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Abstract. This paper incorporates capital 
ow constraints and trade credit into lot-sizing
problems. A capital 
ow constraint is di�erent from a traditional capacity constraint; when
a manufacturer begins to produce a certain number of products, its present capital should
not be less than the total production costs of that period; otherwise, the manufacturer
must decrease production quantity or suspend production, or he/she could delay payment
using trade credit. Moreover, the capital of each period should also be greater than zero
to avoid bankruptcy. A mathematical model is formulated for the single-item lot-sizing
problem. Based on dynamic programming, this mixed integer problem is approximated to
a traveling salesman problem to �nd the longest route and we divide the model into sub-
linear problems without integer variables, and propose a dynamic programming algorithm
with heuristic adjustment to solve it. An interior point algorithm can easily solve sub-
linear problems. The proposed algorithm could obtain optimal solutions under certain
situations. Numerical analysis shows that the proposed algorithm has small optimality
deviation percentage under other situations and enjoys computation e�ciency advantage,
as compared with CPLEX 12.6.2. It also indicates that the capital 
ow constraints and the
application of trade credit in lot-sizing problems could a�ect optimal production decisions.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

A lot-sizing problem is a production planning activity
that considers the best use of production resources
to achieve production goals over a certain length of
planning horizon and decide the optimal timing and
level of production [1,2]. Making correct decisions
on lot-sizing directly a�ects total production costs
and production e�ciency, which are important for a
manufacturer to survive and compete on the market.

Wagner and Whitin [3] proposed an O(T 2) al-
gorithm based on dynamic programming to solve the
single-item uncapacitated lot-sizing problem, where
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T is the length of planning horizon. Wagelmans et
al. [4] developed an O(T lgT ) algorithm for the Wagner-
Whitin cases. There is now a sizable literature on
this area extending the basic model. For Capacitated
Lot-Sizing Problems (CLSP), it is generally di�cult
to exactly obtain an optimal solution because of the
computational complexity. Solution approaches to
CLSP include mathematical programming heuristics,
Lagrangian heuristics, decomposition and aggregation
heuristics, metaheuristics, and problem-speci�c greedy
heuristics [5]. For multi-level lot-sizing problems,
metaheuristics are often used for the solution, such
as tabu search algorithm, genetic algorithm, simulated
annealing algorithm, and so forth. Comprehensive
reviews of lot-sizing problems can be found in [5-9].

There are also some papers that deal with lot-
sizing problems with a pro�t maximization approach.
Aksen et al. [10] proposed a forward recursive dynamic



2776 Z. Chen and R.Q. Zhang/Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 2775{2787

programming algorithm to solve a single-item lot-sizing
problem with immediate lost sales in a pro�t maxi-
mization model. Aksen [11] considered loss of goodwill
in the uncapacitated lot-sizing problem, assuming that
unsatis�ed demands in a given period can cause a
shrinkage in the demand of the next period. Absi
et al. [12] investigated the multi-item capacitated lot-
sizing problem with setup times and lost sales and,
then, used a Lagrangian relaxation of the capacity
constraints to divide the problem into single-item un-
capacitated lot-sizing sub-problems. Sereshti and Bi-
jali [13] discussed the general lot-sizing and scheduling
problem with demand choice 
exibility and evaluated
the e�ciency of two pro�t maximization models.

However, seldom have previous studies on lot-
sizing problems considered the in
uence of capital
constraints on production planning. In practice, com-
panies may encounter capital shortage problems, es-
pecially Small- and Medium-sized Enterprises (SMEs).
Once capital is in shortage, the manufacturer has to
suspend or reduce production and cannot provide a
su�cient number of products for their customers in
time. A report showed the shortage of capital account-
ing for 17% of companies' bankruptcy in Australia in
2008 [14]. The survey data in Elston and Audretsch [15]
suggested that 84% of high-tech entrepreneurs in US
experienced capital shortage at some time. Based on
another report done in UK in 2013, SMEs identi�ed
capital 
ow shortage as one of the two main factors
a�ecting their business [16].

Trade credit is widely used in market transactions
that constitutes a major source of short-term �nancing
to prevent capital shortage. Studies found that, in
countries outside of USA, trade credit accounted for
approximately 20% of all investment �nanced exter-
nally; in USA, trade credit was used by approximately
60% of small businesses [17]. Another survey revealed
that trade credit owed by Australian businesses was
estimated to be over 80 billion dollars in 2013, account-
ing for around 8% of their total liabilities; for some
industries such as construction, retail and wholesale
trades, trade credit generally exceeded 25% of their
total assets [18].

Researching on the trade credit in supply chain
management problems has lasted for many years.
Goyal [19] established an EOQ model based on trade
credit. Subsequently, trade credit was taken into
account in many inventory problems considering fac-
tors such as deteriorating items, allowable shortage,
linked to order quantity, in
ation, and so forth [20].
Some representative studies are listed here. Teng et
al. [21] extended the constant demand to a linear non-
decreasing demand function of time in a trade credit
problem. Liao et al. [22] established an EOQ model
for deteriorating items with two warehouses, and the
delayed payment was permitted only when the ordering

quantity met a given threshold. Jaggi et al. [23]
formulated an inventory model with fully backlogged
allowable shortages considering pay-o� time for the
retailer. Ouyang et al. [24] proposed an integrated
inventory model with capacity constraint and a permis-
sible delay payment period, which is order-size depen-
dent. Yadav et al. [25] investigated a retailer's optimal
policy under in
ation in a fuzzy environment with
trade credit. Zhou et al. [26] studied an uncooperative
order model for items with trade credit, inventory-
dependent demand, and limited displayed-shelf space.
Reviews of the trade credit literature can be found
in [20,27].

