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Abstract. This study considers a multi-objective combined budget constrained Facility
Location/Network Design Problem (FL/NDP), in which system uncertainty is considered.
The most obvious practical examples of the problem are territorial designing and locating
of academies, airline networks, and medical service centers. In order to assure network
reliability versus uncertainty, an e�cient robust optimization approach is applied to model
the proposed problem. The formulation is minimizing the total expected costs, including
transshipment costs, Facility Location (FL) costs, and �xed cost of road/link utilization
as well as minimizing the total penalties of uncovered demand nodes. Then, in order to
consider several system uncertainties, the proposed model is changed to a fuzzy robust
model by suitable approaches. An e�cient sub-gradient based Lagrangian relaxation
algorithm is applied. In addition, a practical example is studied. In the following, a
series of experiments, including several test problems, is designed and solved to evaluate
of the performance of the algorithm. The obtained results emphasize that considering
practical factors (e.g. several uncertainties, system disruptions, and customer satisfaction)
in modelling of the problem can lead to signi�cant improvement of the system yield and,
subsequently, more e�cient utilization of the established network.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Nowadays, most of the production industries, logistic
systems, and supply chains constantly look for systems
to simultaneously decrease several total costs and
improve the e�ciency of their structures. FL, Network
Design (ND), and allocation of demands to them are
the problems, which can obviously help to achieve
cost reduction and performance improvement goals,
e�ciently.

In this paper, we combine 3 topics, namely, FL,
ND, and facility covering, and study a multi-objective
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FL/NDP with regards to system uncertainty. The
proposed problem is considered as a two-objective-
function mathematical model such that the �rst objec-
tive function optimizes the �xed costs and operational
costs and the second objective function optimizes the
total penalty costs for any nodes that cannot be cov-
ered. The model simultaneously optimizes the network
costs and uncovering costs. Therefore, minimizing the
total costs and optimizing the customer satisfaction
are studied simultaneously. Accordingly, the proposed
model ampli�es the joint pro�ts of customers and the
network.

Several applications of the proposed problem can
be found in di�erent industries, services, and logistics
systems. There are some Supply Chains (SCs) and
logistics systems with a variety of uncertainties in
various practical problems. Simultaneously considering
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SC, logistics systems, ND, and a variety of system
uncertainties is critical in order to ameliorate the
e�ciency, productivity, and system safety. Some
of the well-known examples are airline and railroad
networks, pipelines for gas and water, and delivering
services systems such as �re stations, education centers,
universities, and health care centers. As a concluding
point, the best examples are SCs of di�erent spare
parts, food products, petrochemicals, etc.

The rest of the paper is organized as follows: In
Section 2, a brief review of the relevant literature on
the proposed problem is provided, and the research gap
and our contribution are explained in the following.
In Section 3, the mathematical model description
and its formulation are presented. In details, �rst,
the assumptions and notations are described. Then,
the multi-objective facility location network design
problem is described and, �nally, the fuzzy robust
model formulation is proposed. In Section 4, general
overview of the Lagrangian relaxation approach is
presented. In Section 5, the proposed approach for the
fuzzy robust multi-objective facility location network
design problem is explained. A practical example
and experimental analysis are discussed in Section 7.
Finally, conclusions and future works are explained.

2. Literature review and research gap

2.1. Background
To clearly describe our contribution, 3 main trends in
the literature can be reviewed that may be interesting
for comparison: (1) the FL/ND problem, (2) the multi-
objective FL Problems (FLPs), and (3) the FL with
parameter uncertainty. Clearly, these 3 research trends
are greatly related to the topic of this paper, i.e.
locating of facility concerning the ND multi-objective
problem and parameter uncertainty.

The �rst trend of research is on the FL problem
with respect to ND. Several studies have considered
FL, ND, and demand allocation problems, separately.
By simultaneously considering the FL and ND, the
proposed problem can be clearly explained in a more
practical modeling and formulation. The literature
emphasizes that the classical FLPs consist of the
uncapacitated FLPs, the maximum covering [1], the
p-center and p-median [2], and the set covering prob-
lems [3]. However, some studies have been done on
the FLPs with regards to the ND topic. Drezner and
Wesolowsky [4] presented some two-objective formula-
tions for designing of an initial network with potential
bi-directional links, each of which could be either
opened at a predetermined cost or not. Rahmaniani
and Ghaderi [5] formulated a Capacitated FL/ND
Problem (CFL/NDP) with multi-type transshipment
links and multi-type construction costs. Their math-
ematical formulation minimized the operational and

total transshipment costs. Also, Ghaderi and Jabal-
ameli [6] formulated a dynamic version of uncapac-
itated budget constrained FL/NDP with regards to
the planning horizon. This study was extended by
Ghaderi [7] with respect to equity-based objective. At
each time period, his model optimized the summation
of the total dynamic costs of the maximum travel
time. In another study, Rahmaniani and Ghaderi [8]
e�ectively solved the CFL/NDP by several simple suit-
able meta-heuristics according to the Variable Neigh-
borhood Search (VNS) approach. Hassanzadeh Amin
and Baki [9] proposed a multi-objective mixed-integer
linear programming model for a closed-loop supply
chain network by considering global factors, including
exchange rates and customs duties under uncertain
demand. A solution approach based on fuzzy pro-
gramming was developed for solving the optimization
problem. Taleizadeh et al. [10,11] developed a multi-
product multi-constraint supply chain problem under
fuzzy environment. Taleizadeh et al. [12] developed
a single-product single-period problem under fuzzy
demand in which a hybrid fuzzy simulation and meta-
heuristics algorithm was applied to optimize the prob-
lem.

