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Abstract. This article focuses on studying three-component mixture of Exponential,
Rayleigh, Pareto, and Burr Type-XII distributions in relation to reliability analysis.
The main purpose of this study is to derive algebraic expressions for di�erent functions
of survival time. For these three-component mixtures of distributions, the cumulative
distribution function, hazard rate function, cumulative hazard rate function, reversed
hazard rate function, mean residual life function, and mean waiting time function are
discussed. To study the behaviors of di�erent reliability functions, numerical results are
presented for �xed values of parameters.
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1. Introduction

Reliability analysis is a tool kit of statistical pro-
cedures for analyzing time-to-failure data. Usually,
reliability analysis is carried out using the classical or
Bayesian statistical analysis of parametric reliability
models. Reliability analysis datasets are represented
with a single univariate or multivariate statistical
distributions such as Exponential, Rayleigh, inverse
Weibull, Pareto and Burr distributions [1-6]. Recently,
some other distributions have been used to model the
survival data. The use of mixture distributions has
obtained popularity for modeling the heterogeneous
data. Mixture of distributions is useful because it
is applied to represent heterogeneous dataset where
there is evidence of multimodality. Chen et al. [7]
used a two-component mixture model for the analysis

*. Corresponding author. Tel.: +92 3015237403
E-mail address: tahirqaustat@yahoo.com (M. Tahir).

doi: 10.24200/sci.2017.4441

of cancer survival data generalizing an earlier idea
in the study of Berkson and Gage [8]. In Qian's
study [9], a similar model of a mixture of a Weibull
component and a surviving fraction in the context
of a lung cancer trial are considered. Angelis et
al. [10] proposed an application of a mixture model
to relative survival rates of colon cancer patients
from the Finnish population-based cancer registry
including major survival determinants as explicative
covariates. Marin et al. [11] illustrated how Bayesian
methods can be used to �t a mixture of Weibull
models with an unknown number of components to
heterogeneous, possibly right-censored survival data
using a birth death MCMC algorithm. Abu-Taleb et
al. [12] presented the Bayesian estimation of lifetime
parameters of Exponential distributions when survival
and censoring times are both exponentially distributed.
Eri�so�glu et al. [13] studied the mixture model of two
di�erent distributions to analyze the heterogeneous
survival data. Krishna and Malik [14] presented the
reliability estimation in Maxwell distribution using
progressively type-II censored data. Ali [15] discussed
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the reliability properties of two-component mixture
of inverse Rayleigh distributions. Also, a valuable
account on the reliability properties and analysis of
mixture distributions is given in [16-26], and many
others alike.

Similar to two-component mixture modeling,
some authors have discussed situations where data
are assumed to come from a three-component mixture
of distributions. For example, in order to know the
proportion of failure due to a certain cause and improve
the manufacturing process, Acheson and McElwee
[27] divided electronic tube failures into three types
of defects: gaseous defects, mechanical defects, and
normal deterioration of the cathode. Further, as
mentioned by Tahir et al. [28], Davis [29] reported a
mixture data on lifetimes of many components used in
aircraft sets. To illustrate the proposed methodology
for a three-component mixture distribution, Tahir
et al. [28] (2016) used the time-to-failure data on
three components: transmitter tube, combination of
transformers, and combination of relays. Thus, the
existence of three-component mixtures of distributions
is evident.

There are two approaches to statistical modeling
and analyses: a model is assumed to exist in nature
to generate data, and parameters of the models are
estimated on the basis of these data; data are observed
�rst and a suitable model is �tted to them. The
�rst approach seems more logical. Following the �rst
approach, it is assumed in this study that there exist
models in nature, capable of yielding data as coming
from a three-component mixture of distributions. We,
speci�cally, assumed the existence of three-component
mixture of Exponential, Rayleigh, Pareto, and Burr
Type-XII distributions. For these mixtures of dis-
tributions, di�erent reliability functions are studied
both algebraically and numerically which is the main
purpose of this article. This study may be useful for
the practitioners dealing with the data coming from
a three-component mixture of Exponential, Rayleigh,
Pareto, and Burr Type-XII distributions.

A random variable, Y , is said to follow a �nite
mixture distribution with q components if the density
function of Y can be written in the form:

f(y) =
qX

m=1

pmfm(y);

where pm (m = 1; 2; :::; q) is the mth mixing propor-
tion, such that:

pq = 1�
q�1X
m=1

pm;

and fm(y) is the mth component density function. A
�nite three-component mixture of distributions with

mixing proportions p1 and p2 has the probability
density function (pdf) as follows:

f(y; 	) = p1f1(y; 	1) + p2f2(y; 	2)

+ (1�p1�p2)f3(y; 	3)

p1; p2 � 0; p1 + p2 � 1; (1)

where, 	 = (�1; �2; �3; p1; p2), 	m = �m, m = 1; 2; 3,
and fm(y; 	m) is the pdf of themth component density.
The cumulative distribution function (cdf) for a �nite
three-component mixture distribution can be written
as follows:

F (y; 	) = p1F1(y; 	1)

+ p2F2(y; 	2) + (1� p1 � p2)F3(y; 	3); (2)

where Fm(y; 	m) is the cdf of the mth component
density.

2. Di�erent functions of survival time

In reliability theory, classi�cation of lifetime models is
de�ned in terms of di�erent functions of survival time
such as reliability (survival), failure rate (hazard rate),
cumulative hazard rate, reversed hazard rate, mean
residual life, and mean waiting time functions. We now
de�ne these functions for a three-component mixture of
distributions.

Let y be the survival time. The reliability func-
tion for a three-component mixture of distributions is
de�ned as:

R(y; 	) = 1�
yZ

0

f(u; 	)du = 1� F (y; 	);

R(y; 	) = p1R1(y; 	1) + p2R2(y; 	2)

+ (1� p1 � p2)R3(y; 	3); (3)

where Rm(y; 	m) is the reliability function of the mth
component.

The hazard rate function for a three-component
mixture of distributions is de�ned as ratio of lifetime
model to reliability function:

h(y; 	) =
f(y; 	)
R(y; 	)

=
p1f1(y; 	1)+p2f2(y; 	2)+(1�p1�p2)f3(y; 	3)
p1R1(y; 	1)+p2R2(y; 	2)+(1�p1�p2)R3(y; 	3)

:
(4)

The cumulative hazard rate function, H(y; 	),
and reversed hazard rate function, r(y; 	), for a three-
component mixture of distributions are given by:
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H(y; 	)=
yZ

0

h(u; 	)du=�ln f1�F (y; 	)g=�lnR(y; 	);
(5)

and:

r(y; 	) =
f(y; 	)
F (y; 	)

=
p1f1(y; 	1)+p2f2(y; 	2)+(1�p1�p2)f3(y; 	3)
p1F1(y; 	1)+p2F2(y; 	2)+(1�p1�p2)F3(y; 	3)

:
(6)

In case H(y;	)
y is decreasing (increasing), one

obtains the decreasing failure rate average (increasing
failure rate average) family since the average failure
rate in that case will be decreasing (increasing).

