
Scientia Iranica E (2018) 25(3), 1641{1655

Sharif University of Technology
Scientia Iranica

Transactions E: Industrial Engineering
http://scientiairanica.sharif.edu

An application of genetic algorithm and PSO in an
inventory model for a single deteriorating item with
variable demand dependent on marketing strategy and
displayed stock level

A.K. Bhuniaa, A.A. Shaikhb;�, V. Dhakac, S. Pareekc, and L.E. C�ardenas-Barr�onb

a. Department of Mathematics, The University of Burdwan, Burdwan-713104, India.
b. School of Engineering and Sciences, Tecnol�ogico de Monterrey, Ave. E. Garza Sada 2501 Sur, C.P. 64849, Monterrey, Nuevo

Le�on, M�exico.
c. Department of Mathematics & Statistics, Banasthali University, Banathali, India.

Received 22 April 2015; received in revised form 14 October 2016; accepted 6 March 2017

KEYWORDS
Inventory;
Deteriorating;
Variable demand;
Display stock level;
Genetic algorithm;
Particle swarm
optimization.

Abstract. This paper deals with an inventory model applied to a single deteriorating item
considering the impact of marketing decisions and displaced stock level on the demand.
Partial backlogged shortages are allowed. Di�erent scenarios have been investigated
through analyzing the shop storage capacity and demand parameters. For each scenario,
the corresponding problem has been formulated as a nonlinear mixed integer optimization
problem and solved by a real coded genetic algorithm and a particle swarm optimization
technique. To illustrate the inventory model, a numerical example has been solved and
sensitivity analyses have been done numerically to study the e�ect of changes of di�erent
parameters on the optimal policies.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

In the existing literature of inventory control theory,
it is observed that the conventional inventory models
have been developed under the assumption that the
lifetime of an item is in�nite during the stock-in period,
implying that the utility of an item does not change in
the stock-in period and is fully usable for satisfying
any future demand. However, this assumption is not
always true for some commonly used physical products,
such as wheat, paddy or any other type of food grains,
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vegetables, fruits, among others, due to the deterio-
ration e�ect. A certain fraction of these products is
either damaged or decayed, or a�ected by some other
factors. In some cases, the deteriorated units are not
completely lost due to good inventory management.
These units can be sold with a reduced price, obviously
less than the purchase cost. Hence, the deterioration
e�ect plays a crucial role in the inventory control
theory. For highly perishable goods, the loss due to the
deterioration e�ect can either be avoided or reduced by
ful�lling the backlogged demand, and the procurement
of products can be done economically. Hence, the
problem of �nding a proper trade-o� between these
items is a highly complex problem, and this type of
problem has naturally received much attention in the
inventory literature. In this area, a large number
of mathematical models have been reported in the
existing literature. Among those, to get an idea of the
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trends of the recent research, one may refer to the works
of Mondal and Phaujdar [1], Pakkla and Achary [2],
Goyal and Gunasekaran [3], Giri et al. [4], Bhunia and
Maiti [5,6], Luo [7], Chang and Dye [8], Abad [9], Pal
et al. [10], Dye et al. [11], Pal et al. [12], Teleizadeh et
al. [13], Bhunia et al. [14], Bhunia and Shaikh [15,16],
Liang and Zhou [17], Yang [18], Teleidadeh et al. [19],
Teleidadeh et al. [20], Bhunia et al. [21], Yang and
Chang [22], Teleizadeh et al. [23,24], Teleizadeh et
al. [25], Bhunia and Shaikh [26], Bhunia et al. [27],
Bhunia et al. [28], Bhunia et al. [29], and others.

In the current competitive market situation,
a product is promoted in the society through the
glamorous advertisement in the electronic, print me-
dia and/or by an attractive display of units in the
showroom at the market. Glamorous display of the
large number of units with modern light and elec-
tronic arrangements attracts people to purchase more.
Observing this phenomenon, most of the marketing
researchers and practitioners have become motivated
to investigate its modeling aspects. Basically, they
concluded that the demand rate of an item is dependent
on the displayed stock-level in the showroom/shop.
Again, time-to-time advertisement (through the well-
known media such as TV, Radio, Newspaper, Maga-
zine, internet, etc. and also through the sales repre-
sentatives) of an item and its selling price variations
also change the demand of that item. Therefore,
it can be concluded that there exists a functional
relationship among the demand of an item, displayed
stock-level in a showroom/shop, selling price, and
the frequency/cost of the advertisement of that item.
To the best of our knowledge, this type of demand
was �rst reported in the inventory models developed
by Pal et al. [10] and Mondal et al. [30]. On the
one hand, considering only the displayed stock-level
dependent demand, Baker and Urban [31], Mondal and
Phaujdar [1], Datta and Pal [32], Urban [33], Paul et
al. [34], Giri et al. [4], and others developed di�erent
types of inventory models. On the other hand, very
few researchers studied the e�ects of price variations
and/or the advertisement on the demand of an item.
Among them, one may refer to the works of Urban [35],
Goyal and Gunasekaran [3], Bhunia and Maiti [5],
Luo [7], Abad [9,36], Pal et al. [10,37], Bhunia and
Shaikh [15], Bhunia and Shaikh [26] and Bhunia et
al. [29], Sarkar [38-40], Sarkar et al. [41,42], Sarkar and
Sarkar [43,44], among others.