The second trend of research is on multi-objective
FLPs. Nozick [13] modelled a �xed-charge FLP
considering some coverage constraints to minimize
cost and maintain a convenient service level, simul-
taneously, in recognizing FLs. Also, they presented
and tested two Lagrangian relaxations according to
two heuristics. Villegas et al. [14] formulated the
Colombian co�ee supply network as a bi-objective
(coverage and cost) uncapacitated FLP. They designed
two multi-objective evolutionary algorithms according
to the Pareto Archive Evolution Policy (PAEP) and
the Non-dominated Sorting Genetic Algorithm (NSGA
II). Farhan and Murray [15] presented some mathe-
matical formulations that simultaneously considered
some issues, including partial regional service, coverage
range, and the distance of the potential demand in
facility siting. Taleizadeh et al. [16] developed a
manufacturing system with scrap and rework process.
They considered a mutli-product single-manufacturing
facility to manufacture the items. Murray et al. [17]
presented two models for the Location Set Covering
Problem (LSCP) as LSCP-Explicit and LSCP-Implicit.
In the LSCP-Implicit approach, it was presumed that
each request region could be partially covered by one
facility, i.e. the whole demands of one region could
be covered by more than one facility. Jabalameli and
Mortezaei [18] considered a limited capacity for each
link for transferring the demands and formulated an
extension of the CFL/NDP. Maliszewski et al. [19]
combined the p-dispersion model with other FL objec-
tives as 4 multi-objective models. The objectives were
relevant to siting critical assets, such as the p-center, p-
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median, p-maxian, and max-cover models. Taleizadeh
et al. [20] and Taleizadeh and Pentico [21] studied
two incentive policies in inventory and supply chain
system. Xifeng et al. [22] proposed a methodology that
provided a multi-objective function optimization model
for the classical Uncapacitated FLP (UFLP) in order to
characterize the trade-o� among economic, service, and
environmental considerations. Eskandarpour et al. [23]
developed a multi-objective post-sales ND formulation
with regards to tactical and strategic decisions, which
was conducive to optimize the environmental pollu-
tion, all tardiness, and all �xed and variable costs,
simultaneously. Ozgen and Bahadir [24] studied an
uncertain four-stage SC network and simultaneously
minimized the maximum qualitative factors of ben-
e�t and total costs by combining a fuzzy analytical
hierarchical process approach and a two-phase pos-
sibility linear mathematical programming approach.
Sadjadi et al. [25] studied a capacitated multi-product
multi-level reverse logistics ND with fuzzy returned
products. Their model determined both locations
of the facilities and treatment activities. Afshari et
al. [26] studied the forward and reverse streams in a
multi-objective, multi-period, multi-commodity green
distribution-service network. They simultaneously op-
timized sustainability of the system, client euphoria,
and pro�tability by optimizing FL agreements. They
simultaneously minimized the location and operational
costs, and maximized the customer sustainable satis-
faction. Pasandideh et al. [27] formulated a multi-
period multi-product three-level SC network in which
the expected and the variance of the total location
and operational costs were simultaneously minimized.
Tavakkoli-Moghaddam et al. [28] formulated a multi-
objective facility location problem with congestion
and pricing policies. Their formulation dealt with
situations in which immobile service facilities were
congested by a stochastic demand following M/M/m/k
queues. Zhang et al. [29] modelled a multi-objective
public health-care facility location problem in which
health-care facilities should be located to improve the
equity of accessibility, raise the total accessibility for
the entire population, reduce the population that fell
outside the coverage range, and decrease the cost of
building new facilities. Hajipour et al. [30] formulated
a multi-objective multi-layer facility location-allocation
model with congested facilities using classical queuing
systems. The goal was to determine the optimal
number of facilities and service allocation at each layer.
They dealt with three objective functions aiming at:

1. Minimizing the sum of aggregate travel and waiting
times;

2. Minimizing the cost of establishing the facilities;
3. Minimizing the maximum idle probability of the

facilities.

Karasakal and Ahmet [31] proposed a bi-objective
facility location model that investigated both service
to uncovered demands and partial coverage. Due to
the limited number of facilities to be opened, some of
the demand nodes might not be within full or partial
coverage distance of a facility. Their objectives were
maximization of full and partial coverage, and mini-
mization of the maximum distance between uncovered
demand nodes and their nearest facilities.

The third trend of research is on the FL with
parameter uncertainty. In general, by formulating a
scenario-based stochastic program, this approach has
traditionally been incorporated into the FLP. One
of the �rst studies was done by Sheppard [32] who
proposed a scenario-based approach to FLPs. Tsiakis
et al. [33] studied a multi-level multi-product SC
with regards to the scenario-based demand uncertainty.
Shishebori and Jabalameli [34] and Shishebori et al. [35]
studied the reliable FL/NDP with respect to system
disruptions. They developed a Mixed Integer Nonlinear
Programming (MINLP) formulation for the problem.
In another study, Shishebori et al. [36] considered the
cost of system failures as the maximum accpetable
disruption cost and formulated the reliable FL/NDP
as MINLP. Shishebori and Youse�-Babadi [37] studied
a reliable and robust health care station location ND
problem, which simultaneously took an investment
budget constraint, system disruptions, and uncertain
parameters into account. Lu et al. [38] formulated
a reliable facility location design, which allowed dis-
ruptions at di�erent locations to be correlated with
an uncertain joint distribution. They distributionally
applied robust optimization to minimize the expected
cost under the worst-case distribution with predeter-
mined marginal disruption probabilities. Their worst-
case distribution had a practical interpretation with
disruption propagation and its sparse structure allowed
solving the problem e�ciently. Huang and Di [39] mod-
eled an uncapacitated facility location problem with
customers' positions subject to experts' estimations.
They used some uncertain variables to explain the
estimations of customers' positions and proposed an
expected distance minimization model. Jalali et al. [40]
formulated a bi-objective reliable FLP with multiple
capacity levels in a three-echelon SCM, while there
was a constraint on the coverage levels. Also, they
considered a provider-side uncertainty for Distribution-
Centers (DCs). Their goal was to �nd a near-optimal
solution including suitable locations of DCs and plants,
the fraction of satis�ed customer demands, and the
fraction of items sent to DCs to minimize the total cost
and maximize �ll rate, simultaneously. Keyvanshokooh
et al. [41] proposed a novel hybrid robust-stochastic
programming approach for a exible closed-loop supply
chain networks design in order to cover demands and
returns based on market conditions. They applied
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Figure 1. A general scheme of a FL/NDP.