To the best of our knowledge, for the multi-period
lot-sizing problem, no studies have considered capital

ow constraints and trade credit in the models; for
many works regarding trade credit, they are usually
based on EOQ models and not designed for multi-
period lot-sizing problems. Since capital shortage is
a commonly encountered problem for many small- and
medium-sized enterprises and trade credit is a widely
used option to deal with capital shortage, this paper
formulates a pro�t maximization model for the single-
item lot-sizing problem. In the problem, it is assumed
that the initial capital of the manufacturer in each
period should not be less than the total production
costs of that period, guaranteeing production continu-
ity; further to that, the manufacturer can use trade
credit to delay payment to their suppliers to alleviate
capital pressure. To make the problem solvable, it is
assumed that trade credit is in a simple form: The
supplier o�ers a �xed length and �xed interest rate of
trade credit, and the manufacturer is not allowed to
pay back the trade credit in advance.

The main contributions of this paper are three-
fold: (1) Capital 
ow constraints are introduced to
a traditional lot-sizing problem; (2) Trade credit is
also incorporated into the problem to alleviate capital
shortage; (3) A polynomial algorithm and some heuris-
tic adjustments are devised to solve the problem. Our
model can help a manufacturer make lot-sizing deci-
sions, when encountering capital shortage problems.

The remainder of this paper is organized as
follows. Section 2 lists the notations and assumptions
of our paper. Section 3 formulates the mathematical
model. Section 4 presents a dynamic programming
model of the problem. Section 5 analyses some
properties, and Section 6 provides a solving algorithm.
Section 7 implements the computational study. Section
8 concludes the paper and outlines future extensions.

2. Notations and assumptions

The following notations and assumptions are used to
develop the mathematical model of the paper. Some
notations will be presented later, if required.



Z. Chen and R.Q. Zhang/Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 2775{2787 2777

2.1. Notations
T Length of planning horizon;
t Index of a period, t = 1; 2; ::; T ;
dt Demand in period t;
pt Selling price in period t;
ct Unit production cost (variable cost) in

period t;
st Setup cost in period t;
ht Unit inventory cost in period t;
�t Unit penalty cost for lost sales in

period t;
B0 Initial capital;
I0 Initial inventory;
k Trade credit length, constant value;
r Trade credit interest rate, constant

value;
Bt End-of-period capital in period t,

decision variable;
It End-of-period inventory in period t,

decision variable;
yt Production quantity in period t,

decision variable;
wt Quantity of lost sales in period t,

decision variable;
zt Binary variable whether or not using

trade credit in period t, decision
variable.

2.2. Assumptions
The following assumptions are adopted in our paper:

(i) When a production process begins, the manufac-
turer purchases raw materials from a supplier,
resulting in variable production costs. If trade
credit is used, the payment of raw materials to
the supplier can be postponed after trade credit
length;

(ii) Since suppliers tend to take higher risks for longer
trade credit length or give new credit to customers
while old trade credit is not paid back, then
it is assumed that trade credit length, k, is
smaller than the length of planning horizon; when
the manufacturer decides to apply a new trade
credit in period t, he/she should not have unpaid
old trade credit; the manufacturer should not
have unpaid trade credit in the last period; the
manufacturer could not pay back the trade credit
in advance;

(iii) Capital in the beginning of period t should not
be less than the total production costs in period
t, i.e., Bt�1 � st + (1� zt)ctyt;

(iv) End-of period capital for any period t should not
be below zero, i.e., Bt � 0;

(v) Initial inventory for period 1 is 0, i.e., I0 � 0;
(vi) No backorder is allowed;
(vii) The manufacturer can decide the realized quan-

tities for customer's demands, i.e., he/she can
decide the lost sales for any period t, but has to
pay the penalty cost of lost sales.

Assumptions (i) and (ii) de�ne the trade credit
usage in the proposed lot-sizing problem. Assumptions
(iii) and (iv) de�ne the capital 
ow constraints. As-
sumptions (v) and (vi) are also the standard assump-
tions of the Wagner-Whitin model [3]. Assumption
(vii) indicates that the manufacturer can decide how
many products to provide for the customers.

3. Mixed integer model

Capital 
ow for any period t meets Eq. (1):

Bt =

8>>>>>>>><>>>>>>>>:

Bt�1 + pt(dt � wt)� zt�k+1ct�k+1yt�k+1

(1 + r)k � (1� zt)ctyt
�(htIt + �twt + stxt) t � k

Bt�1 + pt(dt � wt)� (1� zt)ctyt
�(htIt + �twt + stxt) t < k

(1)

Eq. (1) is divided into two terms, because when t � k,
the manufacturer may have to pay the principal and
the interest of trade credit occurring in period t� k +
1, which is zt�k+1ct�k+1yt�k+1(1 + r)k; when t < k,
t � k + 1 � 0 and the manufacturer cannot pay back
the trade credit. The realized sales in period t are
given by dt � wt, i.e., demand minus lost sales in t.
The revenue in period t is pt(dt � wt). The variable
production cost in period t is (1�zt)ctyt, meaning that
if the manufacturer uses trade credit in period t, he/she
does not pay the variable production cost. Other costs,
including inventory costs, lost sales penalty costs, and
setup costs, are given by htIt + �twt + stxt.

