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Abstract. Tra�c jam is a daily problem in nearly all major cities in the world and
continues to increase with population and economic growth of urban areas. Tra�c lights,
as one of the key components at intersections, play an important role in control of tra�c
ow. Hence, study and research on phase synchronization and time optimization of the
tra�c lights could be an important step to avoid creating congestion and rejection queues
in a urban network. Here, we describe the application of NSGA-II, a multi-objective
evolutionary algorithm, to optimize both vehicle and pedestrian delays in an individual
intersection. In this paper, we improve NSGA-II algorithm based on the regression line
to �nd a Pareto-optimal solution or a restrictive set of Pareto-optimal solutions based on
our solution approaches to the problem, named PDNSGA (Non-dominated Sorting Genetic
Algorithm based on Perpendicular Distance). The high speed of the proposed algorithm and
its quick convergence makes it desirable for large scheduling with a large number of phases.
It is demonstrated that our proposed algorithm (PDNSGA) gives better outputs than those
of MOGA, NSGA-II, and WBGA in tra�c signal optimization problem, statistically .
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Tra�c congestion is a daily problem in nearly all
major cities in the world and continues to increase
with population and economic growth of urban areas.
The increasing tra�c demand strains the existing
transportation system, especially when the network
is oversaturated during peak hours. Oversaturation
occurs when the queues of vehicles on a receiving
street interfere with the performance of the respective
adjacent upstream streets, and though these conditions
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may last for only a short time, the time to clear the
network may be signi�cant. Costs of infrastructure
renewal and expansion may be cost-prohibitive, and
under limited budgets, viable strategies are required
to enhance the mobility and e�ciency of the existing
tra�c without investing in new infrastructure.

There are two objectives for this research. We
develop an e�ective procedure to optimize signal timing
of an individual intersection by minimizing both vehicle
and pedestrian delays. Tra�c signals aim generally to
minimize average vehicle delay, but pedestrian delay is
not taken into account. Such a strategy is reasonable
for rural areas or highways where very few pedestrians
interfere with vehicular tra�c. However, in a central
business district with a lot of pedestrians walking
around, the strategy that only optimizes vehicle ows
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would not be suitable, because the pedestrian delay is
ignored. Ignoring pedestrian delay might even result in
people choosing to use vehicles more frequently than
walking. Therefore, when pedestrian ows start to
have inuence on vehicle ows, pedestrian signal plans
should be optimized considering delays for both groups.
Tra�c signal plan optimization should be a trade-o�
between vehicle and pedestrian delays by minimizing
travel delay for all the travelers.

Ishaque and Noland [1] analyzed the e�ect of
signal cycle timing on both vehicle and pedestrian
delays in a hypothesized network by a VISSIM mi-
crosimulation model. Aiming to minimize the multi-
modal travel delay and travel costs, they found that
optimal cycle lengths under light tra�c conditions (60
to 72 seconds) were shorter than optimal cycle lengths
under heavy tra�c conditions (90 seconds). However,
they only discussed eight �xed-time non-coordinated
signal plans with single or double exclusive pedestrian
phases. In addition, pedestrian compliance e�ect was
not considered in the research. Based on their research
in 2005, Ishaque and Noland [2] studied trade-o�s
between pedestrian and vehicle tra�cs in the same
hypothetical network by a VISSIM microsimulation
model. Aiming to optimize average travel cost per
person in all modes of the network, they found that
shorter cycle lengths were bene�cial for pedestrians,
and that signal plans advantageous to vehicles might
be disadvantageous to pedestrians. Based on di�er-
ent proportions of pedestrians to vehicle users and
di�erent pedestrian time values, suitability of three
di�erent pedestrian phase types was analyzed so that
the optimal network performance could be achieved
for all road users. Compared with their previous
research, pedestrian compliance e�ect was considered
in the research, and a variety of signal plans were
improved. However, the variety was still limited to
two-phase vehicle signal plans with single exclusive
or double exclusive, or staggered pedestrian crossing
phase(s). A deterministic model [3,4] was proposed
that incorporated both pedestrian and vehicle delays
into a signal coordination plan. The author(s) analyzed
the running results of the model on a hypothesized
�ve-intersection arterial with various o�sets, and found
that the best o�sets for vehicles and pedestrians along
the arterial were not necessarily the same. In order
to minimize total pedestrian and vehicle user cost,
an optimal signal coordination plan could be achieved
by balancing between pedestrian and vehicular delays.
Li et al. [5] developed a tra�c signal optimization
strategy, programmed in Matlab, for an individual
intersection to minimize weighted total vehicle and
pedestrian delays. The total vehicle and pedestrian
delays on sidewalk were calculated based on their
deterministic queuing model, respectively. Total pedes-
trian delay on crosswalk was calculated based on an

empirical pedestrian speed model, which considered
interactions between pedestrian platoons. Mehan [6]
and Barzegar [7] worked on tra�c signal control for an
isolated intersection signal (adjacent intersection) with
fuzzy controller methods.