Generally, the decision-making problems are
solved by traditional direct or gradient-based optimiza-
tion methods. There are some shortcomings in the use
of these methods. One such shortcoming is that the
traditional non-linear optimization methods are very
often stuck to the local optima. To avoid some of
these shortcomings, one of the soft computing methods,
Genetic Algorithm (GA), is used for solving decision-

making problems. It is a computerized stochastic
search and optimization algorithm based on the me-
chanics of natural selection and natural genetics [45].
It is executed iteratively on the set of either real or
binary coded solutions called population. In each
iteration (which is called generation), three basic ge-
netic operations, i.e. selection/reproduction, crossover,
and mutation, are performed. Prof. J.H. Holland
of University of Michigan envisaged the fundamental
concept of this algorithm in the mid-seventies and
published his seminal work [46]. Thereafter, a number
of researchers have contributed to the development of
this �eld. Detailed discussions on the development of
this subject are available in the books of Goldberg [45],
Michalawicz [47], Deb [48], Sakawa [49], and others.

Over the last decade, this algorithm has been suc-
cessfully applied to solving di�erent types of decision-
making problems such as travelling salesman prob-
lems, scheduling problems, numerical optimization, etc.
However, till now, only a very few researchers have
applied it to solve problems in the �eld of inventory
control system.

This paper develops an inventory model for a
single deteriorating item considering the impact of
marketing strategies, such as pricing of the item and
advertising as well as the displayed stock level, on the
demand rate of that item. The storage capacity of the
showroom/shop is assumed to be �nite. Shortages,
if any, are allowed and partially backlogged with a
rate dependent on the duration of the waiting time up
to the next replenishment. By analyzing the storage
capacity of the showroom/shop and displayed stock
level dependency parameters of demand rate, di�erent
scenarios have been investigated. In each scenario,
the corresponding problem has been formulated as a
non-linear mixed integer optimization problem with
three decision variables: one as integer and other
two as non-integer (continuous) variables. Considering
the complexity of solving such problems for di�erent
scenarios, a Real-Coded Genetic Algorithm (RCGA) is
developed for mixed variables (integer and continuous)
with ranking selection, whole arithmetical crossover,
non-uniform mutation for non-integer variables, and
uniform mutation for the integer variable. In order to
illustrate the results of di�erent scenarios, a numerical
example has been considered and solved. Finally,
sensitivity analyses have been performed numerically
to study the variations of di�erent system parameters
on the initial on-hand inventory level, shortage level,
and cycle length along with the maximum total pro�t
per time unit.

2. Notation and assumptions

The following assumptions and notation are used in
developing the proposed inventory model.
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2.1. Notation
Parameters:
C1 Inventory carrying cost per unit item

per unit of time ($/unit/time unit)
C2 Shortage cost per unit item per unit of

time ($/unit/time unit)
C3 Purchase cost per unit item ($/unit)
C4 Ordering cost per cycle ($/cycle)
p Selling price per unit item ($/unit)

p0(� C3) Salvage value associated to the
deteriorating unit during the cycle per
unit item ($/unit)

�;m Markup rate (� > 1; 0 < m < 1), i.e.
p = �C3, p0 = mC3

G Advertising cost per advertisement
($/advertisement)

W Storage capacity of the showroom/shop
(units)

q Order quantity of the cycle (units)
q(t) Instantaneous displayed stock level at

time t (units)
D(A; p; q) Demand rate (units/time unit),

which is dependent on frequency of
advertisement (A), unit selling price
and instantaneous displayed stock level

S0; S1 Displayed stock level dependency
demand parameters

� Constant deterioration rate
� � 0 Backlogging parameter
D0 Total deteriorated units over the

stock-in period (units)
Csho Total shortage cost over the entire

cycle ($)
TC Total cost ($)
X Net pro�t ($)
Zj Total pro�t or pro�t function of

scenario j ($/time unit)
Dependent variables:
t0 Time period when displayed stock is

S1 (time unit)
t1 Time period when displayed stock is

S0 (time unit)
t2 Time period when inventory level is

zero (time unit)
t3 Time period when inventory level

reaches maximum shortage level (time
unit)

T Total cycle length (time unit)

Decision variables:
A Frequency of the advertisement in the

cycle (an integer number)
S(�W ) Initial stock level (units)
R The highest shortage quantity due to

partial backlogging (units)
For PSO
p size Population size
m gen Maximum generation
c1(> 0) Cognitive learning rate
c2(> 0) Social learning rate
r1; r2 Random number which is uniformly

lying between [0; 1]

x(k)
i Velocity of the ith particle at the kth

generation/iteration

p(k)
i Best previous position of the ith

particle at the kth iteration

p(k)
g Position of the best particle among all

other particles in the population
� Constriction factor

2.2. Assumptions
(i) Replenishment rate is in�nite and lead time is

constant;

(ii) The entire lot is delivered in one batch;

