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Abstract. Determining appropriate inventory and pricing policies is an important issue
in scienti�c and industrial research. Here, an inventory control model of a decaying item
with zero lead time is studied. Two mathematical models under di�erent assumptions are
developed. In the �rst model, deterioration rate is time-dependent and demand rate is
price-sensitive while in the second model, deterioration rate is constant and demand rate
is time- and price-dependent. The aim of this research is optimizing total cost by deriving
decision variables such as dispatch cycle length, order quantity, and wholesale price. To
optimize the total cost, a shipment group dispatching policy is used.

© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Determining optimal inventory control policy and sell-
ing price for di�erent products is one of the main issues
in industrial and scienti�c research, especially when the
product is perishable. Recently, due to globalization

ow, increasing costs, time-sensitivity occurrence of
an action, and running out of resources, researchers
have focused on supply chains coordination [1]. Here,
we investigate shipment consolidation, pricing, and
inventory strategies of a seller selling a decaying item.
Thus, some research related to pricing, inventory,
and shipment consolidation decisions for deteriorating
products is reviewed from the literature.

Since price is one of the main factors for customers

*. Corresponding author. Tel.: +98 21 8208-4486;
Fax: +98 21 8801-3102
E-mail addresses: Taleizadeh@ut.ac.ir (A.A. Taleizadeh)
st a rasouli@azad.ac.ir (A. Rasuli-Baghban)

doi: 10.24200/sci.2017.4449

to decide about buying a product, jointly determina-
tion of inventory and pricing decisions is much impor-
tant and, �rst, it was studied by Whithin [2]. Chen
et al. [3] modeled a joint inventory-pricing problem for
a periodic-review system. Ray et al. [4] analyzed the
joint operation-marketing decision-making in a peri-
odic review inventory system for a �rm with stochastic
and price-sensitive demand. Huang et al. [5] modeled
the coordination and selection of suppliers such that
pricing and replenishment decisions in a three-level
chain as a dynamic non-cooperative game model were
optimized. Polatoglu [6] developed a joint inventory-
pricing model using a single-period problem for which
demand rate was assumed a linear function. Zhu [7]
formulated the integrated pricing and inventory control
problem in a random demand condition and �nite
planning horizon with return and expediting. You
et al. [8] developed a seasonal inventory model with
trial periods during which customers could return the
products without any penalty. Su and Geunes [9]
studied the price promotions e�ects on the total pro�t
in a two-stage chain under deterministic demand.
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Mutlu and Cetinkaya [10] concentrated on a channel
and compared the pro�ts of both decentralized and
centralized channels, where demand rate depended on
selling price. Maddah and Bish [11] investigated a joint
pricing-inventory problem in a newsboy system.

Recently, many researchers have focused on inven-
tory control models of deteriorating products. Maity
and Maiti [12] presented optimal production quantity
and advertising expenditure of a multi-product inven-
tory control model with in
ation and time discounting
under di�erent constraints. Yu et al. [13] studied
an inventory problem for a VMI system where both
raw material and �nished products were perishable.
Hongjie et al. [14] extended an inventory control model
for a decaying item in which vendor-managed inventory
system was used. Mahata [15] formulated an inventory-
production model for deteriorating products with de-
layed payment. Taleizadeh and Nematollahi [16]
extended an inventory control model in which the
in
uences of in
ation and time value of money on best
strategies of deteriorating products were examined.
Lee and Chung [17] used system dynamics to propose
a new order system for deteriorating products and
prepared a systematical simulation.

In shipment consolidation policy, the orders of
customer are combined to make a larger batch to
deliver to the customers. This policy is used to decrease
the dispatching cost. Indeed, since several shipments
are combined during a cycle, consolidation makes
increase in carrying costs. Thus, replenishment and
consolidation decisions must be made simultaneously.
Time-Based Consolidation (TBC) and Quantity-Based
Consolidation (QBC) are two types of this policy. In
the �rst one, accumulated orders of customers are
dispatched within each period. But in the second
type, orders are distributed when the cumulative orders
become larger than economic values.

Cetinkaya and Bookbinder [18] determined opti-
mal (QBC) policy and related optimal cycle length.
Cetinkaya et al. [19] analyzed both quantity- and time-
based consolidation policies comparatively. Wong et
al. [20] extended a shipment consolidation policy and
the e�ects of consolidation were studied in their re-
search. Marklund [21] extended a model to examine the
e�ects of consolidation and replenishment. Howard and
Marklund [22] evaluated the e�ects of time-based con-
solidation and stock allocation in a chain. Taleizadeh et
al. [23] extended a joint replenishment problem under
prepayment strategy for imported raw material with
several operating limitations. Taleizadeh et al. [24,25]
extended a multi-product single-machine imperfect
production system without and with shortage. Ulku
and Bookbinder [26] optimized the vendor's pro�t when
the selling price depended on arrival times of orders.
Sajadieh and Jokar [27] focused on a two-echelon chain
and extended a joint production-marketing-inventory