Based on Eq. (1), the �nal capital BT is derived:

BT =B0 +
TX
t=1

[pt(dt � wt)� (htIt + �twt + stxt)

� (1� zt)ctyt]�
TX

t=k+1

zt�k+1ct�k+1yt�k+1

(1 + r)k: (2)

The mixed integer mathematical model of capital

ow constrained lot-sizing problem with trade credit
(CFLSP-TC) is formulated as follows:

Model CFLSP-TC
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Max :

BT �B0; (3)

s.t. :

t = 1; 2; :::; T

(1); (2)

yt �Mxt; (4)

(1� zt)ctyt + stxt � Bt�1; (5)

wt � dt; (6)

It = It�1 + yt � dt + wt; (7)

zt � xt; (8)Xt+k�1

i=t
zi � 1; (9)XT

i=T�k+2
zi = 0; (10)

I0 = 0; It � 0; (11)

wt � 0; yt � 0; (12)

xt 2 f0; 1g; zt 2 f0; 1g: (13)

The objective is to maximize the �nal capital increment
determined by Eq. (3). Constraint (1) is the capital

ow balance, and Constraint (2) is the �nal capital
expression. Constraint (4) enforces setups with positive
production amounts in each period. Constraint (5) is
the capital 
ow constraint, i.e., the initial capital in
period should not be less than its total production
costs in period t. If zt = 1, the manufacturer
has to pay the variable production cost of period t.
It also ensures the non-negativity of Bt�1, avoiding
bankruptcy. Constraint (6) ensures that any lost sales
wt in period t cannot exceed demand quantity dt of
that period. Constraint (7) provides inventory balance
of two consecutive periods. Constraints (8)-(10) show
Assumptions (i) and (ii): The manufacturer uses trade

credit only in the production launching periods; the
manufacturer can have at most one unpaid trade credit
in a period and should not have unpaid trade credit in
the last period; further to that, he/she cannot pay back
trade credit in advance. Constraint (11) represents
Assumptions (v) and (vi). Constraints (12) and (13)
guarantee the non-negativity and binarity of variables,
respectively.

It should be noted that if trade credit length k =
0, model CFLSP-TC is a capital 
ow-constrained lot-
sizing problem without trade credit (CFLSP); there-
fore, CFLSP is a special case of CFLSP-TC. The
single-item capacitated lot-sizing problem was shown
by Bitran and Yanasse [28] to be NP-hard. As for the
proposed problem, the capital 
ow constraint equation
(Eq. (5)) is a capacity constraint by removing stxt and
zt from the model and replacing Bt�1 with Ct, where
Ct is the capacity constraint in period t. Therefore,
the capital 
ow constraint is a special type of capacity
constraints, and models CFLSP-TC and CFLSP are
also NP-hard problems.

4. Dynamic programming model

A dynamic programming model is designed for the
proposed problem in order to analyse some properties.

4.1. States
In any period t, its states are: initial inventory level
It�1, initial capital Bt�1, initial trade credit state 
t�1,
and initial trade credit payable state Lt�1. To describe

t, the de�nition of trade credit duration is provided.

De�nition 1. In any period t, the number of periods
from the last period that uses trade credit to the
last production launching period is called trade credit
duration.

Trade credit state 
t is a binary set representing
the production plan since the last period uses trade
credit when its trade credit duration is smaller than
trade credit length, k. In the binary set, 1 means
`launching production' and 0 means `not launching
production' in this period. Apparently, 
0 = �. j
tj is
used to represent the number of elements in set 
t.

Figure 1 shows clearly 
4 and j
4j in 4 periods of

Figure 1. Meanings of 
4 and j
4j for a production plan with di�erent trade credit usage (the up arrow represents the
beginning of a period that uses trade credit.)
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a production plan with trade credit length k = 3 and
di�erent trade credit usage. If there are no preceding
periods in period t that use trade credit, or trade credit
duration is longer than k, 
t is an empty set, which is
shown by Figure 1(a) and (b). In Figure 1(a), its trade
credit duration is 0; in Figure 1(b), its trade credit
duration is 4; therefore, the trade credit states are both
empty sets. In Figure 1(c), its trade credit duration is
3; in Figure 1(d), its trade credit duration is 1; the
trade credit states are given by the binary sets.

Trade credit payable state Lt is the payable
accounts of the manufacturer for the trade credit at
the end of period t. Apparently, L0 = 0.

4.2. Actions
The actions in period t include production quantity yt,
demand realized quantity vt, and possible use of trade
credit zt. The lower bounds for yt, vt, and zt are all
zeros; the upper bounds are presented below:

�yt = maxf0; (Bt�1 � st)=ctg; (14)

�vt = �dt; (15)

�zt =
�

1 j
t�1j = 0 or j
t�1j � k
0 1 � j
t�1j � k � 1 (16)

The upper bounds for zt in Eq. (16) imply that the
manufacturer could not use trade credit if 1 � j
t�1j �
k � 1, because it has unpaid trade credit.

4.3. States transition function
A unit step function is de�ned K(x): K(x) = 1 if x >
0, K(x) = 0 if x � 0. The state transition equations
are:


t =

8<: 
t�1 [ f0g zt = 0; j
t�1j 6= 0
? zt = 0; j
t�1j = 0
f1g zt = 1

(17)

Lt =

8<: Lt�1 zt = 0; 0 < j
tj < k
ctyt zt = 1; 0 < j
tj < k

0 j
tj = 0 or j
tj � k
(18)

It = It�1 + yt � vt; (19)

Bt =

8>>>>>><>>>>>>:
Bt�1 + ptvt � (1� zt)ctyt � htIt � stK(yt)
��t(dt � vt)� Lt(1 + r)k j
tj = k

Bt�1+ptvt�(1�zt)ctyt�htIt�stK(yt)
��t(dt � vt) j
tj 6= k

(20)

4.4. Immediate pro�t
The immediate pro�t in period t is the capital incre-
ment during this period. The given initial states Bt�1,
It�1, 
t�1, Lt�1, actions yt, vt, zt, and immediate
pro�t �Bt can be expressed as follows:

�Bt(It�1;
t�1; Lt�1; Bt�1) = Bt �Bt�1: (21)

4.5. Functional equation
ft(It�1;
t�1; Lt�1; Bt�1) is de�ned as the maximum
capital quantity increment during period t + 1; t +
2; :::; T , given initial states Bt�1, It�1, 
t�1, Lt�1.
When t = 1; 2; :::; T , the functional equation is ex-
pressed as follows:

ft(It�1;
t�1; Lt�1; Bt�1) = max
0�yt��yt;0�vt��vt;0�zt��zt

f�Bt + ft+1(It;
t; Lt; Bt)g: (22)

The boundary condition of the functional equa-
tion is fT+1(IT ;
T ; LT ; BT ) = 0. The dynamic
programming model is equivalent to Model CFLSP-
TC, in which the objective is f1(I0;
0; L0; B0).

5. Mathematical properties

Based on the dynamic programming model, some
mathematical properties are presented. The algorithm
proposed in the current paper exploits these properties
to solve the problem. First, the de�nitions of produc-
tion cycle and production round are given in this paper.

De�nition 2. In a production plan, if the manufac-
turer launches production at the beginning of period
m and does not launch new production until the end
of period t (m � t � T ), period t to period t will be
called a production cycle.

De�nition 3. In a production plan, for one or
more consecutive production cycles that last from the
beginning of m to the end of period t(m � t � T ), if
the initial inventory for period m and the end-of-period
inventory for period t are zeros, period m to period t
will be called a production round.

Lemma 1. For any production in starting period t,
when It�1 is �xed and if j
t�1j = 0 or j
t�1j � k,
ft(It�1;
t�1; Lt�1; Bt�1) is a non-decreasing function
of Bt�1.

Proof. When It�1 is �xed, It�1 has no in
uence on
the �nal capital increment. If j
t�1j = 0 or j
t�1j � k,
according to Eq. (18), Lt�1 = 0. Therefore:

ft(It�1;
t�1; Lt�1; Bt�1) = ft(It�1;
t�1; 0; Bt�1)

= max
0�yt��yt;0�vt��vt;0�zt��zt

f�Bt+ft+1(It;
t; Lt; Bt)g:
(23)

When Bt�1 increases, from Eqs. (14), (15),
and (16), the upper bounds for vt and zt re-
main unchanged, while the upper bound for yt re-
mains constant or expands. There always exist ac-
tions y0t, v0t, and z0t that make f 0t(It�1;
t�1; 0; B0t�1)
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not lower than ft(It�1;
t�1; 0; Bt�1). Therefore,
ft(It�1;
t�1; Lt�1; Bt�1) is non-decreasing with Bt�1
for �xed It�1, j
t�1j = 0 or j
t�1j � k.

Lemma 2. When trade credit length k = 0, for any
production starting period t+1 (t+1 = 1; 2; :::; T ), if all
the variable production costs are equal, i.e., ct+1 = c,
the optimal solution satis�es Itxt+1 = 0.

Proof. If there is a solution that does not satisfy
Lemma 2, i.e., It > 0 and xt+1 = 1, assume period
t + 10 of the former production cycle begins in period
m (1 � m � t). The production plan is shown in
Figure 2.

According to the capital 
ow expression as in
Eqs. (1) and (2):

Bt =Bm�1 +
Xt

i=m
pi(di � wi)� sm � cmym

�Xt

i=m
hiIi;

and:

BT =Bt +
XT

i=t+1
[pi(di � wi)� hiIi � sixi � ciyi]:

If the production quantity in period m decreases It
and production quantity in period t + 1 increases It,
the solution is still feasible. Bt and BT change to the
following:

B0t = Bt +
Xt

i=m
hiIi + cmIt;

B0T = BT +
Xt

i=m
hiIi + cmIt � ct+1It:

If all the variable production costs are equal, cm =
ct+1. Therefore, B0T > BT . The �nal capital increases,
It > 0, and ct+1 = 1 is not optimal.

Lemma 3. For the trade credit length k 6= 0, for
any production starting in period t + 1 (t + 1 =
1; 2; :::; T ), if all the variable production costs are equal
and minfhiji = 1; 2; :::; Tg � (1 + r)k � c , the optimal
solution also satis�es Itxt+1 = 0.

Proof. If there is a solution that does not satisfy
Lemma 3, i.e., It > 0 and xt+1 = 1, assume that
period t + 1's former production cycle also begins in
period m (1 � m � t), as shown in Figure 2. If

Figure 2. Production plan sketch when It > 0 and
xt+1 = 1.

the production quantity in period m decreases It and
production quantity in period t + 1 increases It, the
solution is still feasible. According to Eqs. (1) and (2),
BT changes to the following:

If zm = 0 and zt+1 = 0;

B0T = BT +
Xt

i=m
hiIi + cmIt � ct+1It

If zm = 0 and zt+1 = 1;

B0T = BT +
Xt

i=m
hiIi + cmIt � ct+1It(1 + r)k;

If zm = 1 and zt+1 = 0;

B0T = BT +
Xt

i=m
hiIi + cmIt(1 + r)k � ct+1It;

If zm = 1 and zt+1 = 1;

B0T =BT +
Xt

i=m
hiIi + cmIt(1 + r)k

� ct+1It(1 + r)k:

When all the variable production costs are equal, B0T >
BT for the situations zm = 0 and zt+1 = 0; zm = 1 and
zt+1 = 0; zm = 1, and zt+1 = 1.

If minfhiji = 1; 2; :::; Tg � (1 + r)k � c is also
satis�ed, B0T > BT for the situation zm = 0 and zt+1 =
1. Therefore, Lemma 3 is proven.