(iii) The inventory planning horizon is in�nite and the
inventory system involves only one item and one
stocking point;

(iv) The deterioration rate is constant;

(v) The deteriorated units are not replaced, but those
units are sold with a reduced price;

(vi) The storage capacity of a showroom/shop is
limited;

(vii) Demand rate, D(A; p; q), is a deterministic func-
tion of the selling price (p) per unit, frequency of
advertisement (A), and the displayed inventory
level in the show-room within displayed levels S0
to S1; beyond this range, it becomes constant
with respect to the displayed inventory level. It
takes the following forms:

D(A; p; q) = f(A; p; S1) for q > S1;

= f(A; p; q) for S0 < q � S1;

= f(A; p; S0) for q � S0;

where f(A; p; q) = A(a� bp+ cq), a; b; c;  � 0.
It is to be noted that f(A; p; q) is a di�eren-

tiable function of q for the �xed values of A and p.
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(viii) Shortages, if any, are allowed and partially
backlogged. During the stock-out period, the
backlogging rate is dependent on the length of
the waiting time up to the arrival of fresh lot.
Considering this situation, the rate is de�ned as
[1 + �(T � t)]�1.

3. Inventory model description and analysis

It is assumed that, after ful�lling the backorder quan-
tity, the on-hand inventory level is S at t = 0 and
declines continuously due to the deterioration e�ect of
the item and also to meet up the customer's demand.
This process is continued up to the time when the
on-hand inventory level reaches zero. Then, shortage
occurs and accumulates at the rate [1 + �(T � t)]�1,
(� � 0) up to time t = T when a next lot arrives. At
time t = T , the maximum shortage level is R. This
entire cycle then repeats itself after cycle length, T .
The problem is to determine the optimal values of S
and R, such that the total pro�t per time unit of the
system is maximized and also the corresponding value
of T is determined.

By analyzing the model and relative size of
the displayed stock level dependency parameters S0,
S1, and the �nite storage capacity W of the show-
room/shop, the following scenarios may arise:

Scenario 1: S1 < S �W ,
Scenario 2: S0 < S �W � S1,
Scenario 3: S < W � S0.

Now, all the scenarios are discussed in detail one after
another below.

Scenario 1: S1 < S �W
In this scenario, the order quantity is Q = S + R.
Following the earlier mentioned assumptions, the dif-
ferential equations representing the displayed inventory
level, q(t), at any instant t are given by:

dq(t)
dt

+ �q(t) = �f(A; p; S1); 0 � t < t0; (1a)

dq(t)
dt

+ �q(t) = �f(A; p; q); t0 � t < t0 + t1;
(1b)

dq(t)
dt

+ �q(t) = �f(A; p; S0);

t0 + t1 � t < t0 + t1 + t2; (1c)

dq(t)
dt

= �f(A; p; S0)=[1 + �(T � t)];
t0 + t1 + t2 � t � t0 + t1 + t2 + t3(= T ); (1d)

subject to the conditions that:

q(t) = S at t = 0; (2a)

q(t) = S1 at t = t0; (2b)

q(t) = S0 at t = t0 + t1; (2c)

q(t) = 0 at t = t0 + t1 + t2; (2d)

q(t) = �R at t = T: (2e)

It is also assumed that instantaneous stock level, q(t),
is continuous at t = t0, t = t0 + t1, and t = t0 + t1 +
t2. The inventory level through time for Scenario 1 is
represented in Figure 1.

Using Conditions (2a)-(2d), the solutions to dif-
ferential Eqs. (1a)-(1d) are as follows:

q(t)=[S+f(A; p; S1)=�] exp(��t)�f(A; p; S1)=�;

0 � t < t0; (3a)

q(t) =fS1 +A(a� bp)=(Ac+ �)g
expf(Ac+�)(t0�t)g�A(a�bp)=(Ac+�);

t0� t<t0+t1; (3b)

q(t) =fS0 + f(A; p; S0)=�g
expf�(t0 + t1 � t)gf(A; p; S0)=�;

t0 + t1 � t < t0 + t1 + t2; (3c)

q(t) = f(A; p; S0) log j1 + �(T � t)j=� �R;
t0 + t1 + t2 � t < t0 + t1 + t2 + t3(= T ): (3d)

Using the continuity of q(t) at t = t0, it follows that:

S1 = [S + f(A; p; S1)=�] exp(��t0)� f(A; p; S1)=�;

Figure 1. Inventory behavior of Scenario 1.
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implying that:

t0 =
1
�

log
���� f(A; p; S1) + �S
f(A; p; S1) + �S1

���� : (4)

Again, using the continuity condition of q(t) at t =
t0 + t1, hence:

S0 =fS1 +A(a� bp)=(Ac+ �)g
expf�(Ac+ �)t1g �A(a� bp)=(Ac+ �);

which implies that:

t1 =
1

Ac+ �
log
���� (Ac+ �)S1 +A(a� bp)
(Ac+ �)S0 +A(a� bp)

���� : (5)

As q(t) is continuous at t = t0 + t1 + t2 and then from
Eqs. (3c) and (3d):

t2 =
1
�

log
����f(A; p; S0) + �S0

f(A; p; S0)

���� : (6)

Again, from q(t) = 0 at t = t0 + t1 + t2 and Eq. (3d):

t3 =
�
exp

�
�R

f(A; p; S0)

�
� 1
�
=�: (7)

During the stock-in period, the deteriorated units have
to be separated. The total deteriorated units over
the stock-in period (0 � t � t0 + t1 + t2) are given
by:

D0 = �
t0+t1+t2Z

0

q(t)dt;

then:
t0+t1+t2Z

0

q(t)dt =
D0
�
: (8)

This means that the inventory carrying units over
the interval 0 � t � t0 + t1 + t2 are
D0
� .