Latin Hypercube Sampling with backward reduction
for scenario generation.

In the background, another approach to the
parameter uncertainty is fuzzy theory. In several
decision making states, great grade of uncertainties, as
fuzziness aspect, is enmeshed in the data collection.
Some studies introduced the fuzzy theory and its
application [42,43]. Also, some studies explained the
application of fuzzy optimization approaches to Linear
Programming (LP), Goal Programming (GP), and
other mathematical programming problems [43-54].

2.2. Research gap
Although much e�ort has been done for understanding
and mitigating several practical factors in di�erent
FLPs, early models assumed these practical factors sep-
arately. Accordingly, separately assuming these factors
can lead to unreal models, which cannot be suitable
and useful in the practical environment. Moreover,
sometimes these models do not adequately capture the
simultaneous impacts of several practical factors in
di�erent FLPs.

A signi�cant point in the formulating of FLPs is
to develop a suitable programming model, which can
obtain a reasonable practical solution. Four remarkable
subjects, which can help to achieve this goal, are FL,
ND, demand uncertainty, and multi-objectivity. We
briey explain the role of these subjects in formulating
FLPs, separately.

The contribution of this paper, versus the past
studies, is investigating an integrated scenario-based
approach to FLPs with regards to the mentioned
topics, which is conducive to improve the e�ciency
of FLPs. The problem is named fuzzy robust multi-
objective FL/NDP (FR/MO/FL/NDP). Simultane-
ously, considering 3 practical topics, namely, ND,
multi-objectivity, and parameter uncertainty, to pro-
pose the mathematical modeling of FLPs is the main
motivation of this research. To the best of the authors'
knowledge, this integrated subject has not been studied
yet.

3. Mathematical formulation and description

3.1. De�nition
In a geographic area, there are a set of towns as demand
nodes and a set of roadways as transshipment links.
In this region, there are some facility centers (e.g.
chain stores). Some new facility centers should be
located; some transshipment links should be selected
for utilization such that the total FL costs, �xed costs
of link utilization, and the variable transshipment costs
are minimized. On the other hand, it is desired to
maximize the covering of demand nodes. Thus, the
�rst objective optimizes the �xed cost (including FL
costs and link utilization costs) and operational costs
(including the variable transshipment costs), and the
second objective optimizes the total penalty costs for
any nodes that cannot be covered. One point that
should be considered is that the number of demands of
each node has stochastic behavior, i.e. this parameter
is not certain. Figure 1 illustrates a scheme of an
FL/NDP.

The major assumptions of the problem can be
described as follows: (I) All facility centers and
transshipment roads/links are capacitated; (II) Each
customer is either completely covered or not covered at
all; (III) The �xed cost of road/link utilization includes
the �xed costs of vehicle rent, the �xed contract
costs with vehicle transportation companies, the toll
costs, and other marginal costs on that road/link.
This de�nition of cost only depends on the quality
and distance of the considered road/link; (IV) All
transshipment costs and the demand of the node j are
uncertain and have stochastic behavior; (V) A speci�c
robust weight of solution variance is de�ned for each
objective function; (VI) The number of facilities is
predetermined.

3.2. Noti�cations
Sets:
� Set of demand nodes
� Set of transshipment roads/links
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Parameters:
Pf Number of new facilities to locate;
i Fixed location cost of a facility at node

i (i 2 �);
pij Fixed cost of link utilization (i; j)

((i; j) 2 �);
tij Transshipment cost of a unit ow on

link (i; j) ((i; j) 2 �);
LIB Maximum level of investment budget

constraint;
di Demand value at node i, (i 2 �);
�i Capacity of facility i (i 2 �);
M A big number;
�ij Capacity of road/link (i; j) ((i; j) 2 �);
�i Penalty of the uncoverage of demands

of node i (i 2 �);
kij 1 if the facility at node j covers

the demand of node i (i; j 2 �); 0
otherwise.

Decision variables:
Vi 1 if a facility center is located at node

i (i 2 �), 0 otherwise;
Uij 1 if a road/link (i; j) is selected for

utilization ((i; j) 2 �), 0 otherwise;
Nij Demand value on road/link (i; j)

((i; j) 2 �);
Wi 1 if demand of node i is not covered

(i 2 �), 0 otherwise.

3.3. Model formulation
3.3.1. The �rst objective
In the �rst objective, the total cost includes �xed
cost of facilities locating, �xed cost of links utilizing,
and variable transshipping cost. The �rst objective
function is organized as follows:

Minimize
X
i2�

i Vi +
X

(i;j)2�

pij Uij +
X

(i;j)2�

tij Nij ;

where
P
i2�

i Vi and
P

(i;j)2�
pij Uij are the �x costs andP

(i;j)2�
tij Nij is the transshipment costs.

3.3.2. The second objective
The second objective function optimizes the total
penalty costs of demand nodes that are not covered
by other opened facilities. The second objective can be
arranged as:

Minmize
X
i2�

�iWi:

When Wi = 1, node i is not covered by opened
facilities; thus, the penalty cost is equal to �iWi.