problem to optimize total pro�t. Olsson [28] devel-
oped a based-stock model for perishable items. Also,
demands were considered as Poisson random variable.
On the contrary, lifetime and lead-time were assumed
to be �xed. Herbon et al. [29] extended an inventory
management problem with perishable products. Maxi-
mization of retailer's pro�t was the goal by considering
customer's satisfaction. Taleizadeh [30,31] developed
a lot-sizing model for evaporating and deteriorating
products with partial backordering. Diabat et al. [32]
considered integrated inventory and routing problems
for perishable products. Lu et al. [33] considered an
inventory system with limited replenishment capacity
for perishable goods. Also, the demand rate depended
on the stock quantity. Gallego and Hu [34] studied
dynamic pricing of complementary and substitutable
perishable assets in an oligopolistic market. An in-
tegrated production-distribution model was developed
by Tayal et al. [35] in a two-echelon supply chain for
perishable goods. Taleizadeh et al. [36] studied optimal
quantity and multi-discount price for perishable items.
They assumed a time-dependent demand function un-
der two scenarios. A new multi-product economic order
quantity problem was considered by Maleki Vishkaei
et al. [37]. They assumed that defective items were
screened out 100% throughout screen process and
were sold after screening period. Also, other related
research was performed by Taleizadeh et al. [38-48],
and Teimouri and Kazemi [49].

Generally, up to now, many outstanding stud-
ies about pricing, inventory control, and shipment
consolidation for decaying items have been separately
developed, but none of them has considered optimal
shipment consolidation, inventory, and pricing policies
together. The above-mentioned hint is an important
gap in this context, and a motivation for this research.
Here, a joint inventory-pricing model of a decaying
product under shipment consolidation policy is ex-
tended.

In the next section, the problem description is
provided.

2. Problem description

Consider an inventory system selling deteriorating
product for which deterioration rate is linearly time-
proportional, �(t) = bt. The seller wants to apply
a TBC policy using which orders are consolidated
and distributed in every period of time T . The
dispatch cycle length is a period within two deliveries
and ordering cycle includes at least one distribution
cycle and vendor goes to replenish whenever the on-
hand inventory reaches zero. The lead time is zero
and shortage is not allowed. Two scenarios under
di�erent assumptions are studied. In the �rst scenario,
deterioration rate is time-dependent and demand rate
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Figure 1. Inventory curve of vendor for deteriorating
products.

is price-sensitive while in the second one, deterioration
rate is constant and demand rate is time- and price-
dependent. The main aim is to extend two models to
optimize the dispatch cycle length, selling price, and
replenishment quantity for the explained two scenarios
such that the total cost is minimized or total pro�t
is maximized. The proposed models in this paper
are applicable for every deteriorating product, such
as dairy products, vegetables, and whatever is being
perished as time passes.

Figure 1 indicates vendor's inventory level in
which Q is the replenishment quantity, Qpi is the
deteriorated quantity in each dispatch cycle (i = 1:::k),
and Di(T ) shows the demand rate in each dispatch
cycle. The following notations are used:

Variables:
T Dispatch cycle length
P Wholesale price
Q Order quantity
Parameters:
Ii(t) The level of inventory in the ith

dispatch cycle at time t
� The decaying rate
�(t) Time-dependent decaying rate
D(p) The price-sensitive demand rate
Di(T ) The demand during the ith dispatch

cycle
FD The �xed dispatch cost
FR The �xed order cost
CD Dispatch cost per unit
CR Purchasing cost per unit

w The waiting cost of product (unit/
time)

h The carrying cost of product (unit/
time)

k The number of dispatching periods
during a replenishment cycle

v Time-dependent deterioration rate
Sj The jth demand arrival time in a

dispatch cycle
Z(t) Deteriorated quantity in the �rst

model
Qp Deteriorated quantity in the second

model

3. The �rst scenario

In this scenario, we assume that decaying rate depends
on time and is a continuous function of time, �(t) = bt,
b 2 [0; 1], and demand rate is price-sensitive and
a linear function of wholesale price, D(p) = (a �
Bp)T . Decision variables that should be determined
are dispatch cycle length, wholesale price, and order
quantity.

3.1. Mathematical model
Here, a mathematical model of a joint pricing-inventory
problem for a time-dependent decaying product using
a time-based group dispatching policy is developed.
From Figure 1, the changes of inventory level are
presented as follows:(

dIi(t)
dt =��(t)Ii(t)�(i�1)D(p); t 2 [(i� 1)T; iT ]:

I(kT ) = 0 (1)

By solving this equation, we have:

Ii(t)=�(i� 1)D(p)
�
t+

bt3

6

�
e� bt

2
2 +I(0)e� bt

2
2 : (2)

To obtain the optimum values of variables, �rst, the
cost function should be modeled. Since each replenish-
ment period includes k (random variable) distributing
cycles with length T , the expected value of cycle length
is E(k)T .

Ordering cost:
The order quantity is demand plus deteriorated prod-
uct as shown in Eq. (3):

Q = Z(t) +
k�1X
i=1

Di(T ); (3)

where the quantity deteriorated during each cycle is:

Z(t) = I(t)without deterioration � I(t)with deterioration:
(4)
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Inventory level without deterioration is obtained using
Eq. (5):

I(t)without deterioration = lim
b!0

I(t)with deterioration

= l� t(i� 1)D(p) + I(0): (5)

Thus, using Eqs. (2) and (5) and using I(0) = D(P )(t+
bt3
6 ) + I(t)e bt

2
2 , Eq. (4) changes to:

Z(t) = I(t)(e
bt2
2 � 1) + (i� 1)D(p)

bt3

6
: (6)

Since I(kT ) = 0, deteriorated quantity at the end of
each replenishment cycle is:

Z(KT ) = (i� 1)D(p)
bK3T 3

6
: (7)

Therefore, replenishment quantity is:

Q = Z(KT ) +KD(p)T

= (i� 1)D(p)
bK3T 3

6
+KD(p)T: (8)

Finally, the expected replenishment quantity according
to Eq. (8) is equal to:

E(Q) = (i� 1)D(p)
bE(K3)T 3

6
+ E(k)D(p)T: (9)

Thus, the expected related cost is:

E(Rc) = FR + CRE(Q)

= FR + CR
(a�Bp)bE(K3)T 3

6

+ CRE(k)(a�Bp)T: (10)

Dispatch cost:
Based on existing k dispatch cycles and dispatch
quantity, which is E(Di(T )), the dispatch cost can be
determined as follows:

dispatch cost = FDE(k) + CDE(k)E(Di(T ))

= FDE(k) + CDE(k)(a� bp)T: (11)

Holding cost:
The level of inventory at time t, after substitution of
Eq. (8) in Eq. (2), is:

I(t) = D(p)
�
(kT � t) +

b
6

(k3T 3 � t3)
�
e� bt

2
2 :

Utilizing the Taylor series expansion, e� bt
2

2 = 1� bt2
2 +

b2t4
4 , the cyclic inventory carrying cost is given by:

hE

 
kX
i=1

(
Z iT

(i�1)T
I(t)dt)

!
= hE

� kX
i=1

�Z iT

(i�1)T
D(p)

�
(kT � t)

+
b
6

(k3T 3 � t3)
�
e� bt

2
2

��
= hE

�
k2D(p)T 2

2
+
D(p)bk4T 4

12

�
=
h�T 2E(k2)

2
+
h�bT 4E(k4)

12
: (12)

The cost of waiting:
Using the de�nition of Sj , the waiting time of customer
is T �Sj (see Figure 2). Therefore, the cost of waiting
for customer is:

wE
�
(T � S1) + (T � S2) + :::+ (T � SN(T ))

�
= wE

24Di(T )T �
Di(T )X
n=1

Sn

35 = wE(k)
�T 2

2
; (13)

Using Eqs. (10) to (13), the total cost function is:

Total cost function = FR + CR�TE(k)

+
CR�bT 3E(k3)

6
+FDE(k) + CDE(k)�T

+
h�T 2E(k2)

2
+
h�bT 4E(k4)

12
+ wE(k)

�T 2

2
:

(14)

Figure 2. Customer waiting time.
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Dividing Eq. (16) over E(k)T yields:

TC(p; T;Q) =
FR

E(k)T
+ CR�+

CR�bT 2E(k3)
6E(k)

+
FD
T

+ CD�+
h�TE(k2)

2E(k)

+
h�bT 3E(k4)

12E(k)
+
w�T

2
: (15)

3.2. Solution method
The following Lemma is presented to derive a solution
method.

Lemma 1. The following equations can be used to
derive the optimal solutions:

E(k) =
�Q
�T

; (16)

E(k2) =
�Q( �Q+ 1)
�2T 2 ; (17)

E(k3) =
�Q( �Q+ 1)( �Q+ 2)

�3T 3 ; (18)

E(k4) =
�Q( �Q+ 1)( �Q+ 2)( �Q+ 3)

�4T 4 : (19)

Proof. Let f(0) denote the distribution function of
Di(T ), and f (k)(0) denote the k-fold convolution of
f(0). From k = inf

n
k :
Pk
i=1Di(T ) � Qo, we have

P [k � k + 1] = f (k)(Q) and, thus, P [k � k + 1] =
1 � f (k)(Q). Since f(0) is a Poisson distribution with
parameter �T , k-fold convolution of f(0) is a Poisson
distribution with parameter k�T , where:

f (k)(Q) =
QX
i=0

(k�T )ie�k�T
i!

:

Then, for k = 1; 2; :::, we have:

p [K � k] = 1�
QX
i=0

(k�T )ie�k�T
i!

;

of which the right side is a Q-stage P.D.F. with
parameter �T and expected value of (Q+1)

�T .
For simplicity, by using Lemma 1 and substituting

�Q = Q+1 and � = a�bp, the expected long-run average
cost changes to:

TC(P; T;Q) =
FR(a�Bp)

�Q
+ CR(a�Bp)

+
bCR( �Q+ 1)( �Q+ 2)

6(a�Bp) +
FD
T

+CD(a�Bp) +
h( �Q+ 1)

2

+
hb( �Q+ 1)( �Q+ 2)( �Q+ 3)

12(a�Bp)2

+
w(a� bp)T

2
): (20)

Lemma 2. For each couple of T and p, the optimum
quantity of �Q should satisfy Inequality (21):

�Q�( �Q� � 1) +
b �Q�( �Q� + 1)( �Q� � 1)

(a�Bp)�
2CR
3h

+
( �Q� + 2)

2(a�Bp)
�
� 2FR(a�Bp)

h

� �Q�( �Q� + 1) +
b �Q�( �Q� + 1)( �Q� + 2)

(a�Bp)�
2CR
3h

+
( �Q� + 3)

2(a�Bp)
�
: (21)

Proof. For each couple of p and T , the optimum
quantity of �Q should satisfy TC( �Q��1) � TC( �Q�) and
TC( �Q�+ 1) � TC( �Q�). Using Eq. (20), the optimality
condition for �Q is:

�Q�( �Q��1)+
b �Q�( �Q�+1)( �Q��1)

(a�Bp)
�

2CR
3h

+
( �Q�+2)

2(a�Bp)
�

� 2FR(a�Bp)
h

� �Q�( �Q� + 1)

+
b �Q�( �Q� + 1)( �Q� + 2)

(a�Bp)
�

2CR
3h

+
( �Q� + 3)

2(a�Bp)
�
:

Lemma 3. The following condition should be satis-
�ed by the upper bound of �Q:

�Q�( �Q� � 1) +
b �Q�( �Q� + 1)( �Q� � 1)

a�
2CR
3h

+
( �Q� + 2)

2a

�
� 2FRa

h
� �Q�( �Q� + 1)

+
b �Q�( �Q� + 1)( �Q� + 2)

a

�
2CR
3h

+
( �Q� + 3)

2a

�
: (22)

Proof. 2FR(a�bp)
h in Eq. (21) is decreasing with re-

spect to p. Therefore, the maximum �Q is derived at
p = 0.
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Theorem 1. The cost function becomes convex is
w � 2FD

BpT 2 + Bbp( �Q+1)( �Q+2)
T�3

�
CR
3 + h( �Q+3)

2�

�
.

Proof. The total cost function is convex if X:H:XT

=
�
P T

��H � �P T
�T � 0, where:

H =

264@2TP
@p2

@2TP
@p@T

@2TP
@T@p

@2TP
@T 2

375
=

264B2b( �Q+1)( �Q+2)
�3

�
CR
3 + h( �Q+3)

2�

� �Bw2
�Bw2 2FD

T 3

375 : (23)

Therefore, we have:

X�H �XT =
B2p2b( �Q+ 1)( �Q+ 2)

�3�
CR
3

+
h( �Q+ 3)

2�

�
+

2FD
T
�BpTw; (24)

and we should show that:

X�H �XT =
B2p2b( �Q+ 1)( �Q+ 2)

�3�
CR
3

+
h( �Q+ 3)

2�

�
+

2FD
T
�BpTw � 0: (25)

Thus, the cost function is convex if and only if:

w� 2FD
BpT 2 +

Bbp( �Q+1)( �Q+2)
T�3

�
CR
3

+
h( �Q+3)

2�

�
:
(26)

Using the �rst derivative of TC(p; T;Q) with respect
to p yields:

@TC(p; T;Q)
@P

=�B
�
FR
�Q

+
wT
2

+ CR + CD

� bCR( �Q+ 1)( �Q+ 2)
6�2

� hb( �Q+ 1)( �Q+ 2)( �Q+ 3)
6�3

�
: (27)

Moreover, the �rst derivative of TC(p; T;Q) with
respect to T yields:

@TC(p; T;Q)
@T

=
w�
2
� FD
T 2 : (28)

Setting Eq. (28) equal to zero gives:

p� =
a
B
� 2FD
BwT 2 : (29)

After some algebraic calculations, the following equa-
tion is derived:

AT 4 + ET 3 + CT +D = 0; (30)

where:

A =
�bCR(Q+ 1)(Q+ 2)w2

24F 2
D

; (31)

E =
�hbR(Q+ 1)(Q+ 2)(Q+ 3)w3

48F 3
D

; (32)

C =
w
2
; (33)

D =
FR
Q

+ CD + CR: (34)

Now, we can use the following algorithm to solve
the problem.

Step 1. Compute �Qmax suing Eq. (22);
Step 2. For ( �Q = 1::: �Qmax), determine the coe�-
cients of the polynomial shown in Eq. (30);
Step 3. Determine all acceptable roots for T using
Eq. (30) and MATLAB software;
Step 4. Calculate p for all acceptable roots of T from
the previous step;
Step 5. Now, total cost should be calculated using
Eq. (20) and convexity should be examined using
Theorem 1;
Step 6. In the comparison of the derived total costs,
the lowest cost shows the related optimal solutions.

4. The second scenario

In this scenario, we assume that decaying rate is
constant and demand rate is time- and price-sensitive
and a function of time and selling price D(p; t) =
(a � bp)Tevt = �Tevt. Decision variables, namely,
dispatch cycle length, order quantity, and selling price
should be determined to optimize the total pro�t.

4.1. Mathematical modeling
In this scenario, Eqs. (1) and (2) will change to
Eqs. (35) and (36) as follows:

dIi(t)
dt

= ��Ii(t)� (i� 1)D(p; t) t 2 [(i� 1)T; iT ];
(35)

Ii(t) =
(i� 1)(a� bp)evt

(v + �)

h
e(v+�)(kT�t) � 1

i
: (36)

Therefore, the order quantity is:

Q = I(0) =
(a� bp)
(v + �)

h
e(v+�)kT � 1

i
: (37)
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According to the description provided for the previous
case, E(Di(T )) = �evtT = (a � bp)evtT and the
expected income is:

PE

 
k�1X
i=1

 Z iT

(i�1)T
Di(T )dt

!!
= PE

 
k�1X
i=1

 Z iT

(i�1)T
(a� bp)evtTdt

!!
= P (a� bp)T 2E(k) +

P (a� bp)T 3vE(k2)
2

:
(38)

To derive the cost function, we act as follows.