Again, the di�erence between the initial and total
selling units during the stock-in period of the entire
cycle will be also deteriorated units as follows:

D0 = S �
t0+t1+t2Z

0

D(A; p; q)dt;

D0 =S � f(A; p; S1)t0 � f(A; p; S0)t2

�A(a� bp)t1 �Ac
t0+t1Z
t0

q(t)dt:

The total shortage cost over the entire cycle is given
by:

Csho = C2

TZ
t0+t1+t2

[�q(t)]dt

= C2f(A; p; S0)[t3 � log j1 + �t3j=�]=�:
During the entire inventory cycle, the Total Cost (TC)
of the scenario is given by:

TC = < ordering cost > + < purchasing cost >

+ < inventory carrying cost >

+ < inventory shortage cost >

+ < advertisement cost >;

TC = C4 + C3(S +R) + C1
D0
�

+ Csho +AG:

Therefore, the net pro�t (X) for this scenario during
the cycle of time-span is the di�erence between the sales
revenue and the total cost of the system:

X(A;S;R) =(p� C3)(S +R)�
�
C1

�
+ p� p0

�
D0

� Csho �AG� C4;

where S and R are continuous variables, and A is an
integer variable.

Hence, for the �xed values of markup rates, � and
m, pro�t function, Z1, (total pro�t per unit time for
the entire cycle) of Scenario 1 of the system is given
by:

Z1(A;S;R) =
X
T
:

Hence, the nonlinear mixed integer optimization prob-
lem is:

maximizing Z1(A;S;R);

subject to S1<S�W , R>0, and A is an integer.
(9)

Scenario 2: S0 < S �W � S1
In this scenario, the order quantity is Q = S +R. The
di�erential equations representing displayed inventory
level, q(t), at any instant t are given by:

dq(t)
dt

+ �q(t) = �f(A; p; q); 0 � t < t1; (10a)

dq(t)
dt

+ �q(t) = �f(A; p; S0); t1 � t � t1+t2;
(10b)

dq(t)
dt

= �f(A; p; S0)=[1 + �(T � t)];
t1 + t2 < t � t1 + t2 + t3(= T ); (10c)
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Figure 2. Inventory behavior of Scenario 2.

subject to the conditions that:

q(t) = S at t = 0; (11a)

q(t) = S0 at t = t1; (11b)

q(t) = 0 at t = t1 + t2; (11c)

q(t) = �R at t = T: (11d)

Also, instantaneous stock level, q(t), is continuous at
t = t1 and t = t1 + t2. The inventory behavior through
time for Scenario 2 is depicted in Figure 2.

Using Conditions (11a)-(11d), the solutions of
di�erential Eqs. (10a)-(10c) are given by:

q(t) =[S +A(a� bp)=(Ac+ �)]

exp(�t(Ac+ �))�A(a� bp)=(Ac+ �);

0 � t < t1; (12a)

q(t) =[S0 + f(A; p; S0)=�]

exp(�(t1 � t))� f(A; p; S0)=�;

t1 � t � t1 + t2; (12b)

q(t) = f(A; p; S0) log j1 + �(T � t)j=� �R;
t1 + t2 < t � t1 + t2 + t3(= T ): (12c)

Now, from the continuity condition of q(t) at t = t1, it
follows that:

S0 =fS+A(a�bp)=(Ac+ �)g expf�(Ac+ �)tg
�A(a� bp)=(Ac+ �);

which implies that:

t1 =
1

Ac+ �
log
���� (Ac+ �)S +A(a� bp)
(Ac+ �)S0 +A(a� bp)

���� : (13)

Again, from q(t) = 0 at t = t1 + t2 and Eq. (12b):

[S0 + f(A; p; S0)=�] exp(��t2)] = f(A; p; S0)=�;

which implies that:

t2 =
1
�

log
����f(A; p; S0) + �S0

f(A; p; S0)

���� : (14)

As q(t) is continuous at t = t1 + t2, and hence from
Eqs. (12b) and (12c),

f(A; p; S0) log j1 + �t3j = �R;

t3 =
1
�

�
exp

�
�R

f(A; p; S0)

�
� 1
�
; (15)

which is same as Eq. (7).
In this scenario, the total deteriorated units over

the stock in period (0 � t � t0 + t1 + t2) are given by:

D0 = S �
t1+t2Z
0

D(A; p; q)dt;

D0=S�f(A; p; S0)t2�A(a�bp)t1�Ac
t1Z

0

q(t)dt:

The expression for Csho is the same as in Scenario 1.
Hence, the net pro�t for this scenario during time

period T is given by:

X(A;S;R) =(p�C3)(S+R)�
�
C1

�
+ p� p0

�
D0

� Csho �AG� C4; (16)

where S and R are continuous variables and A is an
integer variable.