The Mean Residual Life (MRL) function at a
given time y measures the expected remaining life time
of an individual of age y. It is denoted by m(y; 	).
The MRL function or life expectancy function for a
three-component mixture of distributions is de�ned as
follows:

m(y; 	) =
1

R(y; 	)

1Z
y

u f(u; 	)du� y;

m(y; 	)=
1

R(y; 	)

(
E(Y )�

yZ
0

u f(u; 	)du

)
�y: (7)

Increasing (decreasing) mean residual life function
m(y; 	) produces the family of increasing mean resid-
ual life (decreasing mean residual life) distributions.

Another important function in reliability analysis
is of Mean Waiting Time (MWT). The MWT function
is known as expected inactivity time function. For a
three-component mixture of distributions, the MWT
function of an item failed in an interval [0, y] is de�ned
as follows:

��(y; 	) = y �
(

1
F (y; 	)

yZ
0

uf(u; 	)du

)
: (8)

3. Reliability properties of a three-component
mixture of exponential distributions

Using Eqs. (1) and (2), a �nite three-Component
Mixture of Exponential Distributions (3-CMED) with
mixing proportions p1 and p2 has the pdf and cdf as
follows:

f(y; 	) = p1�1 exp(��1y) + p2�2 exp(��2y)

+ (1� p1 � p2)�3 exp(��3y); (9)

0 < y <1; �m > 0; m = 1; 2; 3;

F (y; 	) = 1� p1 exp(��1y)� p2 exp(��2y)

� (1� p1 � p2) exp(��3y): (10)

3.1. Reliability and failure rate functions for a
3-CMED

The reliability function or survival function for a 3-
CMED is written as:

R(y; 	) = p1 exp(��1y) + p2 exp(��2y)

+ (1� p1 � p2) exp(��3y) (11)

0 < y <1; �m > 0; m = 1; 2; 3:

The failure rate function or hazard rate function for a
3-CMED is de�ned as shown in Box I.

The behavior of hazard rate function for the
3-CMED for some �xed values of component and
proportion parameters is depicted in Figures 1-3 in
which the e�ect of parameters �1; �2; �3; p1 and p2 on
hazard rate for the 3-CMED can be observed. These
graphs also explain the exibility of the hazard rate for
a 3-CMED.

Using the expression in Eq. (12), the hazard
rate of a 3-CMED is evaluated for the parametric
values �xed in Figures 1-3. The numerical results, so
obtained, are presented in Table 1.

Figure 1. Graphs of hazard rate function for a 3-CMED
for parameters f(�1; �2; �3; p1; p2) = (2, 3, 4, 0.1, 0.2); (2,
3, 4, 0.2, 0.3); (2, 3, 4, 0.3, 0.4); (2, 3, 4, 0.4, 0.5)g.

h(y; 	) =
p1�1 exp(��1y) + p2�2 exp(��2y) + (1� p1 � p2)�3 exp(��3y)

p1 exp(��1y) + p2 exp(��2y) + (1� p1 � p2) exp(��3y)
: (12)

Box I
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H(y; 	) = � ln
�
p1 exp(��1y) + p2 exp(��2y) + (1� p1 � p2) exp(��3y)

�
; (13)

and

r(y; 	) =
p1�1 exp(��1y) + p2�2 exp(��2y) + (1� p1 � p2)�3 exp(��3y)

1� p1 exp(��1y)� p2 exp(��2y)� (1� p1 � p2) exp(��3y)
: (14)

Box II

m(y; 	) =
p1

1
�1

exp(��1y) + p2
1
�2

exp(��2y) + (1� p1 � p2) 1
�3

exp(��3y)
p1 exp(��1y) + p2 exp(��2y) + (1� p1 � p2) exp(��3y)

: (15)

Box III

From Figures 1-3 and the entries in Table 1,
it is obvious that, in general, failure rate for a 3-
CMED follows a decreasing trend over time. When
�1 < �2 < �3, failure rate decreases as proportion
parameters increase (see row 1 of Table 1). On the

Figure 2. Graphs of hazard rate function for a 3-CMED
for parameters f(�1; �2; �3; p1; p2) = (3, 2, 1, 0.2, 0.1), (4,
3, 2, 0.3, 0.2), (5, 4, 3, 0.4, 0.3), (6, 5, 4, 0.5, 0.4)g.

Figure 3. Graphs of hazard rate function for a 3-CMED
for parameters f(�1; �2; �3; p1; p2) = (3, 2, 1, 0.4, 0.2), (5,
4, 3, 0.4, 0.2), (7, 6, 5, 0.4, 0.2), (9, 8, 7, 0.4, 0.2)g.

other hand, when �1<�2<�3, failure rate increases
as component parameters increase (see rows 2 and 3
of Table 1). Also, there are higher chances of failure
when both the component and proportion parameters
are relatively larger (see row 2 of Table 1).

3.2. Cumulative hazard rate and reversed
hazard rate functions for a 3-CMED

The cumulative hazard rate function, H(y; 	), and
reversed hazard rate function, r(y; 	), for a 3-CMED
using Eqs. (5) and (6) are obtained by Eqs. (13) and
(14), as shown in Box II.

3.3. Mean residual life and mean waiting time
functions for a 3-CMED

The MRL function or life expectancy function for a 3-
CMED is obtained by Eq. (15) as shown in Box III.
Using the above expression Eq. (15), the MRL of a 3-
CMED is evaluated for the parametric values �xed in

Table 1. Hazard rate of a 3-CMED.

�1; �2; �3; p1; p2 Y = 1 Y = 5 Y = 10
2; 3; 4; 0:1; 0:2 2.980380 2.013920 2.000090
2; 3; 4; 0:2; 0:3 2.649940 2.010230 2.000070
2; 3; 4; 0:3; 0:4 2.468170 2.008990 2.000060
2; 3; 4; 0:4; 0:5 2.353170 2.008370 2.000050

3, 2, 1, 0.2, 0.1 1.119030 1.000990 1.000010
4, 3, 2, 0.3, 0.2 2.252010 2.002740 2.000020
5, 4, 3, 0.4, 0.3 3.470680 3.006810 3.000050
6, 5, 4, 0.5, 0.4 4.897300 4.026680 4.000180

3, 2, 1, 0.4, 0.2 1.344590 1.003450 1.000020
5, 4, 3, 0.4, 0.2 3.344590 3.003450 3.000020
7, 6, 5, 0.4, 0.2 5.344590 5.003450 5.000020
9, 8, 7, 0.4, 0.2 7.344590 7.003450 7.000020
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��(y; 	) =
y � p1

�1

�
exp(��1y)� 1

�
� p2

�2

�
exp(��2y)� 1

�
� (1�p1�p2)

�3

�
exp(��3y)� 1

�
1� p1 exp(��1y)� p2 exp(��2y)� (1� p1 � p2) exp(��3y)

: (16)

Box IV

Figures 1-3. The numerical results, so obtained, are
showcased in Table 2.