Lemmas 2 and 3 are also known as the zero-
inventory ordering policy, in which the initial inventory
of a production launching period is always zero. Based
on Lemmas 1 to 3, Model CFLSP-TC is converted
into a traveling salesman problem, which �nds the
longest route as shown in Figure 3 (in this example,
T = 4). BBm;n is the maximum capital increment in
a production round from period m to period n with
initial capital B�m�1, initial trade credit state meeting
j
m�1j = 0 or j
m�1j � k, and end-of-period trade
credit state meeting j
n�1j = 0 or j
n�1j � k.

B�n is de�ned as the maximum end-of-period
capital in period n given j
nj = 0 or j
nj � k, and

Figure 3. Traveling salesman problem for model
CFLSP-TC.
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B�0 = B0. The following recursive equation is proposed
for the traveling salesman problem.

B�n = max
1�m�n

�
B�m�1 +BBm;n

�
: (24)

Lemma 4. For any period t + 1 (t + 1 = 1; 2; :::; T ),
given initial states It = 0, j
tj = 0 or j
tj � k,
BBt+1;T = maxBT ft+1(It;
t; Lt; Bt).

Proof. If It = 0, j
tj = 0 or j
tj � k, ft+1(It;

t; Lt; Bt) = ft+1(0;
t; 0; Bt). From Lemma 1, ob-
viously, ft+1(0;
t; 0; Bt) is a non-decreasing function
of Bt. Therefore, ft+1(0;
t; 0; Bt) gets its maximum
value when B�t = Bt. Maximum value for it is repre-
sented by maxBT ft+1(It;
t; Lt; Bt). Since the manu-
facturer should not have unpaid trade credit in the last
period, j
T j = 0 or j
T j � k. By de�nition, BBt+1;T
has the same meaning with maxBT ft+1(It;
t; Lt; Bt)
given It = 0, j
tj = 0 or j
tj � k. Therefore, Lemma
4 is proved.

Lemma 5. In any period t, given It = 0, j
tj = 0 or
j
tj � k, the optimal production plan from periods 1
to t is part of the optimal production plan from periods
1 to T .

Proof. Based on Eq. (22) and the proof of Lemma 4,
given It = 0, j
tj = 0 or j
tj � k, ft+1(It;
t; Lt; Bt)
gets the maximum value when B�t = Bt, and Bt equals
B�t when the production plan from periods 1 to t is
optimal. Therefore, what is optimal for period 1 to
period t is also optimal for ft+1(It;
t; Lt; Bt) given
It = 0, j
tj = 0 or j
tj � k, and the optimal
production plan from periods 1 to t is part of the
optimal production plan from periods 1 to T .

Theorem 1. If all the variable production costs are
equal, i.e., ct = c, and minfhiji = 1; 2; :::; Tg �
(1 + r)k � c, recursive equation (Eq. (24)) can obtain
the optimal solution for model CFLSP-TC.

Proof. When the variable production costs are equal,
Lemma 3 shows that the problem satis�es the zero-
inventory ordering policy. Hence, the optimal produc-
tion plan is a combination of several production rounds.

Recursive equation (Eq. (24)) in fact enumerates
all the possible production rounds given all the possible
initial trade credit states that meet j
tj = 0 or j
tj �
k. In Eq. (24), maximum initial capital is always
selected for the computation of capital increment of
each production round. Lemma 4 shows that this
way of computation guarantees the maximums capital
increment for the latter production; Lemma 5 shows
that the optimal production plan from periods 1 to t is

part of the total optimal production plan given j
tj = 0
or j
tj � k. Lemma 4 and Lemma 5 together indicate
that the optimal production plan is a combination
of several production rounds with initial trade credit
states and end-of-period trade credit states that meet
j
t1 j = 0 or j
t1 j � k, and j
t2 j = 0 or j
t2 j � k (t1 is
the beginning period of the production round, and t2
is the end period of the production round).

These are the same properties as the Wagner-
Whitin case [3]. Recursive equation (Eq. (24)) enumer-
ates all the possible combinations of production rounds;
the one that gives the maximum �nal capital is the
optimal solution.

Theorem 2. If all the variable production costs are
equal, i.e., ct = c, recursive equation (Eq. (24)) can
obtain the optimal solution for Model CFLSP.

Proof. Model CFLSP is a special case of Model
CFLSP-TC without considering trade credit. The zero-
inventory ordering policy is also put into e�ect when all
variable production costs are equal. For Model CFLSP,
trade credit states satisfy j
tj = 0. Therefore, Lemmas
1 � 5 also hold for Model CFLSP, and Eq. (24) can
obtain the optimal solution.

If the parameter values do not satisfy the condi-
tions of Theorem 1 or Theorem 2, Eq. (24) only obtains
an approximate solution. The zero-inventory ordering
policy is not optimal, and, in some situations, it is
better to hold some inventory when launching a new
production cycle. Therefore, a heuristic adjustment
is devised, as shown by Corollary 1, to bring the
approximate solution closer to optimality.

Corollary 1. In a feasible solution, assume that
solutions are xt, yt, wt, and zt. For any two adjacent
production cycles, assume that the former production
cycle begins in period t1, and the latter production
cycle begins in period t2. If Bt1�1�st1�(1�zt)ct1yt1 >
0, ct1(1 + zt1r)k +

Pt2�1
i=t1 hi < ct2(1 + zt2r)

k, then it is
better to move some production quantity �yt2 from yt2
to yt1 to obtain the �nal capital if the production plan
is still feasible after the adjustment.