Therefore, for the �xed values of markup rates,
� and m, pro�t function, Z2, (total pro�t per time
unit for the entire cycle) of Scenario 2 of the system is
expressed as follows:

Z2(A;S;R) =
X
T
:

Thus, in this scenario, the optimization problem is:

maximizing Z2(A;S;R);

subject to S0 < S �W � S1, R > 0,

and A is an integer. (17)

Scenario 3: S �W � S0
The di�erential equations representing displayed inven-
tory level, q(t), at any instant, t, are given by:
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Figure 3. Inventory behavior of Scenario 3.

dq(t)
dt

+ �q(t) = �f(A; p; S0); 0 � t � t2; (18a)

dq(t)
dt

= �f(A; p; S0)=[1 + �(T � t)];

t2 < t � t2 + t3(= T ); (18b)

subject to the conditions that:

q(t) = S at t = 0; (19a)

q(t) = 0 at t = t2; (19b)

and:

q(t) = �R at t = t2 + t3(= T ): (19c)

The inventory behavior versus time for Scenario 3 is
shown in Figure 3.

Using Conditions (19a)-(19c), the solutions to
di�erential Eqs. (18a) and (18b) are as follows:

q(t) = f(A; p; S0)[expf�(t2 � t)g]; 0 � t � t2;
(20a)

q(t) = f(A; p; S0) log j1 + �(T � t)j=� �R;
t2 < t � t2 + t3(= T ): (20b)

Now, from Eqs. (19a) and (20a), it follows, therefore,
that:

S = f(A; p; S0)fexp(�t2)� 1g=�;
which implies that:

t2 = log
����f(A; p; S0) + �S

f(A; p; S0)

���� =�: (21)

Again, from Eqs. (19c) and (20b), it is clear that:
R = f(A; p; S0) log j1 + �t3j=�; (22)

implying that:

t3 = exp
�

�R
f(A; p; S0)

� 1
�
=�: (23)

During the stock-in period, the deteriorated units have
to be separated. The total deteriorated units over the
stock in period (0 � t � t2) are given by:

D0 = S �
t2Z

0

D(A; p; q)dt;

D0 = S �
t2Z

0

A(a� bp+ cq)dt;

D0 = S �A(a� bp)�Ac
t2Z

0

q(t)dt:

The expression for Csho is the same as in Scenario 1.
Hence, the net pro�t for this scenario during time

period T is given by:

X(A;S;R) =(p� C3)(S +R)�
�
C1

�
+ p� p0

�
D0

� Csho �AG� C4; (24)

where S and R are continuous variables, and A is an
integer variable.

Therefore, for the �xed values of mark-up rates,
� and m, pro�t function Z3 (total pro�t per unit time
for the entire cycle) of Scenario 3 of the system is given
by:

Z3(A;S;R) =
X
T
:

Hence, in this scenario, the optimization problem is as
follows:

maximizing Z3(A;S;R);

subject to S�W �S0, R>0, and A is an integer.
(25)

4. Solution procedure

4.1. Implementation of GA
The optimal solution of the system can be obtained
from the optimal solutions of each scenario. If (NP)opt
denotes total pro�t per unit time of the inventory
system, then (NP)opt = Maximize Zj(A;S;R), j =
1; 2; 3, and the corresponding values of A, S, R will be,
respectively, the optimal solutions.

Now, it is necessary to solve the optimization
problem of each scenario by a suitable method. Herein,
the optimization problem of each scenario is a mixed
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integer nonlinear programming problem. For solving
these problems, a Real Coded Genetic Algorithm
(RCGA) is developed for integer as well as continuous
variables.

The working principle of the developed RCGA is
given in the following algorithm:

Step 1: Initialize the parameters of RCGA, bounds
of the decision variables, and the values of the
system parameters of the optimization problem of
each scenario;
Step 2: �  0 (� presents the number of current
generation/iteration);
Step 3: Initialize the chromosomes of population
P (�) (P (�) represents the population at the �th
generation/iteration);
Step 4: Evaluate the �tness function for each
chromosome of P (�);
Step 5: Find the best chromosome from P (�)
according to the �tness value of each chromosome;
Step 6: Repeat the following until the termination
criterion is satis�ed:
(i) � is increased by one (�  � + 1);

(ii) Create a new population from the population
of earlier generation, i.e. from P (� � 1) by
exponential rank-based selection;

(iii) Improve the current population by crossover
and mutation operations;

(iv) Evaluate the �tness of each chromosome of
P (�);

(v) Find the best chromosome according to the
�tness value of each chromosome;

(vi) Compare the best chromosomes of current pop-
ulation, P (�), and population, P (� � 1), of
previous generation and store the better one.

Step 7: Print the result of the best chromo-
some/solution;
Step 8: End.