Ordering cost:
The ordering cost of this case, using the logic of the
previous case, is:

Q = Qp +
k�1X
i=1

Di(T ): (39)

Moreover, quantity deteriorated during each cycle is:

Qp = I(0)� I(KT )�
k�1X
i=1

Di(t); (40)

where:

Q = I(0) =
(a� bp)
(v + �)

h
e(v+�)kT � 1

i
;

I(KT ) = 0;
kX
i=1

 Z iT

(i�1)T
(a� bp)evtTdt

!
;

and the expected deteriorated quantity is:

E(Qp) = E(I(0))� E(I(KT ))

� E
 

kX
i=1

 Z iT

(i�1)T
(a� bp)evtTdt

!!
=�E(k)T +

�(v + �)T 2E(k2)
2

+ �E(k)T 2 +
�vT 3E(k2)

2
: (41)

Finally, using the Taylor series expansion, e�Tk = 1 +
�Tk + (�Tk)2

2 , Eq. (41) changes to:

E(Q) =E(I(0)) = (a� bp)E(k)T

+
(a� bp)(v + �)T 2E(k2)

2
: (42)

And the expected ordering cost is:

E(Rc) =FR + CRE(Q) = FR + CR(a� bp)TE(k)

+
CR(a� bp)T 2(v + �)E(k2)

2
: (43)

Dispatch cost:
For the distribution cost, similar to the previous case,
we have:

E(DC) = FDE(k) + CDE(k)E(Di(T )) = FDE(k)

+ CDE

 
kX
i=1

 Z iT

(i�1)T
(a� bp)evtTdt

!!
=FDE(k) + CD(a� bp)T 2E(k)

+
CD(a� bp)T 3vE(k2)

2
: (44)

Carrying cost:
From Eq. (36), the level of inventory at time t is I(t) =
(i�1)(a�bp)evt

(v+�)

�
e(v+�)(kT�t) � 1

�
. Utilizing the Taylor

series expansion, e�Tk = 1 + �Tk + (�Tk)2

2 , the cyclic
inventory carrying cost is:

hE

 
kX
i=1

(
Z iT

(i�1)T
I(t)dt)

!
=hE

� kX
i=1

�Z iT

(i�1)T

�
D(p)evt

(v+�)
(e(v+�)(kT�t)�1)

�
dt
��

=
�h(a� bp)v2T 2E(k2)

2�(v + �)

+
h(a� bp)(v + �)T 2E(k2)

2�

� h(a� bp)vT 2E(k2)
2(v + �)

: (45)

Using Eqs. (38), (43), (44), and (45), the total pro�t
function is:

Total Pro�t Function=E(k)�T 2p+
p�vT 3E(k2)

2

�

8>>>>>>>>>><>>>>>>>>>>:

FR+CR�TE(k)+ CR�T 2(v+�)E(k2)
2

+FDE(k)+CDE(k)�T 2+ CDE(k2)�vT 3

2

�h�v2T 2E(k2)
2�(v+�) + h�(v+�)T 2E(k2)

2�

�h�vT 2E(k2)
2(v+�)

9>>>>>>>>>>=>>>>>>>>>>;
:
(46)
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Dividing the above total pro�t function by E(k)T , we
have:

Total Pro�t Function = �Tp+
p�vT 2E(k2)

2E(k)

�

8>>>>>><>>>>>>:
FR

E(k)T +CR�+ CR�T (v+�)E(k2)
2E(k) + FD

T

+CDE(k2)�vT 2

2E(k) � h�v2TE(k2)
2�(v+�)E(k) +CD�T

+h�(v+�)TE(k2)
2�E(k) � h�vTE(k2)

2(v+�)E(k)

9>>>>>>=>>>>>>;
: (47)

By substituting E(k) = Q+1
(a�bp)evtT and � = a� bp, and

assuming �Q = Q + 1, the expected long-run average
pro�t changes to:

Total Pro�t Function = �Tp+
pvT ( �Q+ 1)

2evt

�

8>>>>>><>>>>>>:
FR�evt

�Q + CR�+ CR(v+�)( �Q+1)
2evt +FD

T

+CD�T + CDvT ( �Q+1)
2evt � hv2( �Q+1)

2�(v+�)evt

+h(v+�)( �Q+1)
2�evt � hv( �Q+1)

2(v+�)evt

9>>>>>>=>>>>>>;
: (48)

4.2. Solution method
Lemma 4. For each couple of p and T , the optimum
quantity of �Q should satisfy Inequality (49):8><>:

(v+�) �Q�( �Q��1)
�evt + (v+�)CR �Q�( �Q�+1)

evth � v2 �Q�( �Q��1)
�(v+�)evt

�pvT �Q�( �Q��1)
evth � v �Q�( �Q��1)

(v+�)evt + CDvT �Q�( �Q��1)
evth

9>=>;
� 2FR(a� bp)evt

h

�
8><>:

(v+�) �Q�( �Q�+1)
�evt + (v+�)CR �Q�( �Q�+1)

evth � v2 �Q�( �Q�+1)
�(v+�)evt

�pvT �Q�( �Q�+1)
evth � v �Q�( �Q�+1)

(v+�)evt + CDvT �Q�( �Q�+1)
evth

9>=>; :
(49)

Proof. For each couple of p and T , the optimum
quantity of �Q should satisfy TP ( �Q��1) � TP ( �Q�) and
TP ( �Q�+ 1) � TP ( �Q�). Using Eq. (48), the optimality
condition for �Q is obtained as Eq. (49).