From the entries in Table 2, it is seen that, in
general, MRL for a 3-CMED follows an increasing
trend over time. When �1<�2<�3, MRL increases as
proportion parameters increase (see row 1 of Table 2).
On the other hand, when �1<�2<�3, MRL decreases
as component parameters increase (see rows 2 and 3
of Table 2). Using Eq. (8), the MWT function for a
3-CMED is obtained by Eq. (16) as shown in Box IV.

Using Eq. (16), the MWT of a 3-CMED is
evaluated for the parametric values �xed in Figures 1-
3. The numerical results, so obtained, are given in
Table 3.

From the entries in Table 3, it is observed that,
in general, MWT for a 3-CMED follows an increasing
trend over time. When �1<�2<�3, MWT increases as
proportion parameters increase (see row 1 of Table 2).
On the other hand, when �1<�2<�3, MWT decreases
as component parameters increase (see rows 2 and 3 of
Table 2).

4. Reliability properties of a three-component
mixture of Rayleigh distributions

Using Eqs. (1) and (2), a �nite three-component mix-
ture of Rayleigh distributions (3-CMRD) with mixing

Table 2. MRL of a 3-CMED.

�1; �2; �3; p1; p2 Y = 1 Y = 5 Y = 10

2; 3; 4; 0:1; 0:2 0.366027 0.497706 0.499985
2; 3; 4; 0:2; 0:3 0.406593 0.498304 0.499989

2, 3, 4, 0.3, 0.4 0.428908 0.498505 0.499990
2, 3, 4, 0.4, 0.5 0.443027 0.498605 0.499991

3, 2, 1, 0.2, 0.1 0.952296 0.999511 0.999997
4, 3, 2, 0.3, 0.2 0.463508 0.499545 0.499997
5, 4, 3, 0.4, 0.3 0.297994 0.332768 0.333330
6, 5, 4, 0.5, 0.4 0.208717 0.248670 0.249991

3, 2, 1, 0.4, 0.2 0.861899 0.998291 0.999989
5, 4, 3, 0.4, 0.2 0.308037 0.333048 0.333331
7, 6, 5, 0.4, 0.2 0.189491 0.199885 0.199999
9, 8, 7, 0.4, 0.2 0.137111 0.142796 0.142857

proportions, p1 and p2, has the pdf and cdf as:

f(y; 	) = p1
y
�2

1
exp

�
� y2

2�2
1

�
+ p2

y
�2

2
exp

�
� y2

2�2
2

�
+ (1� p1 � p2)

y
�2

3
exp

�
� y2

2�2
3

�
;

0 < y <1; �m > 0: m = 1; 2; 3; (17)

F (y; 	) = 1� p1 exp
�
� y2

2�2
1

�
� p2 exp

�
� y2

2�2
2

�
�
�

1�p1�p2

�
exp

�
� y2

2�2
3

�
:

(18)

4.1. Reliability and failure rate functions for a
3-CMRD

The reliability function or survival function for a 3-
CMRD is written as follows:

R(y; 	) = p1 exp
�
� y2

2�2
1

�
+ p2 exp

�
� y2

2�2
2

�
+
�

1� p1 � p2

�
exp

�
� y2

2�2
3

�
;

0 < y <1; �m > 0; m = 1; 2; 3: (19)

Table 3. MWT of a 3-CMED.

�1; �2; �3; p1; p2 Y = 1 Y = 5 Y = 10

2, 3, 4, 0.1, 0.2 1.326540 5.291690 10.29170
2, 3, 4, 0.2, 0.3 1.374520 5.325040 10.32500
2, 3, 4, 0.3, 0.4 1.424020 5.358400 10.35830
2, 3, 4, 0.4, 0.5 1.475120 5.391760 10.39170

3, 2, 1, 0.2, 0.1 2.154490 5.839520 10.81700
4, 3, 2, 0.3, 0.2 1.475810 5.391780 10.39170
5, 4, 3, 0.4, 0.3 1.277660 5.255000 10.25500
6, 5, 4, 0.5, 0.4 1.194010 5.188330 10.18830

3, 2, 1, 0.4, 0.2 1.819170 5.645900 10.63350
5, 4, 3, 0.4, 0.2 1.289110 5.263330 10.26330
7, 6, 5, 0.4, 0.2 1.173980 5.170480 10.17050
9, 8, 7, 0.4, 0.2 1.127060 5.126590 10.12660
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h (y; 	) =
p1

y
�2

1
exp

�� y2

2�2
1

�
+ p2

y
�2

2
exp

�� y2

2�2
2

�
+ (1� p1 � p2) y

�2
3

exp
�� y2

2�2
3

�
p1 exp

�� y2

2�2
1

�
+ p2 exp

�� y2

2�2
2

�
+ (1� p1 � p2) exp

�� y2

2�2
3

� : (20)

Box V

Table 4. Hazard rate of a 3-CMRD.

�1; �2; �3; p1; p2 Y = 1 Y = 5 Y = 10

12, 14, 16, 0.1, 0.2 0.004449 0.022190 0.044054
12, 14, 16, 0.2, 0.3 0.004872 0.024280 0.048072
12, 14, 16, 0.3, 0.4 0.005295 0.026392 0.052263
12, 14, 16, 0.4, 0.5 0.005719 0.028527 0.056635

12, 10, 8, 0.2, 0.1 0.013320 0.065804 0.126239
14, 12, 10, 0.3, 0.2 0.007917 0.039301 0.076806
16, 14, 12, 0.4, 0.3 0.005176 0.025784 0.050983
18, 16, 14, 0.5, 0.4 0.003616 0.018055 0.035965

10, 8, 6, 0.5, 0.3 0.015220 0.073516 0.133827
12, 10, 8, 0.5, 0.3 0.009592 0.047322 0.090994
14, 12, 10, 0.5, 0.3 0.006633 0.032957 0.064684
16, 14, 12, 0.5, 0.3 0.004872 0.024280 0.048072

The failure rate function or hazard rate function for a
3-CMRD is de�ned as shown in Box V.