Proof. If Bt1�1�st1�(1�zt)ct1yt1 > 0, period t1 has
residual production capacity, which can produce more.
After the moving adjustment, the �nal capital changes
to the following:

B0T =BT +
�
ct2(1 + zt2r)

k � ct1(1 + zt1r)
k

�Xt2�1

i=t1
hi
�
�yt2 :

If ct1(1 + zt1r)k +
Pt2�1
i=t1 hi < ct2(1 + zt2r)

k, B0T >
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�yt2 =

8>>><>>>:
min

�
Bt1�1�st1
ct1 (1�zt1 ) ;

Bt2�1�(1�zt2 )ct2yt2�st2
ct2 (1+zt2r)

k�ct1 (1+zt1r)
k�Pt2�1

i=t1
hi

�
zt1 = 0

Bt2�1�(1�zt2 )ct2yt2�st2
ct2 (1+zt2r)

k�ct1 (1+zt1r)
k�Pt2�1

i=t1
hi

zt2 = 1

(25)

Box I

Figure 4. Heuristic adjustment of Corollary 1.

BT . If the production plan is still feasible after the
adjustment, the �nal capital increases.

This heuristic adjustment step is shown in Fig-
ure 4. To judge whether the production plan is still
feasible after the adjustment, it is required to judge
whether the end-of-period capital in each period is
above zero or not.

The moving production quantity �yt2 can be
obtained by Eq. (25) as shown in Box I.

When zt1 = 0, the �rst term in the min bracket
is the maximum production increment that period t1
can provide; the second term in the min bracket is
the maximum production decrement that period t2 can
accept; the moving production quantity �yt2 is the
minimum value of the two terms. When zt1 = 1, the
manufacturer uses trade credit in period t1, and period
t1 can provide production increment �nitely; therefore,
only the second term is required in Eq. (25).

6. Sub-linear problems and algorithm

6.1. Computation of BBm;n
In recursive equation (Eq. (25)), in order to compute
BBm;n, several sub-linear problems without integer
variables are formulated. Since the production round
from periods m to n can include several production
cycles, bbm;n can be used to represent the maximum
capital increment for a speci�c production round from
periods m to n. If j
nj = 0, the manufacturer does not
use trade credit from periods m to n. There is only
one production cycle required in the production round
to compute BBm;n. The maximum capital increment
is computed by Model Sub-1.

Model Sub-1 (j
nj = 0):

Max bbm;n =
Xn

t=m
[ptvt � (htIt + cmvt)

� �t(dt � vt)]� sm; (26)

s.t. :

t = m;m+ 1; :::; n

cm
Xn

i=m
vi + sm � Bm�1; (27)

Bt � 0; (28)

Im�1 = 0; In = 0; (29)

0 � vt � dt: (30)

Objective function in Eq. (26) maximizes the
capital increment from periods m to n, where dt � vt
is the lost sales in period t. Constraints (27) and (28)
represent capital 
ow constraints assumptions in this
paper. In Constraint (28), Bt is the expression of vt,
which can be deducted by Eqs. (1), (35), and (36).
It is very lengthy, thus, we omit its full expressions
here. Constraint (29) means that initial inventory and
�nal inventory of the production cycle are zeros, which
is a heuristic step if parameter values do not satisfy
Theorem 1 or 2. Constraint (30) provides the lower
and upper bounds of variables.

If the computation of Model Sub-1 does not
obtain a feasible solution, we set vt = 0 (t = m;m +
1; :::; n) and BBm;n = 0, which means that it is better
not to launch production for the production cycle from
periods m to n.

When j
nj � k, the manufacturer uses trade
credit in period m. For a speci�c production plan
in the production round from periods m to n, assume
that there are l production cycles, and the production
launching periods are t1; t2; :::; tl (for easy of expression,
we set m = t1, n = tl � 1). When j
nj � k,
the production plan from periods m to n is shown in
Figure 5. The maximum capital increment is computed
by Model Sub-2.

Model Sub-2 (j
nj � k):

Max bbm;n =
Xn

t=m
[ptvt � htIt � �t(dt � vt)]

Figure 5. Production plan from period m to period n
when j
nj � k.
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Initialization: t = 1. 1� T zero matrices x, y, w, z, B�. T � T zero matrices BB, bbi (i = 1; 2; :::; 2k).

Step 1: For n = t; t + 1; :::; T , get the value of m based on trade credit state 
n. Compute bbm;n from
sub-linear problems Model Sub-1, and Model Sub-2. For the ith production plan in 
n, record its value in
bbi(m;n).

Step 2: According to Eq. (34), calculate BBm;n and record its value in BB(m;n); according to Eq. (24), calculate
B�t and record its value in B�(t). Obtain the production plan from periods 1 to t: x(1 : t), y(1 : t), w(1 : t), z(1 : t).

Step 3: t = t+ 1, repeat Steps 1 and 2 until t = T .

Step 4: Return to check if production plan meets Corollary 1. If the condition is met, make plan adjustments.
Obtain the �nal production plan: x(1 : T ), y(1 : T ), w(1 : T ), z(1 : T ) and �nal capital B�T .

Box II

� ct1
Xt2

i=t1
vi(1 + r)k

�Xl

i=2
cti
Xti+1�1

j=ti
vj �Xl

i=1
sti ; (31)

s.t. :

t = m;m+ 1; :::; n

(28); (29); (30)

sm � Bm�1; (32)

sti + cti
Xti+1�1

j=ti
vj � Bti � 1 i = 1; 2; :::; l: (33)

In Model Sub-2, Constraints (32) and (33) are the
capital 
ow constraints for launching production under
the assumptions of our paper. If the computation of
Model Sub-2 does not obtain a feasible solution, set
vt = 0 (t = m;m + 1; :::; n) and bbm;n = 0. Because
BBm;n = 0 is the maximum capital increment in the
production round:

BBm;n = maxfbbm;nj j
nj = 0 or j
nj � kg: (34)

For t = m;m + 1; :::; n, the relation among vt, yt, and
wt is shown as in Eqs. (35) and (36):

yt =
ti+1�1X
j=ti

vj ; i = 2; 3; :::; l; (35)

wt = dt � vt: (36)

We also have the following lemma regarding the num-
ber of computations done for BBm;n.