There are di�erent parameters used in the genetic
algorithm, viz. population size (p size), maximum
number of generation (m gen), probability of crossover
(p cross), and probability of mutation (p mute). Re-
garding the choice of population size, there is no hard
and fast rule. However, if the population size is consid-
ered to be large, data storage in the intermediate steps
of GA may create some problems at the computation
time with the help of computer. On the other hand,
for very small population size, some genetic operations
cannot be implemented. Particularly, mutation opera-
tor does not work properly as the mutation rate is very
low. Regarding the maximum number of generations,
there is no clear indication of this value being consid-
ered at all. It depends upon the number of variables

and the size of the search space of the optimization
problem. Further, based on the natural genetics, it is
well known that the probability of crossover is always
greater than that of mutation. Usually, the probability
of crossover oscillates between 0.60 to 0.95, whereas
that of mutation oscillates between 0.10 to 0.15.

For proper and successful functioning of GA, the
design of an appropriate chromosome of solutions of
the problem is an important task. This work uses
real numbers to represent the chromosomes in GA. In
this case, a chromosome is coded in the form of vector
of integer and/or oating point numbers, and every
component of that chromosome represents a decision
variable of the problem.

The selection process is one of the most important
factors in the genetic algorithm. It is dependent on
the well-known evolutionary principle \survival of the
�ttest". The primary objective of the operator is to
emphasize the above average solutions and eliminate
the below average solutions from the population for
the next generation. This is achieved by performing
the following tasks:

(i) Identify good (usually above average) chromo-
somes/solutions in a population;

(ii) Make multiple copies of good chromosomes/ so-
lutions;

(iii) Eliminate bad chromosomes/solutions from the
population so that multiple copies of good solu-
tions can be placed in the population.

This work uses exponential ranking selection [47]
as a selection operator. After the selection process,
the resulting chromosomes (those which have survived)
undergo genetic operations such as crossover and mu-
tation. Crossover is an operation that really empowers
the GA. It operates on two or more parent solutions
at a time and generates o�spring by recombining
the features of the both parent solutions. In the
optimization problem, there are two types of decision
variables, e.g. integer and continuous variables. To
ful�ll the purpose, this work uses whole arithmetical
crossover [47] for continuous variables and intermediate
crossover [50] for integer variables.

For mutation operation, this work uses the non-
uniform mutation for continuous variables, whereas
uniform mutation is used for integer variables. It is
noted that the action of non-uniform mutation [47] is
dependent on the age of the population.

4.2. Implementation of PSO
A number of researchers have successfully used meta-
heuristic methods to solve complicated optimization
problems in di�erent �elds of scienti�c and engineering
disciplines. Some of these algorithms are simulated
annealing, tabu search, genetic algorithm, particle
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swarm optimization, ant colony optimization, among
others. Among these algorithms, Particle Swarm
Optimization (PSO), as a widely used algorithm, has
been employed for solving the optimization problems
mentioned earlier.

Particle Swarm Optimization (PSO) is a popu-
lation-based heuristic global search algorithm based on
the social interaction and individual experience. It was
proposed by Eberhart and Kennedy [51], Kennedy and
Eberhart [52]. It has been widely used in �nding the
solutions to optimization problems. This algorithm
is inspired by social behavior of bird ocking or �sh
schooling. In PSO, the potential solutions, called
particles, y through the search space of the problem
by following the current optimum particles. PSO is ini-
tialized with a population of random particles positions
(solutions), and then searches for an optimum solution
in generation to generation. In every iteration, each
particle is updated with two best positions (solutions).
The �rst one is the best position (solution) reached so
far by the particle, and this best position is said to be
the personal best position, called p(k)

i . The other one
is the current best position (solution), obtained so far
by any particle in the population. This best value is a
global best, called p(k)

g .
In each generation, the velocity and position of

the ith (i = 1; 2; � � � ; p size) particle are updated by
the following rules:

v(k+1)
i =wv(k)

i + c1r1

�
p(k)
i � x(k)

i

�
+ c2r2

�
p(k)
g � x(k)

i

�
; (26)

and:

x(k+1)
i = x(k)

i + v(k+1)
i ; (27)

where w is the inertia weight, and k (= 1; 2; � � � ;m �
gen) indicates the iterations (generations). Constants
c1(> 0) and c2(> 0) are the cognitive learning and
social learning rates, respectively, which are the accel-
eration constants responsible for varying the particle
velocity towards p(k)

i and p(k)
g , respectively.

From Eq. (26), it is clear that the updated velocity
of the ith particle is calculated by considering three
components:

(i) Previous velocity of the particle;
(ii) The distance between the particle's best previous

and current positions;
(iii) The distance between swarm's best experience

(the position of the best particle in the swarm)
and the current position of the particle.