Gokulan and Srinivasan [8] adopted a type-2
fuzzy set and designed a distributed multi-agent tra�c-
responsive signal control system. This system was
tested on virtual road networks with several scenar-
ios. Results showed the superior performance of the
approach in handling unplanned and planned incidents
and obstructions.

Recently, metaheuristic algorithms [9] have be-
come very popular as optimization methods for solving
tra�c light scheduling problems. A �rst attempt
corresponds to the study of Rouphail et al. where a
Genetic Algorithm (GA) was coupled with the COR-
SIM [10] microsimulator for the timing optimization
of nine intersections in the city of Chicago (USA). The
results, in terms of total queue size, were limited due to
the delayed convergence behavior of the GA. Turky et
al. [11] used a GA to improve the performance of tra�c
lights and pedestrians crossing control in a unique
intersection with a four-way two-lane junction. The
algorithm solved the limitations of traditional �xed-
time control for passing vehicles and pedestrians, and
it employed a dynamic control system to monitor two
sets of parameters.

Odeh et al. [12] presented a hybrid algorithm that
combines Fuzzy Logic Controller (FLC) and Genetic
Algorithms (GAs) and its application on a tra�c
signal system. It has been used to adopt the decision
rules of FLCs that de�ne an intelligent tra�c signal
system, obtaining a higher performance compared to
that of a classical FLC-based control. The simu-
lation results yielded by the hybrid algorithm show
an improvement of up to 34% in the performance
with respect to a standard tra�c signal controller.
Another signal control methodology is formulated as
a quadratic programming problem to minimize and
balance the link queues, thus minimizing the risk of
queue spillback [13]. G�ottlich et al. [14] presented a
numerical approach to the optimization of switching
points as a function of time based upon the macroscopic
tra�c ow model. The numerical discussion relies on
an equivalent reformulation of the original problem
as well as a mixed-integer discretization of the ow
dynamics. The large-scale optimization problem is
solved using derived heuristics within the optimization
process. Collotta et al. [15] proposed a novel approach
to managing dynamically the tra�c lights cycles and
phases in an isolated intersection. The target of the
work is a system that, compared with previous solu-
tions, o�ers improved performance, which is exible
and can be implemented on o�-the-shelf components.
The proposed system combines the advantages of the
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WSN, such as easy deployment and maintenance,
exibility, low cost, noninvasiveness, and scalability,
with the bene�ts of using four parallel fuzzy controllers,
i.e. better performance, fault-tolerance, and support for
phase-speci�c management.

Shahsavari Pour et al. [16] presented a new fuzzy
multi-objective mathematical model to minimize the
length of tra�c queue and pedestrian delays to opti-
mize the control of uctuating tra�c volumes such as
oversaturated or unusual load conditions. The problem
is solved by genetic algorithm, and a new defuzzi�ca-
tion method is introduced. Duerr [17] used a GA with a
microscopic tra�c simulator as the �tness evaluator to
minimize the Performance Index (PI) which considered
vehicle behavior at intersections and transit stops.
The optimization results of a seven-node arterial in
W�urzburg (Germany) and temporal deviation of each
phase duration from the standard setting at each node
showed that travel time dropped 25% and 5% for buses
and cars, respectively. Furthermore, so as to optimize
signal control under oversaturated tra�c condition,
Girianna and Benekohal [18,19] applied a GA to a grid
network of arterials. The optimization results of a
hypothesized twenty-node network and green time of
each phase at an intersection showed that queues were
successfully distributed spatially over di�erent intersec-
tions and temporarily over di�erent signal cycles.

In this paper, we apply a new multi-objective
genetic algorithm to �nd a Pareto-optimal solution or
a restrictive set of Pareto-optimal solutions based on
our solution approaches to the problem. In this paper,
our purpose is to present a solution methodology to
obtain all Pareto-optimal solutions to optimize signal
timing and enable the decision-makers to evaluate a
greater number of alternative solutions. The purpose
of this study is to extend this methodology to reach
a solution to multi-objective optimal control problems
under the framework of NSGA-II.

This paper is organized as follows. In Section 2,
we present the problem de�nition and formulation. In
Section 3, a solution procedure is introduced. We
develop an algorithm, namely PDNSGA. To illustrate
the proposed approach, a number of examples are
presented in Section 4. The related results of this
algorithm are analyzed by the analysis of variance
(ANOVA) method in Section 5. Finally, conclusion is
given in Section 6.