Lemma 5. The upper bound of �Q satis�es the
following condition:

�Q�u( �Q�u � 1) +
�CR �Q�u( �Q�u � 1)

h
� 2FRa

h

� �Q�u( �Q�u + 1) +
�CR �Q�u( �Q�u + 1)

h
: (50)

Proof. The maximum amount of 2FR(a�bp)evt
h or the

maximum amount of replenishment is obtained when
the demand is maximum. Thus, the maximum quantity
of �Q is derived at p = v = 0.

Theorem 2. The pro�t function is concave if and
only if FD �

h
a+ bCD � 3bp+ v( �Q+1)

2evt

i
pT 2 :

Proof. The total pro�t function is concave if
X:H:XT =

�
P T

��H � �P T
�T � 0, where:

H =

"
@2TP
@p2

@2TP
@p@T

@2TP
@T@p

@2TP
@T 2

#
=

" �2bT a�2bp+bCD+ v( �Q+1)
2evt

a�2bp+bCD+ v( �Q+1)
2evt �2FD

T 3 ;

#
(51)

therefore, we have:

X�H�XT =�3bp+a+bCD+
v( �Q+1)

2evt
� FD
pT 2 : (52)

And we should show that:

X �H �XT = �3bp+ a+ bCD +
v( �Q+ 1)

2evt

� FD
pT 2 � 0: (53)

In order to be sure that the pro�t function is concave,
the following inequality should be held:

FD �
�
a+ bCD � 3bp+

v( �Q+ 1)
2evt

�
pT 2: (54)

Now, the �rst derivative of total pro�t function with
respect to p is:

@TP (p; T;Q)
@P

=aT � 2bpT +
bFRevt

�Q
+ bCR

+ bTCD +
vT ( �Q+ 1)

2evt
: (55)

Moreover, the �rst derivative with respect to T be-
comes:

@TP (p; T;Q)
@T

=
FD
T 2 � CD�+ p�� CDv( �Q+ 1)

2evt

+
pv( �Q+ 1)

2evt
: (56)

By setting Eq. (55) equal to zero, we have:

p� =
a
2b

+
FRevt

2T �Q
+
CR
2T

+
CD
2

+
v( �Q+ 1)

2bevt
: (57)



1664 A.A. Taleizadeh and A. Rasuli-Baghban/Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 1656{1670

Substitution of Eq. (57) in Eq. (56) yields the following
equation:

AT 2 +BT + C = 0; (58)

where:

A = �bFR
2e2vt

4 �Q2 � bFRCRevt

2 �Q
� bCR2

4
+ FD; (59)

B = �v( �Q+ 1)CR
4evt

� v( �Q+ 1)FR
4 �Q

; (60)

C=
av( �Q+ 1)

bevt
+
vCD( �Q+ 1)

4evt
+
a2

4b
+
bC2

D
4
� aCD

2
:
(61)

Eq. (58) is a quadratic polynomial of which the dis-
criminant is:

� = B2 � 4AC: (62)

Based on the sign of �, the following cases can occur:

1. When � > 0, two real roots exist;
2. When � = 0, a single root exists;
3. When � < 0, there is no real root.

Now, we can use the following solution procedure
to solve the problem:

Step 1. Determine �Qmax using Eq. (50);
Step 2. For ( �Q = 1::: �Qmax), determine the coe�-
cients of polynomial (58);
Step 3. Determine all acceptable roots of period
length using Eq. (58) and MATLAB;
Step 4. Determine p for all acceptable roots of
period length from the previous step;
Step 5. For all combinations of order quantity,
selling price, and period length, calculate the related
total pro�t and check the concavity using Theorem 2;
Step 6. By comparison of the obtained total pro�ts,
the related optimal decision variables can be applied.

5. Practical and computational results

Consider a milk producer company for which deteri-
orating rate is linearly time-proportional, �(t) = bt,
b 2 [0; 1], and demand rate is price-sensitive and is
a linear function of wholesale price, D(p) = (a �
Bp)T . Moreover, deterioration rate may be constant
and demand rate can be time- and price-sensitive
and a function of time and selling price D(p; t) =
(a � bp)Tevt = �Tevt. These two conditions can
be analyzed using the �rst and the second models
developed in this paper. Decision variables, namely,
cycle length, selling price, and order quantity, should
be determined such that total cost is minimized using
the proposed solution method.

5.1. Example 1
For the �rst developed model, consider FD = 5, FR =
40, a = 20, CD = 3, h = 1, w = 50, B = 0:02, � = 0:04,
b = 0:05, and CR = 40.

Step 1. Using Eq. (22), �Q = 25;

Step 2. From �Q = 1 to 25, the values of Eqs. (31)
to (34) are determined;

Step 3. All acceptable real roots of cycle length are
determined and reported in Table 1;

Step 4. For all acceptable values of T , the wholesale
prices are determined (see Table 1);

Step 5. For all groups of decision variables, the
concavity of the objective function is checked and the
related values are shown in Table 1;

Step 6. The lowest cost, i.e. TC� = 149:2175,
corresponds to Q� = 10, T � = 0:3179, and P � =
90:1049.

