or minimizing the warehouse
space, as some extensions of the proposed problem.
Moreover, considering some environmental considera-
tions in the form of manager's preference or internaliz-
ing the externalities in choosing production facilities is
another possible future extension of this model. The
solution procedure may be extended by composing
combinatorial optimizations and convexity attribute of

the problem. However, it is required to branch on both
y and x variables, i.e., binary variables; then, a convex
problem similar to the mentioned problem will emerge.
It is worth mentioning that the proposed method can
provide an estimation of each branch solution and its
quality. On the other hand, this problem can be studied
under di�erent conditions: perishable items, several
classes of rework, and aggregate rework. Further,
all rework processes of items produced by machine
i should be done in a separate cycle. Moreover,
the following are some interesting future research
directions: interruption in machines' manufacturing
processes, maintenance policy consideration, stochastic
production failure, discount on imperfect products and
fuzzy/stochastic demands or capacity, or a combination
of these.
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Appendix A

Proof of the convexity of the objective function
in Eq. (37)
Based on the objective function in Eq. (37):

' =
mX
i=1

nX
j=1

"
Aij

�
1
Ti

�
+ Z1

ij(Ti) + Z2
ij

 
B2
j

Ti

!

+ Z3
ij � Z4

ij(Bj)

#
xij :

So:

@'
@Ti

=
nX
j=1

Z1
ijxij �

nX
j=1

(Aij + Z2
ijB2

j )
(Ti)2 xij ;

@2'
@2Ti

=
nX
j=1

2(Aij + Z2
ijB2

j )xij
(Ti)3 ;

@2'
@Ti@Tl

= 0;

@'
@Bj

=
mX
i=1

2Z2
ijBjxij
Ti

�
mX
i=1

Z4
ijxij ;

@2'
@2Bj

=
mX
i=1

2Z2
ijxij
Ti

;

@2'
@Bj@Bl

= 0;
@2'

@Bj@Ti
= �2BjZ2

ijxij
(Ti)2 ;

Hessian matrix is de�ned in Boxes A.I and A.II.
Since xij and Aij are greater than or equal to zero;

XTAX is greater than zero. As a result, the Hessian
matrix of objective function Eq. (37) is greater than or
equal to zero and is a convex function.

Appendix B

Finding the optimal value of the decision
variables
The derivative of objective function in Eq. (37) should
be calculated with respect to Ti, as follows:

Hessian =
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Hessian =
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;

XTAX =
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T1 T2 � � � Tm B1 � � � Bn

�
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266666666664
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...
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...
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@'
@Ti

=
nX
j=1

Z1
ijxij

�
nX
j=1

Aij + Z2
ijB2

j

(Ti)2 xij = 0! Ti

=

vuut nX
j=1

 
Aij + Z2

ijB2
j

Z1
ij

!
xij : (B.1)

Moreover, by calculating derivative with respect to Bj ,
we have:

@'
@Bj

=
mX
i=1

2Z2
ijBjxij
Ti

�
mX
i=1

Z4
ijxij = 0! Bj

=
mX
i=1

 
Z4
ij

2Z2
ij
Ti

!
xij : (B.2)

Substituting Eq. (B.1) into Eq. (B.2) leads to:

Ti =

vuuuuuut
nP
j=1

Aijxij 
nP
j=1

Z1
ijxij �

nP
j=1

(Z4
ij)2

4Z2
ij
xij

! ;

i = 1; 2; � � � ;m; (B.3)

and:

Bj =
mX
i=1

 
Z4
ijxij

2Z2
ij

!
Ti;

j = 1; 2; � � � ; n: (B.4)
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