2. Multi-objective mathematical model

Tra�c signal timing planning is a typical multi-
objective optimization problem; for a signalized sys-
tem, an optimal timing plan is usually required to meet
four typical objectives (minimizing delay, minimizing
stops, minimizing fuel consumption, and maximizing
progression). The problem discussed in this paper

is minimizing the queue length on each side of an
intersection during peak hours with fuzzy entrance and
exit rates on each side of the intersection. Generally,
tra�c signals aim to minimize average vehicle delay,
but pedestrian delay is not taken into account. Such
a strategy is reasonable for rural areas or highways
where very few pedestrians interfere with vehicular
tra�c. However, in a central business district with a lot
of pedestrians walking around, the strategy that only
optimizes vehicle ows would not be suitable because
the pedestrian delay is ignored. Ignoring pedestrian
delay might even result in people choosing to use
vehicles more frequently than walking. Tra�c signal
plan optimization should be a trade-o� between vehicle
and pedestrian delays by minimizing travel delay for all
the travelers. Therefore, when pedestrian ows start
to have an inuence on vehicle ows, pedestrian signal
plans should be optimized considering delays for both
groups.

Fuzzy logic is a powerful tool for processing
nondeterministic and non-linear problems. It can
represent fuzzy and qualitative knowledge; therefore, it
can imitate human's reason. As we know, a seasoned
tra�c police can handle tra�c quickly and e�ectively.

Actually, the reasons and decisions are made
merely by the use of interrelated qualitative knowledge.
The process of reasoning and decision-making can be
described as follows: For a lane, if there are many
vehicles arriving in, more green time is allocated.
Otherwise, less green time is allocated or the phase
turns to the next one. Of cause, it is necessary to
simultaneously consider tra�c demands in other lanes
when changing the phase. The control process is shown
in Figure 1. The tra�c intensity can be denoted by

Figure 1. Scheme of tra�c optimization process using
data collected from road detectors.
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queue length before stop line or tra�c density on the
approaches in the current or next phase.

Tra�c signal timing changes at di�erent hours
of day, and the amount of tra�c on each street and
the intersection is used to help increase the e�ciency
of lights. Although this method has improved the
controlling process of intersections, in a very busy
intersection and in cities that have particular tra�c
treatment, the control of intersection will face this
problems. So, we need to have a system that responds
to variations of the tra�c patterns quickly. This study
is made to optimize green time duration in order to
minimize tra�c jam length. Prior to the optimization
process, road-detector should gather data related to
intersection tra�c. These data are required to make
decisions if current conditions are su�cient, or they
have to be improved (see Figure 1).

For the sake of clari�cation, we have conducted a
sensitivity analysis on the tra�c light at a two-phase
intersection, and then it has been developed for a four-
phase tra�c problem. When phase I has red time (T1),
tra�c jam length in this phase has an increasing rate.
On the contrary, tra�c jam length of phase II with
green time has a decreasing rate. Red time (WALK
time) in each phase is the sum of green time in other
phases which increases as the green time devoted to
each phase increases; therefore, jam length in other
phases may also increase.

The pedestrian's queue length has an incremental
rate and reaches its highest level at the end of green
time (points A1, and A2). As soon as intersection's red
time starts, all the pedestrians cross the intersection
immediately (WALK time). As a result, pedestrians'
queue is equal to zero (see Figure 2). In addition, the
model considers the compliance e�ect of pedestrians.
In order to avoid waiting for the next WALK inter-
val, certain pedestrians increase their waking speed
and begin their crossing without a WALK indication.
The majority of these phenomena happen during the
ashing DONT WALK time. The aim of this research
is to obtain the optimal tra�c light green and red
time to minimize the fuzzy queue length of vehicles

Figure 2. Sensitivity analysis for two-phase intersection.

and pedestrians. The notations used for the problem
formulation are as follows:
i The number of phases in an

intersection.
Li The lower bound of the green time in

phase i.
Ui The upper bound of the green time in

phase i.
]TIRi The fuzzy entrance ow rate of cars in

red time duration in phase i.
]TIGi The fuzzy entrance ow rate of cars in

green time duration in phase i.

T ~OGi The fuzzy exit ow rate in green time
duration in phase i.

NfTIRi The fuzzy entrance cars in red time
duration in phase i.

NfTIGi The fuzzy entrance cars in green time
duration in phase i.

NgTOGi The fuzzy exit cars in green time
duration in phase i.

]TIP i The fuzzy entrance rate of pedestrians
in red time duration (DONT WALK)
in phase i.

NfTIPi The fuzzy entrance pedestrians in red
time duration in phase i.

TS Duration of the analysis period.
TRi The red time duration in phase i.
TGi The green time duration in phase i.
CTi The cycle time duration in phase i.
NCTi Number of cycles time in the TS.gQR(i;j) The fuzzy queue length when red time

duration in phase i and the jth cycle
time is ended.

~QG(i;j) The fuzzy queue length when green
time duration in phase i and the jth
cycle time is ended.