3.3.3. The multi-objective counterpart formulation
According to the assumptions and notations,
the MIP model of the Multi-Objective FL/NDP
(MO/FL/NDP) can be expressed as:

((MO/FL/NDP)):

Obj(I) =Minimize
X
i2�

iVi +
X

(i;j)2�

pijUij

+
X

(i;j)2�

tijNij ; (1)

Obj(II) = Minimize
X
i2�

�iWi; (2)

s.t.X
(i;j)2�

Nji� X
(i;j)2�

Nij+di � �i+M(1� Vi) 8i 2 �;
(3)X

(i;j)2�

Nij � X
(i;j)2�

Nji � di +M(Vi) 8i 2 �;
(4)X

(i;j)2�

Nij � X
(i;j)2�

Nji � di �M(Vi) 8i 2 �;
(5)X

j2�

kijVj +Wi � 1 8i 2 �; (6)

X
i2�

fiVi +
X

(i;j)2�

cijUij � LIB; (7)

Uij + Uji � 1 8(i; j) 2 �; (8)X
i2�

Vi = Pf ; (9)

Nij � �ijUij 8(i; j) 2 �; (10)

Vj ;Wi 2 f0; 1g 8i; j 2 �; (11)

Uij 2 f0; 1g 8(i; j) 2 �; (12)

Nij � 0 8(i; j) 2 �: (13)

Eqs. (1) and (2) are objective functions. The �rst
one presents minimization of the total costs, including
FL, road/link utilization, and transshipment costs;
the second one illustrates minimization of the total
penalty costs of demands uncovering. Constraints (3) -
(5) present the ow conservation constraints. Con-
straint (6) ensures thatWi = 1 when the demand point,
i is covered by no facilities. The investment budget con-
straint is illustrated in Constraint (7). Constraints (8)
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presents that the transshipment link cannot be selected
for utilization in both directions of (i; j) and (j; i).
Constraint (9) presents the predetermined number of
facilities that have to be opened. Constraint (10) is
the capacity of the links. Constraints (11)-(13) are
non-negativity and standard integrality constraints of
decision variables.

3.3.4. Robust optimization approach
Basically, most of the SCs and logistic systems can
be a�ected by two broad categories of risk. The
�rst category is parameter (e.g. demand, �xed costs,
operational costs, and lead times) uncertainty and the
second category is system disruptions (e.g. economic
disruptions, strikes, natural disasters, and terrorist
attacks). One of the most e�cient approaches to
deal with the �rst category is Robust Optimization
(RO). This approach has been applied broadly in the
area of uncertain control and optimization since the
late 1990s. The most common RO approaches are
Mulvey et al. [55] , Ben-Tal and Nemirovski [56-58], and
Bertsimas and Sim [59,60]. As the Mulvey approach
is easily understandable for many designers/architects
and it has a scenario-based problem, this robust ap-
proach is considered, which is conducive to cope with
related parameter uncertainties. For more details of
this robust optimization approach, the readers can refer
to Mulvey et al. [55], Yu and Li [61], Leung et al. [62],
Bozorgi-Amiri et al. [63], and Shishebori and Youse�-
Babadi [37].

3.3.5. The robust multi-objective counterpart
formulation

The robust MO/FL/NDP (R/MO/FL/NDP) model is
an uncertain model, which can be reduced by using
Eqs. (26)-(28). Accordingly, the R/MO/FL/NDP can
be modelled as follows (before the representation of
the robust model, some new nomenclature should be
introduced):

Sets:

 Set of uncertain scenarios; 
 =

f1; 2; :::; sg
Parameters:
�1 Determined weight of the solution

variance of the �rst objective;
�2 Determined weight of the solution

variance of the second objective;
dsi Demand at node i under uncertain

scenario s (i 2 � ; s 2 
);
tsij Transshipment cost of a unit ow

on road/link (i; j) under uncertain
scenario, s ((i; j) 2 �; s 2 
);

�s Probability of uncertain scenario s
(S 2 
).

Decision variables:
�s1 Robust method variable for the �rst

objective function;
�s2 Robust method variable for the second

objective function;
Ns
i;j Demand value of transshipment

road/link (i; j) under uncertain
scenario s ((i; j) 2 �; s 2 
).

R/MO/FL/NDP:

minZ1 =
X
s2


�s:�s + �1
X
s2


�s:
��
�s �X

s02


�s
0
:�s
0
�

+ 2�s1

�
+
X
i2�

iVi +
X

(i;j)2�

pijNij ; (14)

minZ2 =
X
s2


�s:&s + �2
X
s2


�s
��
&s �X

s02


�s
0
:&s
0
�

+ 2�s2

�
; (15)

s.t.

�s �X
s2


�s:�s + �s1 � 0 8s 2 
; (16)

&s �X
s2


�s:&s + �s2 � 0 8s 2 
; (17)

X
(j;i)2�Ns

ji �
X

(i;j)2�

Ns
ij + dsi � �i +M(1� Vi)

8i 2 �; 8s 2 
; (18)X
(i;j)2�Ns

ij �
X

(i;j)2�

Ns
ji � dsi +M(Vi)

8i 2 �; 8s 2 
; (19)X
(i;j)2�Ns

ij �
X

(i;j)2�

Ns
ji � dsi �M(Vi)

8i 2 �; 8s 2 
; (20)

Ns
ij � �ijUij 8(i; j) 2 �;8s 2 
; (21)

Ns
ij � 0 8(i; j) 2 �; 8s 2 
; (22)

�s1; �
s
2 � 0 8s 2 
; and integer, (23)

and Constraints (6)-(9), (11), (12), where �s =P
(i;j)2�

tsij Ns
ij , and &s =

P
i2�

�s
i Wi.
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Constraints (14)-(15) present the robust objective
function by Muley et al. [55] approach. Constraints
(16)-(17) represent the linearization of the objective
function in the RO method. Constraints (6)-(9), (11),
(12), (21), and (22) have been described previously.
In addition, Constraint (23) illustrates the general
integrality constraints of decision variables.

3.3.6. Fuzzy goal programming
The weighted "-constraint, Goal Programming (GP),
Pareto optimal, and the LP-norm are the most popular
methods in the literature for treating multi-objective
optimization problems [63-67]. In multi-objective prob-
lems, since the objective functions have several conicts
with each other, obtaining an optimal solution, which
can optimize all of the objective functions altogether,
is very di�cult in most of the times (or impossible
sometimes). Accordingly, instead of obtaining an op-
timal solution, �nding an e�cient solution, which can
satisfy all of the objective functions near optimality,
can signi�cantly help several decision makers to ap-
proach some practical reasonable solutions for di�erent
industries/services environments. Due to its numerous
applications in solving multi-objective problems and
being easily understandable to several decision makers,
the GP is employed. Moreover, due to the capability of
fuzzy set theory for �nding the suitable crisp solutions
in uncertain environments, Fuzzy Goal Programming
(FGP) is employed for solving the R/MO/FL/NDP.