5.2. Example 2
Now, consider FD = 5, CD = 3, h = 1, b = 0:04,
FR = CR = 40, w = 50, v = �0:98, � = 0:04, and
a = 20.

Step 1. From Eq. (50), �Q = 40;

Step 2. From �Q = 1 to 40, the values of Eqs. (59)
to (61) are calculated;

Step 3. All acceptable roots of cycle length are
calculated and reported in Table 2;

Table 1. Results for the �rst example.
�Q T p TC Convexity
1 1.1846 99.2874 36.4358 No
2 0.8894 98.7358 44.4573 No
3 0.7235 98.0896 54.0442 No
4 0.6124 97.3336 64.5559 No
5 0.5312 96.4561 76.0043 No
6 0.4690 95.4537 88.4376 No
7 0.4196 94.3203 101.9309 No
8 0.3794 93.0529 116.5323 No
9 0.3460 91.6469 132.2982 No

10 0.3179 90.1049 149.2175 Yes
11 0.2939 88.4229 167.3233 Yes
12 0.2732 86.6020 186.6376 Yes
13 0.2552 84.6454 207.1067 Yes
14 0.2393 82.5372 228.8869 Yes
15 0.2253 80.2995 251.7767 Yes
16 0.2127 77.8963 276.1084 Yes
17 0.2015 75.3708 301.4834 Yes
18 0.1914 72.7029 328.0874 Yes
19 0.1822 69.8767 356.0674 Yes
20 0.1739 66.9325 385.0502 Yes
21 0.1662 63.7976 415.7086 Yes
22 0.1592 60.5439 447.3766 Yes
23 0.1528 57.1695 480.0718 Yes
24 0.1469 53.6600 513.9276 Yes
25 0.1414 49.9849 549.2252 Yes
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Table 2. Results for the second example.
�Q T p TP Concavity �Q T p TP Concavity
1 0.1211 477.692 {79.76 No 19 0.0467 293.458 43.9788 Yes

0.1658 {23.9551 Infeasible No

2 0.0937 470.047 {78.92 No 20 0.0448 291.399 62.4998 Yes
0.1525 {33.2788 Infeasible No

3 0.0839 458.444 {78.91 No 21 0.0429 290.946 82.3092 Yes
0.1422 {43.7487 Infeasible No

4 0.0785 445.172 {78.18 No 22 0.0411 291.545 103.293 Yes
0.1342 {55.2696 Infeasible No

5 0.0749 431.197 {76.74 No 23 0.0393 293.094 125.331 Yes
0.1278 {67.7387 Infeasible No

6 0.0721 417.005 {74.62 No 24 0.0377 295.488 148.302 Yes
0.1225 {81.0526 Infeasible No

7 0.0698 402.887 {71.81 No 25 0.0361 298.63 172.093 Yes
0.1182 {95.1123 Infeasible No

8 0.0678 389.049 {68.27 No 26 0.0346 302.426 196.598 Yes
0.1146 {109.826 Infeasible No

9 0.0659 375.652 {63.93 No 27 0.0332 306.794 221.724 Yes
0.1116 -125.111 Infeasible No

10 0.0641 362.842 {58.70 No 28 0.0319 311.661 207.200 Yes
0.1090 {140.895 Infeasible No

11 0.0622 350.753 {52.49 No 29 0.0306 316.963 198.508 Yes
0.1067 {157.112 Infeasible No

12 0.0604 339.516 {45.20 No 30 0.0295 322.644 185.415 Yes
1.4473 6.077 {404.05 No 0.1048 {173.708 Infeasible No

13 0.0585 329.254 {36.70 No 31 0.0284 328.655 173.87 Yes
0.6189 5.392 {405.82 No 0.1031 {190.633 Infeasible No

14 0.0566 320.081 {26.892 No 32 0.0274 334.956 169.102 Yes
0.4009 3.622 {391.39 No 33 0.1016 {207.848 Infeasible No

15 0.0547 312.095 {15.68 No 34 0.0264 341.51 157.005 Yes
0.3012 0.671 {375.24 No 35 0.1003 {225.316 Infeasible No

16 0.0527 305.368 {3.00 No 36 0.0255 348.288 141.67 Yes
0.2446 {3.536 Infeasible No 37 0.0991 {243.007 Infeasible No

17 0.0507 299.943 11.1683 Yes 38 0.0247 355.263 136.140 Yes
0.2084 {9.042 Infeasible Yes 39 0.0980 {260.895 Infeasible No

18 0.0487 295.829 26.844 Yes 40 0.0239 362.412 127.115 Yes
0.1837 {15.8577 Infeasible Yes
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Step 4. p is determined for all acceptable roots of T
(see Table 2);

Step 5. For all groups of decision variables, the
concavity of the objective function is checked and the
related values are shown in Table 2;

Step 6. The highest pro�t, i.e. TP � = 221:724,
corresponds to Q� = 27, T � = 0:0332, and P � =
306:794.

6. Sensitivity analysis

To examine the sensitivity of the variables with respect
to input of the model, sensitivity analysis is performed
and results are shown in Tables 3 and 4. In both tables,
zero represents that changes of the parameters have no
e�ect on optimal solution.

In the �rst model, sensitivity analysis has been
conducted on the parameters w, FD, FR, h, and �,

Table 3. E�ects of parameter changes on optimal values of the �rst model.