The problem is formulated as in the following
model presented by Asadi and Shahsavari [16]:

MinQ1 =
nX
i=1

�
N ~TIRi + (N ~CTi � 1)

� (N ~TIRi +N ~TIGi � N̂TOGi)�; (1)

MinQ2 =
nX
i=1

�
~TIP i � TRi

�
: (2)

Subject to:



1716 H. Asadi et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 1712{1723

Li � TGi � Ui; (3)

TRi �
 

nX
i=1

TGi

!
� TGi 8i; i = 1; 2; :::; n; (4)

N ~TIRi � ~TIRi � TRi 8i; i = 1; 2; :::; n; (5)

NfTIGi = fTIGi � TGi 8i; i = 1; 2; :::; n; (6)

NgTOGi = gTOGi � TGi 8i; i = 1; 2; :::; n; (7)

CTi = TRi + TGi 8i; i = 1; 2; :::; n; (8)

NCTi = TS=CTi 8i; i = 1; 2; :::; n; (9)gQR(i;j) =gQG(i;j�1)+NfTIRi 8i; i = 1; 2; :::; n: (10)

Eq. (1) minimizes the total queue length of vehicles in
all phases of the intersection; Eq. (2) minimizes the
total queue length of pedestrians in all phases of the
intersection. Eq. (3) restricts green time per phase to
take a value within a lower bound Li and an upper
bound Ui. Eq. (4) represents the red time duration in
phase i; Eq. (5) represents the fuzzy entrance cars in
red time duration in phase i.

Eq. (6) represents the fuzzy entry cars in green
time duration in phase i. Eq. (7) represents the fuzzy
exit cars in green time duration in phase i. Eq. (8)
shows that the cycle time duration in per phases is
equal to the total green and red time. Eq. (9) represents
the number of cycle time per phases. When green time
duration in phase i and jth cycle time is ended, the
fuzzy queue length is calculated by Eq. (9). If the last
cycle time duration is equal to m in the Time period
Studied (TS), the objective function in Eq. (1) will
minimize gQR(i;m).

There are various solution approaches to solve the
multi-objective problem. Among the most widely used
techniques are sequential optimization, e-constraint
method, weighting method, goal programming, goal
attainment, and distance-based and direction-based
methods. In this study, we also proposed a novel
genetic algorithm to obtain Pareto-optimal solutions
based on the distance to the regression line (GADRL)
for this problem.

3. Novel genetic algorithm

Evolutionary algorithms for Multi-Objective (MO) op-
timization are currently gaining signi�cant attentions
from researchers in various �elds due to their e�ective-
ness and robustness in searching for a set of global
trade-o� solutions. This growing interest is reected
by the signi�cantly increasing number of di�erent
evolutionary-based approaches and variations of the

existing method published in technical literatures. The
purpose of this study is to extend this methodology
to obtain the solution to multi-objective optimal con-
trol problems under the framework of NSGA-II. The
Non-Dominated Sorting Genetic Algorithm (NSGA)
proposed by Srinivas and Deb [20] was one of the
�rst evolutionary algorithms for solving multi-objective
optimization problems. Although NSGA has been
successfully applied to solving many problems, the
main criticisms of this approach have been its high
calculation's volume of nondominated sorting, lack of
elitism, and the need for specifying a tunable parameter
called sharing parameter. Recently, Deb et al. [21]
reported an improved version of NSGA, called NSGA-
II, to address all the above issues.

3.1. Multi-objective optimization and genetic
algorithms

Being a population-based approach, GA is well suited
to solve multi-objective optimization problems. A
generic single-objective GA can be modi�ed to �nd
a set of multiple non-dominated solutions in a single
run. The ability of GA to simultaneously search
through di�erent regions of a solution space makes it
possible to �nd a diverse set of solutions to di�cult
problems with non-convex, discontinuous, and multi-
modal solutions spaces. The crossover operator of GA
may exploit structures of good solutions with respect
to di�erent objectives to create new non-dominated
solutions in unexplored parts of the Pareto front. In
addition, most multi-objective GAs do not require the
user to prioritize, scale, or weigh objectives. Therefore,
GAs have been the most popular heuristic approaches
to multi-objective design and optimization problems.
Jones et al. [22] reported that 90% of the approaches
to multi-objective optimization aimed to approximate
the true Pareto front for the underlying problem. A
majority of these used a meta-heuristic technique, and
70% of all metaheuristics approaches were based on
evolutionary approaches. The �rst multi-objective GA,
called Vector Evaluated GA (or VEGA), was proposed
by Scha�er [23].