Lemma 6. There are at most 2k sub-linear problems
bbm;n to compute BBm;n.

Proof. When j
nj � k, by the de�nition of trade

credit state and trade credit duration, trade credit
duration for period n could be: 0; 1; :::; k � 1; there
are at most 20 + 21 + :::+ 2k�1 = 2k � 1 combinations
of production rounds in 
n. When j
nj = 0, there are
only one production round in 
n. Therefore, there are
at most 2k�1 + 1 = 2k sub-linear problems to compute
BBm;n.

6.2. Algorithm DPH
Based on Theorem 1, Corollary 1, and sub-linear prob-
lems computations, the following dynamic program-
ming algorithm is proposed with heuristic adjustment
(DPH) in Box II to solve our problem.

6.3. Computation complexity of the algorithm
During the recursion of Eq. (24), there are T (T + 1)=2
computations of BBm;n. By Lemma 6, there are at
most 2k computations of sub-linear problems for each
BBm;n. Therefore, there are 2kT (T + 1)=2 compu-
tations of sub-linear problems. The computational
complexity of our algorithm is O(2kT 2 ), where  is
the computational complexity of the algorithm for the
sub-linear problems.

Without integer variables, a polynomial interior
point algorithm can solve the sub-linear problems.  
is O(T 3:5L0) for the commonly used interior point
algorithm, where L0 denotes the total length of the
binary coding of the input data. Details of the
complexity of interior point algorithm could be found
in [29]. This is one of the reasons why we removed
integer variables from original model and divided it into
sub-linear problems.

Because trade credit length is generally small
compared with planning horizon length T , 2k can
be viewed as a constant number, and our algorithm
is polynomial in this sense. Since Model CFLSP is
a special case of Model CFLSP-TC, our algorithm
can also solve the capital 
ow constrained problem
without trade credit, and its computational complexity
is O(T 2 ).
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7. Numerical analysis

In our numerical experiments, the linear programming
algorithm is the interior point algorithm in MATLAB
based on the paper of Zhang [30]. Our algorithm
is coded in MATLAB 2014a and ran on a desktop
computer with an Intel (R) Core (TM) i7-3770 CPU,
at 3.40 GHz, 4GB of RAM at a 32-bit Windows 7
operating system.

7.1. An example about the e�ects of capital
and trade credit

Assume that trade credit length, k = 3, interest rate,
r = 7%, initial capital, B0 = 200, and planning horizon
length, T = 8. Values of other parameters are listed in
Table 1.

The solution of our algorithm is shown in Figure 6.
Because the problem satis�es the optimal conditions
in Theorem 1, the solution is optimal. In the optimal
solution, the manufacturer uses trade credit in period 2
and pays back the trade credit at the end of period 4.

The optimal production arrangement plan with-
out trade credit is shown in Figure 7. Because all the
variable production costs are equal, the solution is also
optimal according to Theorem 2.

Figures 6 and 7 demonstrate whether or not
using trade credit a�ects the optimal production plan.
Figure 8 shows the optimal capital increment as the
changing of trade credit settings and quantity of the
initial capital.

In Figure 8(a), as initial capital increases, the �nal
optimal capital increment also increases, yet remains
stable when the initial capital is large enough. The
reason is that when the initial capital is su�cient,
capital 
ow constraints are not production capacity
constraints, and the results are the same as the cases
without capital constraints. In Figure 8(b), the �nal

Table 1. Parameter values of the example.

pt 30 22 12 14 30 12 12 40
ct 10 10 10 10 10 10 10 10
ht 5 5 5 5 5 5 5 5
st 100 100 100 100 100 100 100 100
�t 2 2 2 2 2 2 2 2
dt 9 12 9 25 9 20 20 25

Figure 6. Optimal production plan using trade credit.

Figure 7. Optimal production plan without using trade
credit.

capital increment varies as the trade credit length
changes. In Figure 8(c), the �nal capital increment
decreases as trade credit interest rate increases, which
is reasonable. All those �gures illustrate that trade
credit settings and capital do exert in
uence on the
optimal production plan and �nal capital increment.

7.2. Computational comparisons of the
proposed algorithm with CPLEX

A numerical experiment is performed to test the devi-
ation of the proposed algorithm from the optimal so-
lutions on a large set of randomly generated problems.
The randomized scheme of test problem generation is
presented in Table 2, which is similar to the test beds in
Aksen's work [11], except that we also list some levels
for the initial capital, trade credit length, interest rate,
and unit penalty cost in the comparison.

In Table 2, regarding the initial capital levels,
B0 = s1 + c1d1 guarantees that the manufacture has
enough capital for the production of the �rst period;
B0 = s1 + c1(d1 + d2) guarantees capital for the
production of the �rst two periods; B0 = s1 + c1(d1 +
d2 + d3) guarantees capital for the production of the
�rst three periods. There are totally 864 test problems
for a certain planning horizon length T .