The trend of the hazard rate function (Eq. (20))
for some �xed values of component and proportion pa-
rameters is depicted in Figures 4-6. From Figures 4-6,
the e�ects of parameters �1; �2; �3; p1 and p2 on hazard
rate for the 3-CMRD can be observed. Flexibility of
hazard rate function can be seen in Figures 4-6.

Using Eq. (20), the hazard rate of a 3-CMRD is
evaluated for the parametric values �xed in Figures 4-
6. The numerical results, so obtained, are showcased
in Table 4.

From Figures 4-6 and the entries in Table 4, it
is noticed that, in general, failure rate for a 3-CMRD
follows an increasing trend over time. When �1; �2; �3
failure rate increases as proportion parameters increase
(see row 1 of Table 4). On the other hand, when
�1; �2; �3 failure rate decreases as component parame-
ters increase (see rows 2 and 3 of Table 4). Also, there
are higher chances of failure when both the component
and proportion parameters are relatively smaller (see
row 2 of Table 4).

4.2. Cumulative hazard rate and reversed
hazard rate functions for a 3-CMRD

The cumulative hazard rate function, H(y; 	), and
reversed hazard rate function, r(y; 	), for a 3-CMRD

Figure 4. Graphs of hazard rate function for a 3-CMED
for parameters f(�1; �2; �3; p1; p2) = (12, 14, 16, 0.1, 0.2),
(12, 14, 16, 0.2, 0.3), (12, 14, 16, 0.3, 0.4), (12, 14, 16, 0.4,
0.5)g.

Figure 5. Graphs of hazard rate function for a 3-CMED
for parameters f(�1; �2; �3; p1; p2) = (12, 10, 8, 0.2, 0.1),
(14, 12, 10, 0.3, 0.2), (16, 14, 12, 0.4, 0.3), (18, 16, 14, 0.5,
0.4)g.
using Eqs. (5) and (6) are obtained by Eqs. (21) and
(22), respectively, as shown in Box VI.

4.3. Mean residual life and mean waiting time
functions for a 3-CMRD

The MRL function or life expectancy function for a 3-
CMRD is obtained by Eq. (23) as shown in Box VII.
Using Eq. (23), the MRL of a 3-CMRD is evaluated
for the parametric values �xed in Figures 4-6. The
numerical results, so obtained, are given in Table 5.

From the entries in Table 5, it is seen that, in
general, MRL for a 3-CMRD follows a decreasing trend
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H(y; 	) = � ln
�
p1 exp

�
� y2

2�2
1

�
+ p2 exp

�
� y2

2�2
2

�
+
�

1� p1 � p2

�
exp

�
� y2

2�2
3

��
; (21)

and

r(y; 	) =
p1

y
�2

1
exp

�
� y2

2�2
1

�
+ p2

y
�2

2
exp

�
� y2

2�2
2

�
+ (1� p1 � p2) y�2

3
exp

�
� y2

2�2
3

�
1� p1 exp

�
� y2

2�2
1

�
� p2 exp

�
� y2

2�2
2

�
� (1� p1 � p2) exp

�
� y2

2�2
3

� : (22)

Box VI

m(y; 	) =
p1�1

p�
2

�
1� Erf

�
yp
2�1

��
+p2�2

p�
2

�
1� Erf

�
yp
2�2

��
+(1� p1 � p2)�3
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Box VII

Figure 6. Graphs of hazard rate function for a 3-CMED
for parameters f(�1; �2; �3; p1; p2) = (10, 8, 6, 0.5, 0.3),
(12, 10, 8, 0.5, 0.3), (14, 12, 10, 0.5, 0.3), (16, 14, 12, 0.5,
0.3)g.

over time. When �1 < �2 < �3, MRL decreases as
proportion parameters increase (see row 1 of Table 5).
On the other hand, when �1 > �2 > �3, MRL increases
as component parameters increase (see rows 2 and 3 of
Table 5). Using Eq. (8), the MWT function for a 3-
CMRD is obtained by Eq. (24) as shown in Box VIII.

Table 5. MRL of a 3-CMRD.

�1; �2; �3; p1; p2 Y = 1 Y = 5 Y = 10
12, 14, 16, 0.1, 0.2 18.09130 14.94920 12.15690
12, 14, 16, 0.2, 0.3 17.34140 14.23790 11.52970
12, 14, 16, 0.3, 0.4 16.59120 13.51910 10.87580
12, 14, 16, 0.4, 0.5 15.84060 12.79260 10.19340

12, 10, 8, 0.2, 0.1 10.35080 7.721280 5.929370
14, 12, 10, 0.3, 0.2 13.59350 10.70350 8.428180
16, 14, 12, 0.4, 0.3 16.84150 13.76350 11.11020
18, 16, 14, 0.5, 0.4 20.09260 16.87520 13.92330

10, 8, 6, 0.5, 0.3 9.855810 7.325830 5.642930
12, 10, 8, 0.5, 0.3 12.34580 9.549830 7.433610
14, 12, 10, 0.5, 0.3 14.84200 11.86790 9.419580
16, 14, 12, 0.5, 0.3 17.34140 14.23790 11.52970

Using Eq. (24), the MWT of a 3-CMRD is evaluated
for the parametric values �xed in Figures 4-6. The
numerical results, so obtained, are presented in Table 6.

From the entries in Table 6, it is obvious that,
in general, MWT for a 3-CMRD follows an increasing
trend over time. When �1<�2<�3, MWT increases as

�(y; 	) =
y � p1�1

p�
2Erf

�
yp
2�1

�
� p2�2

p�
2Erf

�
yp
2�2

�
� (1� p1 � p2)�3
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2Erf

�
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2�3

�
1� p1 exp

�
� y2

2�2
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�
� p2 exp

�
� y2

2�2
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�
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�

1� p1 � p2

�
exp

�
� y2

2�2
3

� : (24)

Box VIII
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Table 6. MWT of a 3-CMRD.

�1; �2; �3; p1; p2 Y = 1 Y = 5 Y = 10
12, 14, 16, 0.1, 0.2 0.333488 1.686060 3.488280
12, 14, 16, 0.2, 0.3 0.333505 1.688110 3.504600
12, 14, 16, 0.3, 0.4 0.333519 1.689840 3.518610
12, 14, 16, 0.4, 0.5 0.333531 1.691330 3.530760

12, 10, 8, 0.2, 0.1 0.333810 1.726250 3.807210
14, 12, 10, 0.3, 0.2 0.333617 1.702140 3.616060
16, 14, 12, 0.4, 0.3 0.333516 1.689510 3.515760
18, 16, 14, 0.5, 0.4 0.333458 1.682190 3.457630

10, 8, 6, 0.5, 0.3 0.333940 1.741480 3.904260
12, 10, 8, 0.5, 0.3 0.333691 1.711170 3.683860
14, 12, 10, 0.5, 0.3 0.333572 1.696450 3.570310
16, 14, 12, 0.5, 0.3 0.333505 1.688110 3.504600

proportion parameters increase (see row 1 of Table 6).
On the other hand, when �1 >�2 >�3, MWT decreases
as component parameters increase (see rows 2 and 3 of
Table 6).