Over the years, numerous techniques have been
developed. Some of the well-known and credible
algorithms used in many applications and their per-
formances tested in several comparative studies in-
clude Vector Evaluated Genetic Algorithm (VEGA),
Multi-Objective Genetic Algorithm (MOGA), Weight-
Based Genetic Algorithm (WBGA), Random Weight
Genetic Algorithm (RWGA), Niched Pareto Genetic
Algorithm (NPGA), Pareto envelop-based selection
algorithm PESA, Pareto Archived Evolution Strategy
(PAES), Non-dominated Sorting Genetic Algorithm
(NSGA), fast Non-dominated Sorting Genetic Algo-
rithm (NSGA-II), Strength Pareto Evolutionary Algo-
rithm (SPEA), improved Strength Pareto Evolution-



H. Asadi et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 1712{1723 1717

ary Algorithm (SPEA-2), rankdensity-based genetic
algorithm (RDGA), and Dynamic Multi-Objective
Evolutionary Algorithm (DMOEA). Generally, multi-
objective genetic algorithms di�er based on their �t-
ness assignment procedure, elitism, or diversi�cation
approaches. Santa Ch�avez [24] presented a multi-
objective ant colony algorithm for the Multi-Depot
Vehicle Routing Problem with Backhauls (MDVRPB),
where three objectives of traveled distance, traveling
times, and total consumption of energy are minimized.
An ant colony algorithm is proposed to solve the
MDVRPB. The solution scheme allows one to �nd a
set of ordered solutions in Pareto fronts by considering
the concept of dominance.

Zhao et al. [25] proposed a multi-objective opti-
mization approach to quality and e�ciency in Mixed-
Model Assembly Line (MMAL) by selecting the cycle
time at each station. Zhu et al. [26] presented an
early attempt to solve one-to-many-to-one Dynamic
Pickup-and-Delivery Problem (DPDP) by proposing a
multi-objective memetic algorithm called LSH-MOMA,
which is a synergy of multi-objective evolutionary
algorithm and Locality-Sensitive Hashing-based (LSH)
local search. Hajipour et al. [27] presented a Vi-
bration Damping Optimization (VDO) algorithm to
solve multi-objective optimization problems for the
�rst time. To do this, fast non-dominated sorting and
crowding distance concepts were used in order to �nd
and manage the Pareto-optimal solution.

3.1.1. NSGA-II: A brief overview
The notion of Non-dominated Sorting Genetic Algo-
rithm (NSGA) was �rst suggested by Horn et al. [28].
The main idea behind the non-dominated sorting pro-
cedure is that a ranking selection method is used to
emphasize the good points, and a niching method is
used to maintain a stable subpopulation of the good
points. NSGA di�ers from a simple genetic algorithm
only in the way the selection operator works. The
crossover and mutation operators remain as usual.
The e�ciency of NSGA lies in the way that multiple
objectives are reduced to a single �tness measure by
the creation of number of fronts, sorted according to
non-domination. Although NSGA approach has been
successfully applied to a number of multi-objective
optimization problems, the main criticisms of the
NSGA approach have been: (i) its high computational
complexity of non-dominated sorting, O(MN3) where
M is the number of objectives and N is the popu-
lation size; (ii) the lack of elitism; (iii) the need for
specifying the tunable sharing parameter. Recently,
Deb et al. [21] reported an improved version of NSGA,
which they called NSGA-II, to address all of these
issues. Speci�cally, NSGA-II alleviates all the above
di�culties by introducing a fast non-dominated sorting
procedure with O(MN 2) computational complexity,

an elitist-preserving approach, and a parameterless
niching operator for diversity preservation (crowded
comparison operator). NSGA-II also incorporates a
simple, yet e�cient, penalty parameterless approach to
solving constrained multi-objective optimization prob-
lems. The constraint-handling approach in NSGA-II
uses the binary selection operator, where two solutions
are picked up from the population, and the better
solution is chosen as follows:

1. If both of the solutions are feasible, choose the
solution with a better no-dominated rank;

2. If one is feasible and the other is not, choose the
feasible solution;

3. If both of the solutions are infeasible, choose the
solution with a smaller overall constraint violation.
In the context of constrained multi-objective opti-
mization, Deb modi�ed the de�nition of domination
between two solutions i and j as follows. A solution
i is said to constrained-dominate a solution j if any
of the following conditions is true.
a) Solution i is feasible and solution j is not.
b) Solutions i and j are both infeasible, but solu-

tion i has a smaller overall constraint violation.
c) Solutions i and j are feasible and solution i

dominates solution j.

The e�ect of using this constrained-domination
principle is that any feasible solution has a better
non-domination rank than any infeasible solution. All
feasible solutions are ranked according to their non-
domination level based on the objective function val-
ues. However, between two infeasible solutions, the
solution with a smaller constraint violation has a better
rank. In fact, when an evolutionary algorithm is
applied to multi-objective optimization, two major
problems should be considered. The �rst is how to
maintain various populations to prevent premature
convergence and achieve a well-distributed trade-o�
front; the second is how to achieve �tness assignment
and selection, separately, to guide the search towards
the Pareto-optimal front.