The �rst studies applied the concept of mem-
bership functions and, accordingly, proposed an FGP
formulation [45,68,69]. If the ith goal of the multi-
objective mathematical model is obtained and the
Decision Maker (DM) is generally satis�ed, then its
membership function is equal to 1; otherwise, the
membership function has a value between 0 and 1.
Accordingly, the membership functions have values in
the interval [0, 1]. The readers can study the detailed
formulation of FGP problem in [43,44,70].

3.3.7. The fuzzy robust goal programming counterpart
formulation

The necessary sets and variables can be de�ned as
follows:

Sets:
T Set of objective functions, T = 1; 2
Variables:
 Min fmembershipsg
FR/MO/FL/NDP:

max ; (24)

s.t.

 � 1� (Zt � Lt)
(Ut � Lt) 8t 2 T; (25)

and Constraints (6)-(9), (11), (12), (16)-(23), where
 is named the value of decision maker satisfaction
[44]. The more this index approaches 1, the better
it becomes.

3.3.8. Complexity
Property 1 establishes that the FR/MO/FLNDP prob-
lem is NP-hard, since it has the P -median problem
and capacitated location-allocation problem, which are
themselves NP-hard, as a special case.

Property 1. The FR/MO/FLNDP problem is NP-
hard.

Proof. The FR/MO/FLNDP is an extension of the
MO/FLNDP. If we remove the second objective of
the MO/FLNDP, and if we remove Eqs. (3)-(5), (8),
and (10) and set pij = uij = 0 and LIB = 1,
then the FR/MO/FLNDP reduces to the classical P -
median problem. Since the P -median problem is NP-
hard [71], because the FR/MO/FLNDP is an extension
of the classical P -median problem, it is also an NP-hard
problem.

On the other hand, it can be said that the
FR/MO/FLNDP is an extension of the MO/FLNDP.
If we remove the second objective of the MO/FLNDP,
and if we remove Eqs. (3)-(5), (8), and (10) and set
uij = 0 and LIB = 1, then the FR/MO/FLNDP
reduces to the classical capacitated location-allocation
problem. Since the capacitated location-allocation
problem is NP-hard [72], the FR/MO/FLNDP is an
extension of the capacitated location-allocation prob-
lem; therefore, it is an NP-hard problem.

4. Lagrangian relaxation

Solving the FR/MO/FL/NDP by GAMS software is
very time consuming, especially for large-scale prob-
lems. Accordingly, it can be concluded that proposing
an e�cient solution approach is necessary. Regarding
the e�ciency of the Lagrangian relaxation approach
for solving several FLPs, this approach is applied and
customized. In the following, the proposed customized
algorithm for the FR/MO/FL/NDP is described in
details.

4.1. General points
The literature on the Lagrangian Relaxation (LR)
dates back to 1970. In 1970 and 1971, Held and
Karp [72,73] applied an LR approach based on the
minimum spanning trees in order to design a well-
organized algorithm for the Traveling Salesman Prob-
lem (TSP). This successful application motivated some
researchers. Fisher [74-76] was one of the researchers
who developed the application of this algorithm to the
general integer programming models and the schedul-
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ing problems. Since then, this algorithm has been ap-
plied to e�ciently solve several practical mathematical
programming models. In the following, some studies
related to the subject of this study are mentioned.
Fisher [74-76] provided great discussions on the numer-
ical perspectives and applications of LRs.

The LR was successfully applied in solving dif-
ferent types of FLPs (FLP). CFLP is one of the
several types of FLPs that have been solved by the
LR approach, see [73,77-84].

Also, LR has been successfully applied for other
types of FLPs, see [85-89].

4.2. The main structure
The combinatorial optimization problem P is modeled
as an Integer Programming (IP) mathematical formu-
lation:

(P ):

Z = min ��; (26)

s.t.

T� � �; (27)

�� = #; (28)

� � 0; and integer; (29)

where �, �, and # are matrices with dimensions n� 1,
k � 1, and m � 1, respectively. Also, the remaining
matrices have related similar dimensions. Assume
that LRP represents the problem P with relaxing of
Constraint (28) and it is added as a penalty to the
objective. The optimal value of LRP is illustrated by
ZLP .

Suppose that the constraints of the (P ) are
categorized as two constraint sets: I) �� = #, II)
T � � �; therefore, the Lagrangian problem can be
solved easily.

LRP : ZD(�) = min; �� + �(��� #); (30)

s.t.

T � � �; (31)

� � 0; and integer, (32)

where � = (�1; :::;�m) is the vector of Lagrangian
coe�cients. Z� presents the obtained solution to the
problem (P ) from the CPLEX solver of GAMS soft-
ware. Since Constraint (33), as a complex constraint,
is relaxed, the problem (LRP ) can be solved easier
than the problem (P ). Suppose that the set XX =
f�jT� � �;� � 0 and integerg presents the possible
bounded solution to the LR� and (P ) is a feasible

problem. Accordingly, ZD(�) will be bounded for all
values of ~�l (i.e., 8�� 2 �; l = 1; 2; :::;m).

Accordingly, we have ZD(�) � Z�. Also, if ��
presents the optimal solution to problem P , it will be
concluded that:

ZD(�) � ��� + �(��� � #) = Z�: (33)

Therefore, if �� = � is substituted by �� � � in (P ),
then � � 0 is needed and the a�rmation leads to:

ZD(�) � ��� + �(��� � #) � Z�: (34)

In a similar way, � � 0 is necessary for establishing
the equation ZD(�) � Z�. Mainly, there is not any
guarantee for �nding the suitable � such that ZD(�) =
Z� ; however, it can be easily observed that the suitable
� is found most of the times.

Since ZD(�) = Z�, (LRP ) can be substituted
with (LR�) in order to provide some e�cient lower
bounds in exact algorithms (e.g. the B & B algorithm)
for (P ). This is known as the most usual application of
the LR� and other applications can be de�ned, e.g. it
can be an indicator for selecting the suitable variables
and the next branch of search operation. Perturbing
nearly feasible solutions to (LR�) can lead to suitable
possible solutions to (P ) [87,90].