5. Reliability properties of a three-component
mixture of Pareto distributions

Using Eqs. (1) and (2), a �nite three-Component Mix-
ture of Pareto Distributions (3-CMPD) with mixing
proportions p1 and p2 has the pdf and cdf as follows:

f(y; 	) =p1�1y�(�1+1) + p2�2y�(�2+1)

+ (1� p1 � p2)�3y�(�3+1); (25)

1<y<1; �m>0; m = 1; 2; 3

F (y; 	)=1�p1y��1�p2y��2�(1�p1�p2)y��3 : (26)

5.1. Reliability and failure rate functions for a
3-CMPD

The reliability function or survival function for a 3-
CMPD is written as follows:

R(y; 	) =p1y��1 + p2y��2 + (1� p1 � p2)y��3 ;

1 < y <1; �m > 0; m = 1; 2; 3: (27)

The failure rate function or hazard rate function for a
3-CMPD is de�ned as follows:

h(y; 	) =

p1�1y�(�1+1)+p2�2y�(�2+1)+(1�p1�p2)�3y�(�3+1)

p1y��1 +p2y��2 +(1�p1�p2)y��3
:
(28)

The trend of the hazard rate Function (Eq. (28))
for some values of component and proportion param-
eters is shown in Figures 7-9. From Figures 7-9, the

Figure 7. Graphs of hazard rate function for a 3-CMED
for parameters f(�1; �2; �3; p1; p2) = (5, 6, 7, 0.1, 0.2), (5,
6, 7, 0.2, 0.3), (5, 6, 7, 0.3, 0.4), (5, 6, 7, 0.4, 0.5)g.

Figure 8. Graphs of hazard rate function for a 3-CMED
for parameters f(�1; �2; �3; p1; p2) = (7, 6, 5, 0.2, 0.1), (8,
7, 6, 0.3, 0.2), (9, 8, 7, 0.4, 0.3), (10, 9, 8, 0.5, 0.4)g.

Figure 9. Graphs of hazard rate function for a 3-CMED
for parameters f(�1; �2; �3; p1; p2) = (6, 5, 4, 0.5, 0.3), (7,
6, 5, 0.5, 0.3), (8, 7, 6, 0.5, 0.3), (9, 8, 7, 0.5, 0.3)g.

e�ects of parameters �1; �2; �3 and p2 on hazard rate
for the 3-CMPD can be observed. These graphs also
explain the exibility of the hazard rate for a 3-CMPD.

Using Eq. (28), the hazard rate of a 3-CMPD is
evaluated for the parametric values �xed in Figures 7-
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Table 7. Hazard rate of a 3-CMPD.

�1; �2; �3; p1; p2 Y = 1 Y = 5 Y = 10

5, 6, 7, 0.1, 0.2 6.600000 1.114290 0.526772
5, 6, 7, 0.2, 0.3 6.300000 1.071430 0.517021
5, 6, 7, 0.3, 0.4 6.000000 1.053060 0.513411
5, 6, 7, 0.4, 0.5 5.700000 1.042860 0.168017

7, 6, 5, 0.2, 0.1 5.500000 1.009890 0.501966
8, 7, 6, 0.3, 0.2 6.800000 1.223190 0.604971
9, 8, 7, 0.4, 0.3 8.100000 1.448940 0.711377
10, 9, 8, 0.5, 0.4 9.400000 1.720000 0.834483

6, 5, 4, 0.5, 0.3 5.300000 0.871429 0.417021
7, 6, 5, 0.5, 0.3 6.300000 1.071430 0.517021
8, 7, 6, 0.5, 0.3 7.300000 1.271430 0.617021
9, 8, 7, 0.5, 0.3 8.300000 1.471430 0.717021

9. The numerical results, so obtained, are showcased
in Table 7.

From Figures 7-9 and the entries in Table 7,
it is observed that, in general, failure rate for a 3-
CMPD follows a decreasing trend over time. When
�1 < �2 < �3, failure rate decreases as proportion
parameters increase (see row 1 of Table 7). On the
other hand, when �1 > �2 > �3, failure rate increases
as component parameters increase (see rows 2 and 3
of Table 7). Also, there are higher chances of failure
when both the component and proportion parameters
are relatively larger (see row 2 of Table 7).

5.2. Cumulative hazard rate and reversed
hazard rate functions for a 3-CMPD

The cumulative hazard rate function, H(y; 	), and
reversed hazard rate function, r(y; 	), for a 3-CMPD
using Eqs. (5) and (6) are obtained by Eqs. (29) and
(30), respectively, as shown in Box IX.

5.3. Mean residual life and mean waiting time
functions for a 3-CMPD

The MRL function or life expectancy function for a
3-CMPD is:

Table 8. MRL of a 3-CMPD.

�1; �2; �3; p1; p2 Y = 1 Y = 5 Y = 10

5, 6, 7, 0.1, 0.2 0.181667 1.121030 2.375330
5, 6, 7, 0.2, 0.3 0.193333 1.166670 2.418440
5, 6, 7, 0.3, 0.4 0.205000 1.186220 2.434400
5, 6, 7, 0.4, 0.5 0.216667 1.197090 2.442720

7, 6, 5, 0.2, 0.1 0.228333 1.238550 2.490640
8, 7, 6, 0.3, 0.2 0.176190 0.981712 1.983980
9, 8, 7, 0.4, 0.3 0.142857 0.805471 1.640290
10, 9, 8, 0.5, 0.4 0.119841 0.662698 1.368360

6, 5, 4, 0.5, 0.3 0.241667 1.529760 3.198580
7, 6, 5, 0.5, 0.3 0.193333 1.166670 2.418440
8, 7, 6, 0.5, 0.3 0.161429 0.943878 1.945290
9, 8, 7, 0.5, 0.3 0.138690 0.792942 1.627410

m(y; 	) =

p1
(�1�1)y

1��1 + p2
(�2�1)y

1��2 + (1�p1�p2)
(�3�1) y1��3

p1y��1 +p2y��2 +(1�p1�p2)y��3
: (31)

Using Eq. (31), the MRL of a 3-CMPD is evaluated
for the parametric values �xed in Figures 7-9. The
numerical results, so obtained, are presented in Table 8.