3.2. Implementation details of the proposed
algorithm for multi-objective optimal
control problems

In GA terminology, solution vector x 2 X is called an
individual or a chromosome. Chromosomes are made
of discrete units called genes. Each gene controls one
or more features of the chromosome. In the original
implementation of GA by Holland, genes are assumed
to be binary digits. In later implementations, more
varied gene types have been introduced. Normally, a
chromosome corresponds to a unique solution x in the
solution space. This requires a mapping mechanism
between the solution space and chromosomes.
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This mapping is called an encoding. In fact, GA
works on the encoding of a problem, not on the problem
itself.

In this paper, the chromosomes show the sum
of green time duration of the tra�c light system.
Chromosome length depends on a number of lighting
groups inside each intersection.

GA operates with a collection of chromosomes,
called a population. The population is normally and
randomly initialized. The number of chromosomes
inside the population also needs to be decided, because
the number of the solutions determines the speed of
the optimization and accuracy of the solution found.
If too many solutions are generated in the population,
then longer duration of time is needed to �nd the �ttest
optimization. However, if the number of the solutions
is too few or small, the genetic algorithm may face the
problem of �nding the �ttest optimizations.

The key feature of our GA-based optimization
strategy is the formulation of regression line, named
PDNSGA (Non-Dominated Sorting Genetic Algorithm
base on Perpendicular Distance). Linear regression at-
tempts to model the relationship between two variables
by �tting a linear equation to observed data. One
variable is considered to be an explanatory variable,
and the other is considered to be a dependent variable.
For example, a modeler might want to relate the
weights of individuals to their heights using a linear
regression model. The formula for the best-�tting line
(or regression line) is y = mx+ b, where m is the slope
of the line, and b is the y-intercept. This equation itself
is the same one used to �nd a line in algebra; however,
it should be noted that in statistics, the points do not
lie perfectly on a line{the line is a model around which
the data lie if a strong linear pattern exists.

Linear regression consists of �nding the best-
�tting straight line through the points. The best-�tting
line is called a regression line. The black diagonal
line in Figure 3 is the regression line which consists of
the predicted score on Y for each possible value of X.
The vertical lines from the points to the regression line
represent the errors of prediction. As we can see, the
red point is very close to the regression line; its error
of prediction is small. By contrast, the yellow point
is much higher than the regression line; therefore, its
error of prediction is large.

we may have noticed that we have not speci�ed
what is meant by \best-�tting line." By far, the most
commonly-used criterion for the best-�tting line is the
line that minimizes the sum of the squared errors of
prediction. That is the criterion that was used to
�nd the line in Figure 4. The last column in Table 1
shows the squared errors of prediction. The sum of the
squared errors of prediction shown in Table 1 is lower
than it would be for any other regression line. No-tice
that error column sums (Y � Y 0) equal zero.

Figure 3. A scatter plot of the example data. The black
line consists of the predictions, the points are the actual
data, and the vertical lines between the points and the
black line represent errors of prediction.

Figure 4. A \two-phase intersection".

Table 1. Example data.

X Y Y 0 Y � Y 0 (Y � Y 0)2

1 1 1.21 -0.21 0.044

2 2 1.635 0.365 0.133

3 1.3 2.06 -0.76 0.578

4 3.75 2.485 1.265 1.6

5 2.25 2.91 -0.66 0.436

In this study, we use the speci�cations of re-
gression line to improve the performance of NSGA-
II algorithm according to density estimation. To get
an estimate of the density of solutions surrounding
a particular solution in the population, we calculate
the perpendicular distance from the perpendicular
line to the regression line passing through the point
(f1; f2; f3; :::; fn) where n is the number of objectives.
In NSGA-II algorithms, the crowded-comparison oper-
ator guides the selection process at various stages of
the algorithm toward a uniformly spread-out Pareto
optimal front. In this study, we use a new crowded-
comparison operator described below. Although Fig-
ure 5 illustrates the crowding-distance computation for
two objectives, the procedure is applicable to more
than two objectives as well:
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Figure 5. Non-dominated solutions for example data.

Table 2. Mean value.

Example data Mean
f1 14 13 10 4 3 2.5 7.8
f2 2 2.2 3 7 11 14 6.5

� Determine the mean value (f1; f2) for each objec-
tive in each non-dominated sorting front;

� Calculate the regression line for each non-dominated
sorting by the following equation:

b =

NP
i=1

(F1i� �F1)(F2i� �F2)

NP
i=1

(F1i� �F1)
; (11)

a = �F2�b: �F1; (12)

F2 = b:F1 + a: (13)

� Find the equation of a line passing through the mean
point (f1; f2) and perpendicular to the regression
line (red line in Figure 3) using the following
equation; two lines are per-pendicular if b1:b2 = �1.
In other words, the slopes of the two lines (b1:b2)
must be negative reciprocals of each other:

y =
�1
b
x+

�
f2 +

1
b
f1
�
: (14)

� Calculate the distance (blue line in Figure 3) be-
tween each solution in the non-dominated sorting
(f1i; f2i) and perpendicular to the regression line
passing through point (ui; vi), reached in Eq. (14)
using the following equation:

di =
q

(f1i�Ui)
2 + (f2i�Vi)

2: (15)

For example, we obtained the regression line and
perpendicular to the regression line passing through
mean point (f1; f2) and crowding-distance (di) accord-
ing to Table 2.