As it was mentioned, ZD(�) presents a lower
bound of the problem Z. To catch an upper bound
of the problem, the value of �, obtained from solving
ZD(�), is substituted in the main (P ) and an upper
bound is obtained. In the following, the proposed LR
approach is presented.

5. The proposed approach

Since the highest complexities of the model
(FR/MO/FL/NDP) are related to Constraints (18)-
(20), they are relaxed. Accordingly, the Sub-Gradient
based Lagrangian Relaxation (SGbLR) of the model
(FR/MO/FL/NDP) can be rewritten as follows:

SGbLR/FR/MO/FL/NDP:

max  

+
X

i2�;s2


�1
i;s

�� X
(i;j)2�

Ns
ji �

X
(i;j)2�

Ns
ij + dsi

�
� (�i +M(1� Vi))

�
+

X
i2�;s2


�2
i;s

�� X
(i;j)2�

Ns
ij �

X
(i;j)2�

Ns
ji

�
� (dsi +M(Vi))

�
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+
X

i2�;s2


�3
i;s

�
�
� X

(i;j)2�

Ns
ij �

X
(i;j)2�

Ns
ji

�
� (dsi �M(Vi))

�
; (35)

s.t. Constraints (6)-(9), (11), (12), (16), (17), (21)-
(23), and (25), where, in the objective function (Con-
straint (35)), the values of �1

i;s; �2
i;s; �3

i;s are �1
i;s �

0;�2
i;s � 0;�3

i;s � 0, because �3
i;s, which is related to

Constraint (30), should be �3
i;s � 0 in order to satisfy

the inequation ZD(�) � Z.
Several methods (e.g. sub-gradient, surrogate sub-

gradient, coe�cients correction, column generation,
bundle, cutting plane) have been proposed for up-
dating Lagrangian coe�cients. However, the sub-
gradient method is known as a popular method in

the literature [74]. This method has had a suitable
performance for several mathematical programming
problems. The sub-gradient method is a repetitive
approach, which starts with some initial values for
the Lagrangian coe�cients. Then, the values of these
coe�cients are changed via a systematic procedure.
The goal is maximizing the lower bound, obtained by
the Lagranian problem (SGbLR/FR/MO/FL/NDP),
via �nding the best values of the Lagrangian coe�-
cients. Therefore, the Sub-Gradient based Lagrangian
Relaxation (SGbLR) approach is used to solve the
presented FR/MO/FL/NDP mode.

Suppose that the constraint
P
j2� �ij�j �

�i; 8i 2 �, is selected to be added to the objective
function. Accordingly, the sub-gradient method of
Stage 2 in Figure 2 is briey outlined as follows:

Step 1: � is a parameter that is determined by

Figure 2. The owchart of the proposed SGbLR approach.
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decision makers between 0 and 2 (i.e. 0 < � � 2).
ZUB is a possible solution to the main problem, which
is acquired by heuristic methods. Also, �� presents
the initial arbitrary Lagrangian coe�cients;
Step 2: The Lagrangian problem is �gured out with
the Lagrangian coe�cients of Step 1. Accordingly,
the value of the lower bound of the main problem
(ZLB) and the value of decision variables (�j) are
determined;
Step 3: For each relaxed constraint, a sub-gradient,
named Gi, is de�ned as follows:

Gi = �i �X
j2�

�ij�j ; 8i 2 �: (36)

Step 4: In order to update of the direction of the
SGbLR vector (�), a step scale, named T , is de�ned
as follows:

T =
�(ZUB � ZLB)P

i2�G2
i

: (37)

It is recommended that, at �rst, � should be set
to 2 (� = 2). If in the predetermined number of
iterations, no improvement of ZD(�) is obtained, �
can be reduced to half its previous value;
Step 5: The value of �i is updated via Eq. (38).
Then, we come back to Step 2 and �gure out the La-
grangian problem with new Lagrangian coe�cients:

�i = max(0;�i + TGi); 8i 2 �: (38)

It is noted that one of the following conditions (or
similar cases) can be the termination condition: (I)
reducing � until this parameter reaches a predeter-
mined value and (II) doing a predetermined number
of iterations.

6. A practical example

Here, a practical example is described with 30 nodes.
Five nodes should be selected and constructed among
the 30 proposed nodes. Other information (e.g. FL
costs and transshipment costs) has been provided by
Shishebori and Youse�-Babadi [37]. The problem is
solved by applying the proposed SGbLR approach and,
after solving, 0.88 is obtained for  .

Figure 3 presents the behavior of the objective
value of SGbLR/FR/MO/FL/NDP ( ) versus Pf .

Based on Figure 3, it is obvious that locating
of excessive facilities cannot improve decision maker
satisfaction. Figure 3 emphasizes that if 12 facilities
of 30 potential facilities are located, the maximum
decision maker satisfaction will be attained.

Another important factor, which can a�ect the
objective value, is the value of Budget Constraint (BC).

Figure 3. Changes of decision maker satisfaction (	)
versus the Pf .

Figure 4. Changes of decision maker satisfaction for
di�erent values of investment budget.

Figure 4 shows how the changes of BC can a�ect the
optimal objective value of FR/MO/FL/NDP.

Through Figure 4, it can be clari�ed that exces-
sive budget investment does not necessarily lead to
designer satisfaction. Figure 4 emphasizes that the
optimal budget investment value, which can lead to
the maximum value of decision maker satisfaction, is
16,000,000 MU (Monetary Unit).

7. Numerical results

In order to evaluate the performance of the SGbLR
solution algorithm, relatively comprehensive numerical
experiments were done. The algorithm was coded in
GAMS 24.1.2 and performed by the CPLEX solver on
a computer with a core 2 Due @ 2.0 GHz and 8 GB
RAM operating with windows 7.0.