From the entries available in Table 8, it is obvious
that, in general, MRL for a 3-CMPD follows an
increasing trend over time. When �1 <�2 <�3, MRL
increases as proportion parameters increase (see row 1
of Table 8). On the other hand, when �1 > �2 > �3,
MRL decreases as component parameters increase (see
rows 2 and 3 of Table 8). Using Eq. (8), the MWT
function for a 3-CMPD is obtained by Eq. (32) as
shown in Box X.

Using the above Expression (32), the MWT of a
3-CMPD is evaluated for the parametric values �xed
in Figures 7-9. The numerical results, so obtained, are
given in Table 9.

From the entries in Table 9, it is seen that, in
general, MWT for a 3-CMPD follows an increasing
trend over time. When �1<�2<�3, MWT increases as

H(y; 	) = � ln
�
p1y��1 + p2y��2 + (1� p1 � p2)y��3

�
; (29)

and

r(y; 	) =
p1�1y�(�1+1) + p2�2y�(�2+1) + (1� p1 � p2)�3y�(�3+1)

1� p1y��1 � p2y��2 � (1� p1 � p2)y��3
: (30)

Box IX
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��(y; 	) =
y � p1

(1��1)

�
y1��1 � �1

�
� p2

(1��2)

�
y1��2 � �2

�
� (1�p1�p2)

(1��3)

�
y1��3 � �3

�
1� p1y��1 � p2y��2 � (1� p1 � p2)y��3

: (32)

Box X

Table 9. MWT of a 3-CMPD.

�1; �2; �3; p1; p2 Y = 1 Y = 5 Y = 10
5, 6, 7, 0.1, 0.2 2.866750 6.181940 11.18170
5, 6, 7, 0.2, 0.3 2.906390 6.193780 11.19340
5, 6, 7, 0.3, 0.4 2.946910 6.205630 11.20500
5, 6, 7, 0.4, 0.5 2.988360 6.217480 11.21670

7, 6, 5, 0.2, 0.1 3.029530 6.229500 11.22840
8, 7, 6, 0.3, 0.2 2.849370 6.176370 11.17620
9, 8, 7, 0.4, 0.3 2.742810 6.142880 11.14290
10, 9, 8, 0.5, 0.4 2.677120 6.119840 11.11980

6, 5, 4, 0.5, 0.3 3.071430 6.243780 11.24190
7, 6, 5, 0.5, 0.3 2.906390 6.193780 11.19340
8, 7, 6, 0.5, 0.3 2.800570 6.161520 11.16140
9, 8, 7, 0.5, 0.3 2.730250 6.138710 11.13870

proportion parameters increase (see row 1 of Table 9).
On the other hand, when �1>�2>�3, MWT decreases
as component parameters increase (see rows 2 and 3 of
Table 9).

6. Reliability properties of a three-component
mixture of Burr type-XII distributions

Using Eqs. (1) and (2), a �nite three-component mix-
ture of Burr Type-XII distributions (3-CMBD) with
mixing proportions p1 and p2 has the pdf and cdf as
follows:

f(y; 	) =p1�1(1 + y)�(�1+1) + p2�2(1 + y)�(�2+1)

+ (1� p1 � p2)�3(1 + y)�(�3+1);

0 < y <1; �m > 0; m = 1; 2; 3; (33)

F (y; 	) =1� p1(1 + y)��1 � p2(1 + y)��2

� (1� p1 � p2)(1 + y)��3 : (34)

Figure 10. Graphs of hazard rate function for a 3-CMED
for parameters f(�1; �2; �3; p1; p2) = (6, 7, 8, 0.1, 0.2), (6,
7, 8, 0.2, 0.3), (6, 7, 8, 0.3, 0.4), (6, 7, 8, 0.4, 0.5)g.

6.1. Reliability and failure rate functions for a
3-CMBD

The reliability function or survival function for a 3-
CMBD is written as:

R(y; 	) =p1(1 + y)��1 + p2(1 + y)��2

+ (1� p1 � p2)(1 + y)��3

0 < y <1; �m > 0; m = 1; 2; 3: (35)

The failure rate function or hazard rate function
for a 3-CMBD is de�ned by Eq. (36) as shown in
Box XI.

The trend of the hazard rate Function (Eq. (36))
for some �xed values of component and proportion
parameters is illustrated in Figures 10-12. From
Figures 10-12, the e�ects of parameters �1; �2; �3; p1
and p2 on hazard rate for the 3-CMBD can be observed.

Using Eq. (36), the hazard rate of a 3-CMBD is
evaluated for the parametric values �xed in Figures 10-
12. The numerical results, so obtained, are presented
in Table 10.

From Figures 10-12 and the entries in Table 10,
it is seen that, in general, failure rate for a 3-CMED

h(y; 	) =
p1�1(1 + y)�(�1+1) + p2�2(1 + y)�(�2+1) + (1� p1 � p2)�3(1 + y)�(�3+1)

p1(1 + y)��1 + p2(1 + y)��2 + (1� p1 � p2)(1 + y)��3
: (36)

Box XI
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H(y; 	) = � ln
�
p1(1 + y)��1 + p2(1 + y)��2 + (1� p1 � p2)(1 + y)��3

�
; (37)

r(y; 	) =
p1�1(1 + y)�(�1+1) + p2�2(1 + y)�(�2+1) + (1� p1 � p2)�3(1 + y)�(�3+1)

1� p1(1 + y)��1 � p2(1 + y)��2 � (1� p1 � p2)(1 + y)��3
: (38)

Box XII

m(y; 	) =
p1

(�1�1) (1 + y)1��1 + p2
(�2�1) (1 + y)1��2 + (1�p1�p2)

(�3�1) (1 + y)1��3

p1(1 + y)��1 + p2(1 + y)��2 + (1� p1 � p2)(1 + y)��3
: (39)

Box XIII

Figure 11. Graphs of hazard rate function for a 3-CMED
for parameters f(�1; �2; �3; p1; p2) = (6, 5, 4, 0.2, 0.1), (7,
6, 5, 0.3, 0.2), (8, 7, 6, 0.4, 0.3), (9, 8, 7, 0.5, 0.4)g.

Figure 12. Graphs of hazard rate function for a 3-CMED
for parameters f(�1; �2; �3; p1; p2) = (6, 5, 4, 0.5, 0.2), (7,
6, 5, 0.5, 0.2), (8, 7, 6, 0.5, 0.2), (9, 8, 7, 0.5, 0.2)g.
follows a decreasing trend over time. When �1 < �2 <
�3, failure rate decreases as proportion parameters
increase (see row 1 of Table 10). On the other hand,
when �1 > �2 > �3, failure rate increases as component
parameters increase (see rows 2 and 3 of Table 10).
Also, there are higher chances of failure when both the

Table 10. Hazard rate of a 3-CMBD.