If we use the crowded-comparison operator ac-
cording to NSGA-II algorithm, we choose point 4 that
has lesser crowding distance than point 5, that is,
between two solutions with di�ering non-domination
ranks, we prefer the solution with the lower (better)
rank. Otherwise, if both solutions belong to the same
front, then we prefer the solution that is located in
a lesser crowded region. In the proposed approach,
we replace the crowding distance approach with a new
approach that eliminates the above di�culties to some
extent. The new approach does not require any user-
de�ned parameter for maintaining diversity among
population members. The new approach chooses
point 5 because it has a greater distance compared
to point 4 that is located in a lesser crowded region.
Globally, point 5 is better than point 4 as it leads to
divergence and extends in non-dominated solutions; it
enables decision-makers to evaluate a greater number
of alternative solutions.

The details of the algorithm can be outlined as
follows:

Step 1. Initially, a random parent population, P0,
is created. The population is sorted based on the
nondomination.

Each solution is assigned a �tness (or rank)
equal to its no-domination level. The usual binary
tournament selection, recombination, and mutation
operators are used to create an o�spring population
Q0 of size N . Let t = 0;
Step 2. A combined population Rt = Pt [ Qt
is formed. Population Rt is of size 2N . Then,
population Rt is sorted according to nondomination.
The best non-dominated set Fi is formed;
Step 3. The perpendicular distance operator �
n is chosen to sort the non-dominated set Fi in
descending order. The best N members of the set
are chosen for the new population Pt+ 1;
Step 4. The new population Pt + 1 is now used
for selection, crossover, and mutation to create a new
population t+ 1.
Step 5. When the termination condition meets, the
loop stops; otherwise, t = t + 1, then turn back to
Step 2.

4. Illustrative example

The site of our case study chosen for this study is a
major arterial in Central Tehran, regularly crossed by
cars, trucks, public transportation buses and mopeds.
By adopting the formalism introduced in Section 3, the
signalized area in Figure 6 is modelled with 8 links,
including 4 input and 4 output links.

The model is programmed in the Microsoft Ex-
cel 2007 software using the Visual Basic Application
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(VBA). Problem's data given in Table 3 are entered
into the application software. We assume the time
period studied (AT) to be equal to 30 minute. In other
words, in every 30 minutes, road detectors send the
tra�c data for optimization process. Also, assume that
the lower bound of the green time duration per phase,
Li, is equal to 10 seconds, and the upper bound of
the green time duration per phase, Ui, is equal to 138
seconds.

In this example, there are 268, 435, and 456
solutions. The presented model is solved in order to
obtain the optimal solution. The GA parameters are
set as follows: G = 100, N = 70, one-point crossover
rate = 0.85, and mutation rate = 0.2. The program is
run on a Pentium 4 PC with CPU 2.8 GHz; TG1 = 10,
TG2 = 15, TG3 = 110, TG4 = 34, and its best Pareto
solution is obtained according to Figure 2.

5. Experimental evaluation

In order to test the convergence of the algorithm, the
optimization results (see Figure 7) of the proposed
algorithm after 50 and 100 generations are compared.
As illustrated in Figure 8, the converged speed of the
proposed algorithm is relatively fast. After 50 gener-
ations, the optimization results have already obtained
a relatively good convergence, which is similar to the
optimization results after 100 generations. In this way,
the evaluation generation can be reduced when it is
necessary to consider the calculation time. Although
the accuracy of the solution may be lower, it can still
be acceptable based on the experimental results.

Figure 6. An intersection in tra�c network with four
phases.

This section evaluates the performances of our
proposed GADRL and WBGA [29]. These algorithms
are coded and implemented in Excel 2007 by the VBA
and are run on a Pentium 4. This section evaluates
the performances of the proposed PDNSGA, NSGA-II,
MOGA, and WBGA. These algorithms are coded and
implemented in Excel 2007 by the VBA and are run
on a Pentium 4 PC with CPU 2.8 GHz and 512 MB
of RAM memory. We use the mean deviation from the
ideal point (MDI) as a common performance measure
to compare these algorithms computed by:

MDIi =

kP
i=1

q
(F1i�F1�i)2 + (F2i�F2�i)2

k
; (16)

where F1� and F2� are the best solutions obtained by
each algorithm for a given instance. F1 and F2 are

Figure 7. The best Pareto solution of the proposed
algorithm.

Figure 8. Distribution of optimal solutions after various
generations: (a) Initial distribution and (b) distribution of
optimal solutions after 50 and 100 generations.

Table 3. The fuzzy entry and exit rate per phase of intersection.