The velocity in Eq. (26) is also limited by the range
[�vmax; vmax] where vmax is called the maximum ve-
locity of the particle. The choice of a too small value

for vmax can cause very small updating of velocities
and positions of particles at each iteration. Hence,
the algorithm may take a long time to converge and
face the problem of getting stuck to local minima.
To overcome these situations, Clerc [53], Clerc and
Kennedy [54] proposed improved velocity update rules
employing constriction factor, �. According to them,
the updated velocity is given by:

v(k+1)
i =�

h
v(k)
i + c1r1

�
p(k)
i � x(k)

i

�
+c2r2

�
p(k)
g � x(k)

i

�i
: (28)

Herein, constriction factor, �, is expressed as follows:

� =
2���2� ��p�2 � 4�

��� ; (29)

where � = c1 + c2, � > 4, and � is a function of c1
and c2. Typically, c1 and c2 are both set to be 2.05.
Thus, �, is set to 4.1 and constriction coe�cient, �, is
0.729. This PSO is known as PSO-CO, i.e. constriction
coe�cient-based PSO.

The search procedure of the particle swarm opti-
mization can be summarized as follows:

Step 1: Initialize the PSO parameters and bounds
of the decision variables of the optimization problem;

Step 2: Initialize a population of particles with
random positions and velocities;

Step 3: Evaluate the �tness of all particles;

Step 4: Keep track of the locations where each
individual has its highest �tness so far;

Step 5: Keep track of the position with the global
best �tness;

Step 6: Update the velocity of each particle;

Step 7: Update the position of each particle;

Step 8: If the stopping criterion is satis�ed, go to
Step 9, otherwise go to Step 3;

Step 9: Print the position and �tness of global best
particle;

Step 10: End.

5. Numerical illustration

To illustrate the proposed model, a numerical example
with the following data has been considered. C1 =
Rs:3:0/unit/unit time, C2 = Rs:10:0/unit/unit time,
C3 = Rs:15:0/unit/unit time, m = 0:80, C4 =
Rs:150:0/unit/unit time, a = 200, b = 0:5, c = 0:3,
 = 0:3, � = 2:5, W = 300 units, � = 0:08, S1 = 150:0,
S0 = 50:0, G = Rs:50:0/advertisement.
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Table 1. Best found solutions for di�erent values of � by GA.

� A Z S R t0 t1 t2 t3 T

1.30 3 519.0371 294.0956 43.26 0.4179 0.3189 0.1740 0.1843 1.0951
1.35 5 761.2683 381.8383 51.1629 0.5769 0.2750 0.1497 0.1880 1.1896
1.40 6 1030.5967 425.2664 51.0656 0.6487 0.2611 0.1420 0.1760 1.2279
1.45 7 1320.9511 466.7507 50.5739 0.7129 0.2500 0.1359 0.1651 1.2639
1.50 8 1630.1554 506.5724 49.8235 0.7713 0.2407 0.1308 0.1551 1.2979

Table 2. Best found solutions for di�erent values of � by PSO.

� A Z S R t0 t1 t2 t3 T

1.30 3 519.0372 294.0966 43.27 0.418 0.3189 0.1741 0.1842 1.0952
1.35 5 761.2684 381.8384 51.1630 0.5775 0.2765 0.1497 0.1885 1.1895
1.40 6 1030.5988 425.2675 51.0675 0.6475 0.2610 0.1415 0.1775 1.2280
1.45 7 1320.9535 466.7511 50.5745 0.7125 0.2502 0.1361 0.1652 1.2641
1.50 8 1630.1585 506.5731 49.8242 0.7715 0.2409 0.1309 0.1555 1.2975

The values of the above parameters considered in
this numerical example are not selected from real-life
case study; however, these values considered here are
realistic. To obtain the solution of this highly nonlinear
optimization problem, two soft-computing techniques,
i.e. genetic algorithm and particle swarm optimization,
are used. These algorithms are coded in c programming
language and the computational runs have been done
by a PC with Intel Core-2-due 2.5 GHz Processor in
LINUX environment.

This example is solved in order to �nd the values
of A, S, R and t0; t1; t2; t3; T along with the total pro�t
per unit time (Z) of the inventory system. For this
purpose, 20 independent runs have been performed
by the proposed GA, and a set of results has been
obtained. From these results, the following result
corresponding to the best total pro�t per unit time as
the solution of the given example is shown in Tables 1
and 2.

In the proposed GA, the following values of GA
parameters have been used:

p size = 50; m gen = 200;

p cross = 0:9; p mute = 0:1:

In the proposed PSO, the following values of PSO
parameters have been used:

p size = 100; m gen = 100;

c1 = 2:05; c2 = 2:05:

6. Sensitivity analysis

For the given numerical example mentioned in Sec-
tion 5, sensitivity analyses have been performed to

study the e�ect of changes of di�erent parameters on
initial stock level (S), shortage level (R), frequency of
advertisement (A), and cycle length (T ) along with the
maximum pro�t of the inventory system (Z). These
analyses have been carried out by changing (increasing
and decreasing) the parameters from �20% to +20%.
The results are obtained by changing one parameter at
a time and keeping the other parameters at their origi-
nal values. In each case of this analysis, 20 independent
runs have been performed by the proposed GA, and a
set of results has been considered. Among these results,
the best found results have been considered. These
results are shown in Table 3, which are self-explanatory.

6.1. Research objective and managerial insight
The main objective of the proposed inventory model
is to formulate a real-life business problem mathemat-
ically and solve the problem. This work describes a
displayed stock-dependent demand and deteriorating
inventory model. In real-life situations, the displayed
stock plays an important role of demand function
and attracts customers to buy more products. This
type of problem is a highly nonlinear problem. For
this reason, it is not possible to obtain the closed
form in order to optimize the inventory problem. So,
this type of problem is solved by two soft-computing
algorithms (genetic algorithm and particle swarm op-
timization).