�1; �2; �3; p1; p2 Y = 1 Y = 5 Y = 10
6, 7, 8, 0.1, 0.2 3.600000 1.078790 0.567273
6, 7, 8, 0.2, 0.3 3.421050 1.049120 0.559416
6, 7, 8, 0.3, 0.4 3.304350 1.037040 0.556541
6, 7, 8, 0.4, 0.5 3.222220 1.030480 0.555051

6, 5, 4, 0.2, 0.1 2.093750 0.673077 0.365222
7, 6, 5, 0.3, 0.2 2.685190 0.848718 0.458586
8, 7, 6, 0.4, 0.3 3.318180 1.033330 0.554773
9, 8, 7, 0.5, 0.4 4.029410 1.253850 0.665241

6, 5, 4, 0.5, 0.2 2.333330 0.696000 0.371096
7, 6, 5, 0.5, 0.2 2.833330 0.862667 0.462005
8, 7, 6, 0.5, 0.2 3.333330 1.029330 0.552914
9, 8, 7, 0.5, 0.2 3.833330 1.196000 0.643823

component and proportion parameters are relatively
larger (see row 2 of Table 10).

6.2. Cumulative hazard rate and reversed
hazard rate functions for a 3-CMBD

The cumulative hazard rate function, H(y; 	), and
reversed hazard rate function, r(y; 	), for a 3-CMBD
using Eq. (5) and (6) are obtained by Eqs. (37)
and (38), respectively, as shown in Box XII.

6.3. Mean residual life and mean waiting time
functions for a 3-CMBD

The MRL function or life expectancy function for a 3-
CMBD is obtained by Eq. (39) as shown in Box XIII.
Using Eq. (39), the MRL of a 3-CMBD is evaluated
for the parametric values �xed in Figures 10-12. The
numerical results, so obtained, are given in Table 11.

From the entries available in Table 11, it is
observed that, in general, MRL for a 3-CMBD follows
an increasing trend over time. When �1 < �2 < �3,
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��(y; 	) =
y � p1

(1��1)

n
(1 + y)1��1 � 1

o� p2
(1��2)

n
(1 + y)1��2 � 1

o� (1�p1�p2)
(1��3)

n
(1 + y)1��3 � 1

o
1� p1(1 + y)��1 � p2(1 + y)��2 � (1� p1 � p2)(1 + y)��3

: (40)

Box XIV

Table 11. MRL of a 3-CMBD.

�1; �2; �3; p1; p2 Y = 1 Y = 5 Y = 10

6, 7, 8, 0.1, 0.2 0.328889 1.112730 2.116890
6, 7, 8, 0.2, 0.3 0.348872 1.144060 2.145560
6, 7, 8, 0.3, 0.4 0.361905 1.156830 2.156050
6, 7, 8, 0.4, 0.5 0.371076 1.163760 2.161490

6, 5, 4, 0.2, 0.1 0.639583 1.982310 3.651530
7, 6, 5, 0.3, 0.2 0.466667 1.473850 2.726430
8, 7, 6, 0.4, 0.3 0.361039 1.161760 2.163460
9, 8, 7, 0.5, 0.4 0.286415 0.928022 1.752070

6, 5, 4, 0.5, 0.2 0.571429 1.920000 3.596150
7, 6, 5, 0.5, 0.2 0.441270 1.451200 2.707220
8, 7, 6, 0.5, 0.2 0.360091 1.167090 2.171260
9, 8, 7, 0.5, 0.2 0.304422 0.976286 1.812680

MRL increases as proportion parameters increase (see
row 1 of Table 11). On the other hand, when �1 > �2 >
�3, MRL decreases as component parameters increase
(see rows 2 and 3 of Table 11).

Using Eq. (8), the MWT function for a 3-CMBD
is obtained by Eq. (40) as shown in Box XIV.

Using the above expression (40), the MWT of a
3-CMBD is evaluated for the parametric values �xed
in Figures 10-12. The numerical results, so obtained,
are showcased in Table 12.

From the entries in Table 12, it is obvious that,
in general, MWT for a 3-CMBD follows an increasing
trend over time. When �1 < �2 < �3, MWT increases
as proportion parameters increase (see row 1 of Table
12). On the other hand, when �1 > �2 > �3, MWT
decreases as component parameters increase (see rows
2 and 3 of Table 12).

7. Concluding remarks

The reliability analyses of three-component mixture
of Exponential, Rayleigh, Pareto, and Burr Type-XII
distributions are performed. It is observed that, in
general, failure rate functions of 3-CMED, 3-CMPD,
and 3-CMBD (3-CMRD) follow a decreasing trend
(increasing) over time. Moreover, when �1 < �2 < �3,
hazard rates of 3-CMED, 3-CMPD, and 3-CMBD (3-

Table 12. MWT of a 3-CMBD.

�1; �2; �3; p1; p2 Y = 1 Y = 5 Y = 10

6, 7, 8, 0.1, 0.2 1.158190 5.153350 10.15330

6, 7, 8, 0.2, 0.3 1.167500 5.161450 10.16140

6, 7, 8, 0.3, 0.4 1.176850 5.169560 10.16950

6, 7, 8, 0.4, 0.5 1.186220 5.177660 10.17760

6, 5, 4, 0.2, 0.1 1.333000 5.300180 10.29870

7, 6, 5, 0.3, 0.2 1.231130 5.215260 10.21500

8, 7, 6, 0.4, 0.3 1.174130 5.167170 10.16710

9, 8, 7, 0.5, 0.4 1.139140 5.136310 10.13630

6, 5, 4, 0.5, 0.2 1.273020 5.250890 10.25010

7, 6, 5, 0.5, 0.2 1.210960 5.198500 10.19830

8, 7, 6, 0.5, 0.2 1.171420 5.164790 10.16480

9, 8, 7, 0.5, 0.2 1.144520 5.141080 10.14110

CMRD) decrease (increase) as proportion parameters
increase. On the other hand, when �1 > �2 > �3,
hazard rates of 3-CMED, 3-CMPD, and 3-CMBD (3-
CMRD) increase (decrease) as component parameters
increase. When �1 < �2 < �3, MRL of 3-CMED, 3-
CMPD, and 3-CMBD (3-CMRD) increase (decrease)
as proportion parameters increase, whereas when �1 >
�2 > �3, the MRL of 3-CMED, 3-CMPD, and 3-
CMBD (3-CMRD) decrease (increase) as component
parameters increase. The behavior of MWT is observed
to be increasing when �1 < �2 < �3, and proportion
parameters increase for 3-CMED, 3-CMPD, and 3-
CMBD. On the other hand, when �1 > �2 > �3,
MWTs of 3-CMED, 3-CMPD, and 3-CMBD decrease
as component parameters increase.