T ~IRi
(vehicle/second)

T ~IGi
(vehicle/second)

T ~OGi
(vehicle/second)

T ~IPi
(man/second)

Phase 1 (5,7,8) (5,7,8) (1,2,3) (5,6,7)
Phase 2 (2,3,4) (2,3,4) (3,4,5) (11,12,13)
Phase 3 (6,7,8) (6,7,8) (6,7,9) (13,14,15)
Phase 4 (3,4,5) (3,4,5) (4,5,6) (8,10,12)
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Figure 9. Means plot and LSD intervals for the MOGA
(A), PDNSGA (B), NSGA-II (C), and WBGA (D).

the total queue length of vehicles and pedestrians for
a given algorithm, respectively, and k is the number of
point in each Pareto solution. The PDNSGA, NSGA-
II, MOGA, and WBGA are implemented with the
same parameters for twenty-�ve times. Their results
are analyzed via the analysis of variance (ANOVA)
method. The means plot and the Least Signi�cant
Di�erent (LSD) interval for the MOGA, PDNSGA,
NSGA-II, and WBGA are shown as in Figure 9. It is
demonstrated that our proposed algorithm (PDNSGA)
gives better outputs than MOGA, NSGA-II, and
WBGA do for this problem, statistically.

The proposed PDNSGA procedure has several
advantages in speed, exibility, and accuracy, which
would be prominent during its application. Firstly,
the proposed PDNSGA procedure runs e�ciently. It
takes less than half a minute for the proposed PDNSGA
procedure to run 50 generations with 5 di�erent ran-
dom seeds in VBA, while it takes NSGA-II around 3.5
minutes to run 50 generations with only one random
seed. Secondly, the proposed GA procedure is exible,
thus can be used in di�erent intersections under dif-
ferent circumstances. The variation includes geometric
design of the intersection, vehicle and pedestrian vol-
umes, initial queues, and other tra�c relevant param-
eters. Thus, the signal plan selected by the PDNSGA
procedure would be a suitable solution, particularly
for that intersection with those tra�c characteristics.
Moreover, although the analysis period is set as 30
minutes in the tests, it can be set as any positive values,
such as 10, 5, or 2 minutes. The shorter the analysis
period is, the faster the signal plan responds to the
change of tra�c demands. With a cycle-length-long
analysis period, the PDNSGA procedure can realize a

real-time signal plan optimization. However, frequent
switches between two pedestrian crossing patterns and
big signal timing di�erence between adjacent cycles
should be avoided. Otherwise, either one of them can
cause confusion for both drivers and pedestrians, which
might bring severe safety issues. In addition, if an
object-oriented platform can be set up, the application
of the proposed procedure would be even more user-
friendly and easier to use. The proposed GA procedure
considers pedestrian and vehicle delays in the total user
time. However, there are other transportation users as
well, e.g. cyclists and buses. Therefore, including the
delays of other transportation users into the total user
time could be one of the areas for further research.

6. Conclusion

A GA optimization procedure was developed in this
paper to optimize signal timing of an individual inter-
section by minimizing total user time, which considers
both vehicle and pedestrian delays. In order to verify
the proposed optimization procedure, the impact of
vehicle and pedestrian volumes on signal plans was
tested in a hypothesized intersection. Signal plans
selected by the GA procedure are reasonable. Phase
lengths increased with the growth of the corresponding
critical vehicle or pedestrian volumes.

The main contribution of this paper is presen-
tation of a multi-objective optimization algorithm to
optimize tra�c signal timing at oversaturated intersec-
tion. In the proposed algorithm, maximum throughput
and minimum average queue ratio were selected as
the optimization objectives to meet the characteristics
of oversaturated tra�c ow. A problem-solving algo-
rithm, which found an optimal solution, considered the
total queue length of vehicles and pedestrians. To solve
the given problem, a new genetic algorithm (PDNSGA)
was also developed. The model was programmed in
the Microsoft Excel 2007 software using the Visual
Basic Application (VBA). The proposed algorithm has
the capability of searching Pareto front of the multi-
objective problem domain. Further jobs should be
concerned with the signal timing optimization method
for oversaturated coordinated intersections or small-
scale road network and real-�eld applications with the
tra�c signal controller. The high speed of the proposed
algorithm and its quick convergence make it desirable
for large scheduling with a large number of phases. Fur-
thermore, we used the mean deviation from the ideal
point (MDI) measure to compare the performances
of the MOGA, PDNSGA, NSGA-II, and WBGA by
the ANOVA method. By considering uncertainty in
processing time, this model can be extended to the
cases, which can be more realistic.

The proposed GA procedure is only capable of
optimizing signal plans for an individual intersection.
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However, there might be several intersections that need
to be optimized by minimizing the total user time of
both vehicles and pedestrians, especially in a central
business district. Therefore, expanding the object of
the GA procedure from an individual intersection to a
network or arterial could be one of the areas for further
research.
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