Because Model CFLSP-TC is a non-linear mixed-
integer programming problem, CPLEX cannot obtain
its optimal solution directly. All the possible values of
zt (t = 1; 2; :::; T ) are enumerated; then, they are solved
by CPLEX and the maximum �nal capital increment
is selected as the optimal solution. Therefore, the
computational time of the optimal solutions by CPLEX
is very time-consuming which also increases greatly as
T increases. For T = 8, the total computation time
of the 864 test problems by CPLEX is 1.6 hours; for
T = 10, the total computation time is 6.7 hours; for
T = 12, the total computation time is 29.5 hours.
Moreover, an attempt is made to solve our problem
by some meta-heuristics such as genetic algorithm and
simulated annealing. However, it is di�cult for those
meta-heuristics to obtain a feasible solution, because
the capital 
ow constraints are not �xed and related
with many parameter's values, such as initial capital,
selling price, and values of decision variables, such as
production quantity, lost sales quantity, etc. Therefore,
the proposed algorithm is only compared with CPLEX
for T = 8, T = 10, and T = 12 for trade credit lengths
lasting from 1 to 4. The experimental results are shown
in Table 3.

Table 3 shows that the average deviation of our
algorithm from the optimal solution for Model CFLSP-
TC (capital 
ow-constrained lot-sizing problem with
trade credit) is rather low. Of all the test prob-
lems, maximum deviation optimality percentage of our
algorithm is 4.71%, and mean deviation optimality
percentage of our algorithm is lower than 0.1%. Of all



Z. Chen and R.Q. Zhang/Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 2775{2787 2785

Figure 8. Optimal capital increment for di�erent initial capital and trade credit settings.

Table 2. Randomized generation scheme for the test problem.

Parameter Levels Values

Trade credit length 4

1. k = 1
2. k = 2
3. k = 3
4. k = 4

Interest rate 3
1. r = 0:11
2. r = 0:07
3. r = 0:03

Demand distributions 3
1. Exponential with � = 150
2. Normal with � = 150, � = 40
3. Normal with � = 150, � = 10

Unit production cost 2 1. Both constant: ct = 13 and ht = 1
Unit holding cost 2. Both seasonally varying

Selling price 2 1. Uniformly distributed in [15, 25]
2. Both seasonally varying

Initial capital 3
1. B0 = s1 + c1d1

2. B0 = s2 + c1(d1 + d2)
3. B0 = s1 + c1(d1 + d2 + d3)

Unit penalty cost 2 1. Constant: �t = 2
2. Constant: �t = 4

Setup cost 1 Constant: st = 1000

the 2592 test cases, there are only 85 cases in which
the proposed algorithm could not reach optimality.
In general, the proposed algorithm can get 96.72%
optimal cases. For Model CFLSP, it can be solved by
CPLEX directly. The proposed algorithm is compared
with CPLEX for di�erent planning horizon lengths.
The results are shown in Table 4.

Table 4 shows that, for Model CFLSP (capi-
tal 
ow-constrained lot-sizing problem without trade
credit), the deviation optimality percentage of our
algorithm is also very small. When the problem size
is small, the branch and bound method in CPLEX can
compute them very fast. However, when the problem
size is large, CPLEX needs large memory to store ma-

trices, substantially increasing the computation time.
The proposed algorithm runs faster than CPLEX for
large-sized problems of Model CFLSP.

8. Conclusions and outlook

Capital shortage is a common problem faced by many
small- and medium-size companies. Therefore, it is
necessary to consider capital 
ow constraints when
making operational decisions. Trade credit is a widely
used option for many companies to deal with capital
shortage. This paper formulates a single-item lot-sizing
model considering capital 
ow constraints and trade
credit. Based on dynamic programming, an algorithm
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Table 3. Performance of the proposed algorithm for Model CFLSP-TC.

T k Num.
of cases

Num. of non-
optimal cases

Average
deviation

Max
deviation

8

k = 1 216 0 0% 0%
k = 2 216 6 0.06% 3.36%
k = 3 216 4 0.03% 4.20%
k = 4 216 3 0.02% 3.19%

10

k = 1 216 8 0.04% 3.63%
k = 2 216 11 0.06% 4.71%
k = 3 216 13 0.04% 3.28%
k = 4 216 11 0.04% 2.81%

12

k = 1 216 2 0.01% 0.28%
k = 2 216 9 0.05% 4.03%
k = 3 216 10 0.07% 4.34%
k = 4 216 8 0.02% 1.01%

Total 2592 85 0.03% 4.34%

Table 4. Performance of the proposed algorithm for Model CFLSP.

T Num.
of cases

Avg. DPH
time (s)

Avg. CPLEX
time (s)

Num. of non-
optimal cases

Average
deviation

Max
deviation

12 216 0.62 0.14 4 0.01% 2.45%
24 216 2.68 0.22 10 0.01% 0.81%
36 216 6.34 0.48 9 0.02% 1.42%
60 216 11.92 58.24 8 0.01% 1.47%
72 216 19.99 117.14 5 0.01% 0.20%

Total 1080 8.166 35.24 36 0.01% 2.45%

with heuristic adjustment is proposed to solve the
problem. Numerical studies show that capital 
ow and
trade credit usage do a�ect the optimal production plan
and �nal capital increment in the lot-sizing problem.
The proposed algorithm can solve the problem in
a shorter time, as compared with commercial solver
CPLEX. Under certain conditions, it can obtain the
optimal solution. Under other conditions, it has little
deviation compared with optimal solutions. Mathe-
matical properties and the proposed algorithm are also
suitable for the problem with the given quantity of loan,
equaling the increasing capital in some periods in our
model.

Future research can be extended in two directions:
First is to consider the stochastic demand or the multi-
item lot-sizing problems with capital 
ow constraints;
second is to include some other �nancial behaviours,
such as inventory �nancing, factoring business, etc.
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