References

1. Lawless, J.F., Statistics Models and Methods for Life-
time Data, John Wiley & Sons Inc., New Jersey (2003).

2. Lee, E.T. and Wang, J.W., Statistical Methods for
Survival Data Analysis, John Wiley & Sons Inc., New
York (2003).



1780 M. Aslam et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 1768{1781

3. Kleinbanm, D.G. and Klein, M., Survival Analysis, a
self-learning text, Springer (2005).

4. Machin, D., Cheung, Y.B., and Parmar, M.K., Sur-
vival Analysis, a practical approach, John Wiley &
Sons Inc., New York (2006).

5. Sultan, K.S., Ismail, M.A., and Al-Moisheer, A.S.
\Mixture of two inverse weibull distributions: proper-
ties and estimation", Computational Statistics & Data
Analysis, 51(1), pp. 5377{5387 (2007).

6. Kalbeisch, J.D. and Prentice, R.L., The Statistical
Analysis of Failure Time Data, John Wiley & Sons
Inc., New York (2011).

7. Chen, W.C., Hill, B.M., Greenhouse, J.B., and Fayos,
J.V. \Bayesian analysis of survival curves for cancer
patients following treatment", Bayesian Statistics, 2,
pp. 299-328 (1985).

8. Berkson, J. and Gage, R.P. \Survival cure for cancer
patients following treatment", Journal of the American
Statistical Association, 47, pp. 501-515 (1952).

9. Qian, J. \A Bayesian weibull survival model", Ph.D.
Thesis, Institute of Statistical and Decision Sciences,
Duke University, North Carolina (1994).

10. Angelis, R.D., Capocaccia, R., Hakulinen, T., Soder-
man, B., and Verdecchia, A. \Mixture models for
cancer survival analysis: application to population-
based data with covariates", Statistics in Medicine, 18,
pp. 441-454 (1999).

11. Marin, J.M., Rodriguez-Bernal, M.T., and Wiper,
M.P. \Using weibull mixture distributions to model
heterogeneous survival data", Communication in
Statistics-Simulation and Computation, 34, pp. 673-
684 (2005).

12. Abu-Taleb, A.A., Smadi, M.M., and Alawneh, A.J.
\Bayes estimation of the lifetime parameters for the
exponential distribution", Journal of Mathematics and
Statistics, 3(3), pp. 106-108 (2007).

13. Eri�so�glu, �U., Eri�so�glu, M., and Erol, H. \A mix-
ture model of two di�erent distributions approach to
the analysis of heterogeneous survival data", World
Academy of Science, Engineering and Technology, 54,
pp. 41-45 (2011).

14. Krishna, H. and Malik, M. \Reliability estimation in
Maxwell distribution with progressively type-II cen-
sored data", Journal of Statistical Computation and
Simulation, 82(4), pp. 623{641 (2012).

15. Ali, S. \Mixture of the inverse Rayleigh distribution:
properties and estimation in Bayesian framework",
Applied Mathematical Modelling, 39(2), pp. 515-530
(2014).

16. Ateya, S.F. and Ahmad, A.E.B.A. \Inferences based
on generalized order statistics under truncated type-I
generalized logistic distribution", Statistics, 45(4), pp.
389-402 (2011).

17. Abushal, T.A. and Al-Zaydi, A.M. \Estimation based
on generalized order statistics from a mixture of
two Rayleigh distributions", International Journal of
Statistics and Probability, 1(2), pp. 79-90 (2012).

18. Abushal, T.A. and Al-Zaydi, A.M. \Prediction based
on generalized order statistics from a mixture of
Rayleigh distributions using MCMC algorithm", Open
Journal of Statistics, 2(3), pp. 356-367 (2012).

19. AL-Hussaini, E.K. and Hussein, M. \Estimation under
a �nite mixture of exponentiated exponential compo-
nents model and balanced square error loss", Open
Journal of Statistics, 2, pp. 28-38 (2012).

20. Ahmad, A.E.A. and AL-Zaydi, A.M. \Inferences under
a class of �nite mixture distributions based on gener-
alized order statistics", Open Journal of Statistics, 3,
pp. 231-244 (2013).

21. Ateya, S.F. \Estimation under modi�ed Weibull dis-
tribution based on right censored generalized order
statistics", Journal of Applied Statistics, 40(12), pp.
2720-2734 (2013).

22. Benaicha, H. and Chaker, A. \Weibull mixture model
for reliability analysis", International Review of Elec-
trical Engineering, 9(5), pp. 986-990 (2014).

23. El-Damcese, M.A. and Ramadan, D.A. \Analyzing
system reliability using fuzzy mixture generalized lin-
ear failure rate distribution", American Journal of
Mathematics and Statistics, 5(2), pp. 43-51 (2015).

24. Khan, M.N. \The modi�ed beta Weibull distribu-
tion", Hacettepe Journal of Mathematics and Statis-
tics, 44(6), pp. 1553-1568 (2015).

25. Ismail, A.A. \Likelihood inference for a step-stress par-
tially accelerated life test model with type-I progres-
sively hybrid censored data from Weibull distribution",
Journal of Statistical Computation and Simulation,
84(11), pp. 2486-2494 (2014).

26. Ismail, A.A. \Reliability analysis under constant-stress
partially accelerated life tests using hybrid censored
data from Weibull distribution", Hacettepe Journal of
Mathematics and Statistics, 45(1), pp. 181-193 (2016).

27. Acheson, M.A. and McElwee, E.M. \Concerning the
reliability of electron tubes", The Sylvania Technolo-
gist, 4, pp. 38-40 (1951).

28. Tahir, M., Aslam, M., and Hussain, Z. \On the
Bayesian analysis of 3-componen mixture of expo-
nential distribution under di�erent loss functions",
Hacettepe Journal of Mathematics and Statistics,
45(2), pp. 609-628 (2016).

29. Davis, D.J. \An analysis of some failure data", Journal
of the American Statistical Association, 47(258), pp.
113-150 (1952).

Biographies

Muhammad Aslam is a Professor of Statistics at
Riphah International University, Islamabad, Pakistan.
He has received his PhD degree in Statistics form



M. Aslam et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 1768{1781 1781

University of Wales. He has published over 120 refereed
publications. His research interests include Bayesian
inference and paired comparison models.

Muhammad Tahir graduated from Quaid-i-Azam
University, Islamabad, Pakistan. Currently, he is a
Faculty Member at Government College University,
Faisalabad, Pakistan. He has published more than 20
research papers in national and international reputed

journals. His research interests include Bayesian infer-
ence, reliability analysis, and mixture distributions.

Zawar Hussain received his PhD degree in Statistics
from the Quaid-i-Azam University, Islamabad, Pak-
istan. He has published 70 research papers in re-
search journals. His research interests include sampling
techniques, randomized response models, and Bayesian
Statistics.