Percentage of decision variable change
Percentage of parameter

changes
T p Q TC

w

+0.25 {0.1827 +2.1963 0 {8.5021
{0.25 +28.3108 {3.6605 0 +18.0279
+0.5 {31.1104 +3.6606 0 {12.1140
{0.5 +77.3513 {1.0982 0 +59.1799

+0.75 {40.5159 +4.7065 0 {12.8475
{0.75 +18.5431 {3.2945 0 +18.9663

h

+0.25 {6.134 0 0 +1.2084
{0.25 +7.958 0 +10 {1.1043
+0.5 {1.1073 0 {10 +2.4776
{0.5 +1.8811 0 +20 {2.0183

+0.75 {1.5162 0 {10 +3.7840
{0.75 +3.4727 0 +40 {2.5549

�

+0.25 {7.1091 0 {10 +3.2844
{0.25 +1.0003 0 +20 {3.1287
+0.5 {1.2151 0 {20 +6.6391
{0.5 +2.5794 0 +40 {5.8918

+0.75 {1.6923 0 {20 +1.0037
{0.75 +5.8226 0 +60 {7.4153

FR

+0.25 +0.597 0 +20 +1.3266
{0.25 {0.597 0 {20 {1.3259
+0.5 +0.0038 0 +40 +2.654
{0.5 {0.0039 0 {40 {2.650

+0.75 +0.0057 0 +60 +3.982
{0.75 {0.0058 0 {80 {3.9752

FD

+0.25 +22.900 {3.0465 0 +18.679
{0.25 {24.032 +3.0464 0 {15.518
+0.5 +44.510 {5.490 0 +39.357
{0.5 {49.040 +5.490 0 {24.364

+0.75 +64.863 {8.236 0 +61.500
{0.75 {74.551 +8.236 0 {6.365
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Table 4. E�ects of parameter changes on optimal values of the �rst model.

Percentage of decision variable change

Percentage of parameter changes T p Q TC

v

+0.25 25.96403 2.537816 0 {1365.93
{0.25 {19.7392 {18.4472 0 597.1643
+0.5 47.66556 {12.0663 0 {3578.92
{0.5 {31.1491 {41.7026 0 808.7256

+0.75 62.35726 {38.4073 0 {6522.12
{0.75 {37.9943 {63.2624 0 873.5994

h

+0.25 0 0 0 32.8854
{0.25 0 0 +6.25 {32.885
+0.5 0 0 {6.25 65.77053
{0.5 0 0 +12.5 {65.7701

+0.75 0 0 {6.25 98.65569
{0.75 0 0 +25 {98.6551

�

+0.25 0 0 {6.25 52.61651
{0.25 0 0 +12.5 {52.6159
+0.5 0 0 {12.5 105.2327
{0.5 0 0 +25 {105.232

+0.75 0 0 {12.5 157.8489
{0.75 0 0 +37.5 {157.849

FR

+0.25 {1.81257 1.260573 +12.5 50.66922
{0.25 1.814735 {1.31092 {12.5 {50.6944
+0.5 -3.62237 2.474137 +25 101.3129
{0.5 3.632228 {2.67451 -25 {101.414

+0.75 {5.43001 3.643026 +37.5 151.9316
{0.75 5.452087 {4.09444 {50 {152.16

FD

+0.25 13.02458 {20.3885 0 {133.635
{0.25 {14.2209 16.95089 0 145.9083
+0.5 25.11224 {45.6553 0 {257.657
{0.5 {30.0442 31.45431 0 308.2564

+0.75 36.44014 {78.0568 0 {373.881
{0.75 {48.1764 44.26574 0 494.2964

since they have more important e�ects on the pro�t,
decision making, and managerial insights. According
to Tables 3 and 4, when holding cost increases, order
quantity and dispatch cycle length decrease, and total
cost increases. However, when w increases, selling price
increases, and period length and total cost decrease.
Moreover, when FR becomes larger, order quantity,
total cost, and dispatch cycle length increase.

When FD becomes larger, total cost and dispatch
cycle length increase and selling price decreases and

when decaying rate increases, total cost increases and
both order quantity and dispatch cycle length decrease.
It is noticeable that QBC causes a considerable de-
crease in cost. Table 3 represents the sensitivity analy-
sis for the �rst model. For the second model, sensitivity
analysis has been conducted on the parameters v , FD,
FR, h, and �. Table 4 represents the sensitivity analysis
for the second model. According to the results, when
the waiting cost is high, the vendor dispatches smaller
orders in order to decrease the waiting costs, because
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the waiting time of customers increases as dispatch
cycle length becomes larger.

7. Conclusion

In this paper, two mathematical models were presented
for an integrated pricing-inventory problem of a single
decaying product (since the number of deteriorating
products increased every day) and optimum quantities
of period length, order quantity, and selling price
were obtained under two di�erent scenarios. Then,
by using several lemmas and theorems, the convexity
and concavity of the functions of the two extended
models were proved and di�erent solution methods
(algorithms) were developed to solve the models. In
order to decrease the cost of transportation, time-
based consolidation policy was applied. The devel-
oped models in this paper were comprehensive and
considered as di�erent forms of demand functions and
deteriorating rates. Also, all costs of an inventory
system were taken into consideration in the extended
models. Finally, two examples were provided to show
the applicability of the proposed policies. This model
was developed under certain environment, and shortage
was not permitted. Also, a single-stage problem was
considered and developed and no contract was used
between the stockholders. Therefore, for the future
studies, permissible delay in payments contract and
considering promotions, stochastic or fuzzy demand,
multi-level supply chain, and permitted shortage could
be of interest.
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