7.1. Experimental design
Fifty-seven test problems with several sizes were solved.
These problems were randomly generated by the uni-
form distribution function with several uncertainty sce-
narios. According to the historical data, some changing
conditions (e.g. climate change, uctuations in stock
market costs, etc.) can lead to uncertainty in some of
the input parameters of the proposed model. In this
study, the demands of each node as well as the trans-
shipment unit costs are stochastic as some scenarios.
Therefore, the value of demand transshipment will be
stochastic. These uncertain situations are categorized
as follows: excellent, good, medium, and bad with
probabilities of 0.25, 0.28, 0.32, and 0.2, respectively.
The transshipment cost for each client in kilometers is



1760 D. Shishebori et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 1750{1767

de�ned as a proportion of distance for the 4 mentioned
scenarios as follows, 0.0040, 0.0035, 0.0025, and 0.0015,
respectively. The �xed cost of opening each facility
uniformly varies between [27,000,000{48,000,000] MU
(Monetary Unit). The �xed cost of link utilization is
obtained by multiplying a coe�cient (85,000) by the
distance between each two nodes. The capacity of the
facilities is obtained by multiplying a coe�cient (10)
by the expected value of node's demand. Also, the
robust parameters, including the determined weight
of the solution variance of the �rst objective (�1),
the determined weight of the solution variance of the
second objective (�2), and probability of uncertain
scenario (�s), are randomly generated between (0.2,2),
(0.2,2), and (0.1,1), respectively. In order to normalize
the generated data, the summation of �s is limited to 1
for all scenarios. It is noted that the procedure for gen-
erating these parameters is according to Bozorgi-Amiri
et al. [63] and Shishebori and Youse�-Babadi [37].

7.2. Algorithm performance
Table 1 compares the performance of the CPLEX
with that of the proposed SGbLR algorithm. For
each algorithm, the table illustrates the objective value
(\Value") and the CPU time (\Time"). The CPU time
for the proposed algorithm includes the computational
time required to solve the SGbLR in Stage 2 in
Figure 2, which is then used as an input to the main
stage (Stage 3 in Figure 2) of the algorithm. In
addition, Table 1 presents the objective function values
from the SGbLR (\LRB") and CPLEX (\CB"). \LRB"
presents the CPU time of the SGbLR solved in Step 2
of the proposed algorithm. The ratio of the objective
value of the best solution obtained from the CPLEX to
the corresponding value from the proposed algorithm
can be calculated as follows:

RatioObj.Fun( )
(%)

=
Objective function( )SGbLR

Objective function( )Cplex
� 100; (39)

RatioTime (%) =
TimeSGbLR

TimeCplex
� 100: (40)

In Table 1, values less than 100% in the \Ratio
(%)" column (with \Value" and \Time" sub-columns)
indicate that the proposed SGbLR algorithm out-
performs the CPLEX concerning CPU time and the
objective function value, respectively. The applied
SGbLR algorithm is faster than the CPLEX for most
of the test problems. In addition, no feasible solution
in the allowed time (i.e. 6000s) is speci�ed by the
symbol \n=a" in the table. It is shown that for
a few instances (especially for small-size instances),
the CPU time of the SGbLR algorithm is more than
that of the CPLEX; because, basically, the SGbLR

algorithm is applied to a vast variety of instances with
several sizes and the performance of the algorithm is
better observable when the amount of the instances
grows.

Table 1 shows that the solutions attained by the
algorithm are, on average, 0.458% (100%� 99:542% =
0:458%) less than those attained by CPLEX, i.e. it
can provide similar or better solutions than CPLEX
does for medium and relatively great-scale instances.
Moreover, the SGbLR is much faster; it requires only
50.766% of the CPLEX's time, on average, and does
not fail to obtain solutions to any of the test problems
throughout the time bound, whilst CPLEX fails to do
so for 16 out of the 70 test problems.

With attention to Table 1 and Figures 5-16, it
is clear that the SGbLR algorithm has signi�cantly
low CPU time in comparison with CPLEX, while the
objective values of both the SGbLR algorithm and
CPLEX are almost similar. However, it is observed

Figure 5. Varying of CPU time for several values of
demand nodes with Pf = 5.

Figure 6. Varying of the 	 for several values of demand
nodes with Pf = 5.

Figure 7. Varying of CPU time for several values of
demand nodes with Pf = 6.
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Table 1. Comparison of the performance of the proposed SGbLR versus CPLEX.

Instance
abbreviation

Pf N CPLEX SGbLR Ratio (%)
Value Time Value Time Value Time

IS1

5

20 0.889 7.374 0.884 9.451 99.438 128.167
IS2 50 0.981 29.044 0.977 33.313 99.592 114.698
IS3 60 0.986 1231.094 0.981 51.725 99.493 4.202
IS4 70 n=a 2115.448 0.984 90.313 n=a 4.269
IS5 90 n=a 3500.400 0.987 226.248 n=a 6.463

IS6

6

20 0.871 6.003 0.864 9.698 99.196 161.553
IS7 40 0.968 18.568 0.963 21.361 99.483 115.042
IS8 50 0.979 30.009 0.978 34.238 99.898 114.092
IS9 60 0.985 92.750 0.979 48.473 99.391 52.262
IS10 70 0.989 363.976 0.983 70.190 99.393 19.284
IS11 80 0.991 755.562 0.988 112.073 99.697 14.833
IS12 90 0.993 204.162 0.990 212.126 99.698 103.901
IS13 100 n=a 3661.134 0.995 314.245 n=a 8.583
IS14 110 n=a 4758.000 0.995 2469.197 n=a 51.896

IS15

7

20 0.874 7.579 0.853 8.250 97.597 108.853
IS16 40 0.968 31.355 0.953 19.032 98.450 60.698
IS17 50 0.976 20.884 0.943 29.159 96.619 139.624
IS18 60 0.984 94.204 0.979 42.618 99.492 45.240
IS19 70 0.989 92.929 0.982 65.345 99.292 70.317
IS20 80 0.991 253.063 0.986 104.265 99.495 41.201
IS21 90 0.993 387.364 0.990 148.872 99.698 38.432
IS22 100 0.994 309.629 0.989 200.321 99.497 64.697
IS23 110 0.995 784.111 0.992 267.077 99.698 34.061
IS24 120 0.996 633.000 0.992 310.447 99.598 49.044
IS25 150 0.997 1409.328 0.994 714.652 99.699 50.709
IS26 160 0.997 2402.000 0.995 1248.253 99.799 51.967
IS27 170 n=a 5361.509 0.998 181.351 n=a 3.382
IS28 180 n=a 5400.000 0.998 2641.595 n=a 48.918