7. Concluding remarks

In reality, there are so many physical goods which
deteriorate due to di�erent factors such as dryness,
damageability, perishability, etc. Therefore, these nat-
ural phenomena play an important role in any decision-
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Table 3. Sensitivity analysis with respect to di�erent parameters.

Parameters % Changes % Changes in Z� A� % Changes in
S� R� T �

C1

{20 11.94 8 31.41 5.63 15.23
{10 5.61 7 14.97 3.71 7.25
10 {4.92 6 {4.88 5.79 {3.07
20 {9.52 6 {9.40 11.30 {5.70

C2

{20 0.73 6 {0.32 9.74 1.25
{10 0.35 6 {0.03 4.65 0.59
10 {0.32 6 0.48 {4.25 {0.53
20 {0.61 6 0.69 {8.16 {1.01

C3

{20 {39.15 4 {19.20 {6.16 {6.65
{10 {20.24 5 {9.16 {2.43 {3.19
10 21.62 8 17.11 10.86 6.25
20 43.90 8 17.53 2.27 5.69

C4

{20 2.39 6 {1.56 {2.77 {1.90
{10 1.19 6 {0.66 {1.38 {0.94
10 {1.18 6 1.12 1.38 0.94
20 {2.37 7 10.31 11.15 5.29

a

-20 {28.17 5 {16.27 {18.75 7.83
{10 {14.37 6 -3.93 {4.39 5.41
10 14.96 7 12.97 15.00 {1.23
20 30.25 7 17.15 19.42 {5.39

b

{20 1.52 6 0.66 0.45 {0.52
{10 0.76 6 0.46 0.23 {0.25
10 {0.76 6 0.02 {0.23 0.26
20 {1.52 6 -0.19 {0.45 0.53

c

-20 {5.13 6 {2.65 2.82 1.11
{10 {2.57 6 {1.20 1.41 0.55
10 2.58 6 1.66 {1.41 {0.55
20 5.18 6 3.08 {2.82 {1.10

S0

{20 {0.47 6 0.59 {2.62 0.24
{10 {0.24 6 0.42 {1.31 0.12
10 0.25 6 0.05 1.30 {0.14
20 0.51 6 {0.15 2.58 {0.30

S1

{20 {4.04 6 {3.46 4.74 {0.12
{10 {1.98 6 {1.64 2.32 {0.11
10 1.91 6 2.16 {2.21 0.21
20 3.94 6 4.15 {4.33 0.51
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Table 3. Sensitivity analysis with respect to di�erent parameters (continued).

Parameters % Changes % Changes in Z� A� % Changes in
S� R� T �

�

{20 1.12 6 0.89 {1.30 0.98
{10 0.56 6 0.56 {0.65 0.48
10 {0.56 6 {0.09 0.65 {0.48
20 {1.11 6 {0.41 1.29 {0.94

�

{20 0.70 6 {0.29 10.66 0.77
{10 0.34 6 {0.02 5.05 0.37
10 {0.31 6 0.47 {4.57 {0.34
20 {0.59 6 0.67 {8.75 {0.67



{20 {14.37 4 {21.44 {23.30 {3.40
-10 {8.61 4 {19.69 {22.44 {5.50
10 10.42 8 20.51 22.62 3.47
20 22.51 8 24.54 24.66 0.11

G

{20 11.57 8 7.36 6.06 {2.08
{10 5.26 8 12.09 13.41 2.51
10 {9.89 6 3.72 5.47 3.71
20 {8.63 5 {2.63 {1.45 2.93

making process of any inventory system. When the
deterioration e�ect of a good is high, the problem
of �nding a trade-o� among holding, deterioration,
and backordering costs is a complex problem. To
avoid complexity in the formulation, many researchers
have used Taylor's series approximation for exponential
function. This work solved the problem without
considering the Taylor's series approximation. Also,
the results by PSO and GA were compared.

In the present model, the demand rate is consid-
ered as follows:

D(A; p; q) = f(A; p; S1); q > S1;

D(A; p; q) = f(A; p; q); S0 � q � S1;

D(A; p; q) = f(A; p; S0); q < S0;

where:

f(A; p; q) = A(a� bp+ cq):

Clearly, D(A; p; q) is proportional to (a � bp + cq) for
some �xed A. On the other hand, for �xed p and
q, the demand of an item is likely to increase with
the increase of the frequency of advertisement in the
popular media. However, it is not directly proportional
to the frequency of advertisement. Therefore, it is
assumed that D(A; p; q) is proportional to A( > 0)
for �xed p and q.

This model is applicable to the di�erential items,
foodgrains, fruits, green vegetables, among others.
Additionally, this model can further be generalized to
include the case of �nite rate of replenishment of the
stock as well as other possible functional relationships
which may exist among the demand rate, selling price
of the item, frequency of advertisement or the cost
of advertisement, and displayed stock level in the
showroom/shop.
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