IS29

8

20 0.897 5.157 0.893 8.804 99.554 170.719
IS30 40 0.969 27.479 0.963 17.489 99.381 63.645
IS31 50 0.976 43.578 0.974 23.587 99.795 54.126
IS32 60 0.984 139.460 0.977 39.115 99.289 28.047
IS33 70 0.985 167.147 0.981 49.408 99.594 29.560
IS34 80 0.989 302.278 0.986 92.482 99.697 30.595
IS35 90 0.991 415.648 0.988 194.196 99.697 46.721
IS36 100 0.993 612.718 0.989 211.041 99.597 34.443
IS37 110 0.995 1037.188 0.991 280.243 99.598 27.019
IS38 120 0.995 788.675 0.991 366.711 99.598 46.497
IS39 130 0.996 1270.595 0.992 479.864 99.598 37.767
IS40 150 0.997 1980.000 0.996 718.667 99.900 36.296
IS41 170 0.998 2402.000 0.995 1243.666 99.699 51.776
IS42 180 n=a 4230.188 0.995 1324.871 n=a 31.319
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Table 1. Comparison of the performance of the proposed SGbLR versus CPLEX (continued).

Instance
abbreviation

Pf N CPLEX SGbLR Ratio (%)
Value Time Value Time Value Time

IS43 190 n=a 4723.669 0.996 2024.569 n=a 42.860
IS44 200 n=a 5435.678 0.998 2244.402 n=a 41.290

IS45

9

50 0.973 49.607 0.969 29.159 99.589 58.780
IS46 60 0.976 101.222 0.972 42.618 99.590 42.103
IS47 70 0.985 143.017 0.981 65.345 99.594 45.690
IS48 80 0.989 245.595 0.986 104.265 99.697 42.454
IS49 90 0.990 205.437 0.987 174.196 99.697 84.793
IS50 100 0.991 361.219 0.990 201.041 99.899 55.656
IS51 110 0.993 539.674 0.991 260.243 99.799 48.222
IS52 120 0.994 859.818 0.993 356.711 99.899 41.487
IS53 130 0.993 1326.328 0.991 459.864 99.799 34.672
IS54 150 0.998 2358.214 0.994 479.453 99.599 20.331
IS55 160 n=a 3865.686 0.996 598.667 n=a 15.487
IS56 170 n=a 4019.557 0.997 1047.030 n=a 26.048
IS57 200 n=a 5115.975 0.998 1674.296 n=a 32.727

IS58

10

80 0.987 161.000 0.987 47.670 100.000 29.609
IS59 90 0.990 214.700 0.989 84.210 99.899 39.222
IS60 100 0.992 221.870 0.992 106.230 100.000 47.879
IS61 120 0.994 449.860 0.991 170.050 99.698 37.801
IS62 140 0.996 712.250 0.994 314.780 99.799 44.195
IS63 170 0.997 1166.610 0.996 590.510 99.900 50.618
IS64 180 0.997 2290.960 0.996 817.990 99.900 35.705
IS65 190 0.997 2297.740 0.997 1068.100 100.000 46.485
IS66 200 0.998 3076.370 0.995 1217.180 99.699 39.565
IS67 230 n=a 6920.730 0.997 3042.070 n=a 43.956
IS68 250 n=a 8120.380 0.997 4779.590 n=a 58.859
IS69 270 n=a 21060.000 0.998 5820.000 n=a 27.635
IS70 300 n=a 25342.657 0.998 6234.340 n=a 24.600

Average 0.981 2125.263 0.981 696.980 99.542 50.766

Figure 8. Varying of the 	 for several values of demand
nodes with Pf = 6.

that the CPU time of CPLEX has considerably grown
with increase in the number of demand nodes and
the size of the problem. Moreover, sometimes, the
CPLEX cannot �nd any feasible solution to the prob-
lem.

8. Conclusion

The fuzzy robust multi-objective FL/NDP was studied
concerning two additional aspects of budget invest-
ment constraints and system reliability. The problem
was called the fuzzy robust multi-objective FL/NDP
(FR/MO/FL/NDP) and formulated as an MIP model.
In addition, an e�cient algorithm based on SGbLR
was applied. The obtained results by the experimental
design showed the e�ciency of the algorithm versus
CPLEX with regards to solution speed, while it still
maintained excellent solution quality.

For future research, some directions are recom-
mended. First, we considered the fuzzy aspect of the
FR/MO/FL/NDP; however, other aspects of uncer-
tainty (e.g. several probability distributions, intervals,
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Figure 9. Varying of CPU time for several values of
demand nodes with Pf = 7.

Figure 10. Varying of the 	 for several values of demand
nodes with Pf = 7.

Figure 11. Varying of CPU time for several values of
demand nodes with Pf = 8.

Figure 12. Varying of the 	 for several values of demand
nodes with Pf = 8.

etc.) can be considered. Second, di�erent applications
of the FR/MO/FL/NDP in several industrial environ-
ments and service systems, as a case study, can be
considered and studied. Third, and �nally, proposing
an e�cient approach (e.g. Sample Average Approx-

Figure 13. Varying of CPU time for several values of
demand nodes with Pf = 9.

Figure 14. Varying of the 	 for several values of demand
nodes with Pf = 9.

Figure 15. Varying of CPU time for several values of
demand nodes with Pf = 10.

Figure 16. Varying of the 	 for several values of demand
nodes with Pf = 10.

imation (SAA), Monte Carlo simulation, etc.) for
the FR/MO/FL/NDP, when the number of scenarios
increases, can be another consideration.
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