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Abstract. Considering a number of Paired Comparison (PC) models existing in the
literature, the posterior distribution for the parameters of the Rayleigh PC model is
derived in this paper using the informative priors: Conjugate and Dirichlet. The values
of the hyperparameters are elicited using prior predictive distribution. The preferences
for the data of cigarette brands, such as Goldleaf (GL), Marlboro (ML), Dunhill (DH),
and Benson & Hedges (BH), are collected based on university students' opinions. The
posterior estimates of the parameters are obtained under the loss functions: Quadratic
Loss Function (QLS), Weighted Loss Function (WLS), and Squared Error Loss Function
(SELF) with their risks. The preference and predictive probabilities are investigated. The
posterior probabilities are evaluated with respect to the hypotheses of two parameters
comparison. In this respect, the graphs of marginal posterior distributions are presented,
and appropriateness of the model is tested by Chi-Square.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

In the method of PC, items are presented in pairs to one
or more judges; for each pair, a judge selects the item
that best satis�es the speci�ed judgment criterion. The
importance of PC models has been illustrated through
literature, as given below.

Aslam [1] proposed methods for elicitation of
hyperparameters of Bradley-Terry model. Three meth-
ods for elicitation are recommended for the case of
two treatments and one method for the general case.
Cattelan [2] presented the extensions in the Thursto-
nian and Bradley-Terry models on how to account
for object- and subject-speci�c covariates. Models
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of dependent comparisons were also considered. A
pairwise likelihood approach was estimated for models
of dependent PC data. Moreover, a simulated study
was also carried out. The Beta distribution was
used as a prior for the Binomial by Chaloner and
Duncan [3]. The hyperparameters were elicited by the
method of PM (Posterior Mode). Gavasakar discussed
two techniques for hyperparameters elicitation of the
Conjugate Beta distribution for a Binomial model [4].
The results of posterior mode and imaginary-based
methods are compared. Kadane and Wolfson [5]
studied general versus application-speci�c methods and
predictive versus structural techniques of elicitation.
Liu and Shih [6] analyzed the PC data under decision
trees. A scoring system assigned `2' to a win, `1' to
a tie, and zero to a loss for each PC; total scores are
counted. The GUIDE regression tree method was used
for the scores as multi response, and average scores
of the objects are presented on the preference scale to
the objects in each terminal node. Similarly, prefer-
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ence ranking is identical to the Bradley-Terry model,
considering the scoring system. The Bradley-Terry
model was often used for ranking contestants in sport
tournaments. Masarotto and Varin [7] proposed the
method of Lasso type and categorized the contestants
with the same e�ciency in the same group. The ad-
vantage of the suggested method is that interpretation
of ranking and prediction with respect to standard
maximum likelihood is done easily. For numerical
illustration, the dataset of the National Football league
2010-2011 and the American college Hockey Men's
Division I 2009-2010 was used. For the consistency
of PCs, Pankratova and Nedashkovskaya [8] examined
the equivalence of the indicators. Furthermore, the
calculation of the weights of alternatives decisions on
the basis of primary and adjusted matrices of PCs
leads to a variety of alternatives ranking. Further,
the method of estimating the consistency of PCs was
also given. Tutz and Schauberger [9] considered a
general latent trait model for the assessment of sports'
competitions. This model uses the consequences of
playing at home, which can di�er over teams. The
team-speci�c explanatory variables are covered by the
model. Further, the methods are examined by the
performance and dependence on the budget for football
teams of the German Bundesliga. There are many ways
to rank the football teams, one of which is a double
round-robin system. Another criterion is scoring higher
number of goals during a competition. However,
Veghes [10] proposed the method of PC approach and
tested the results of the Romanian First Division. Yan
et al. [11] studied the Bradley-Terry model; the PCs
may be sparse and exist in some pairs. They showed
that asymptotic results similar to Simons and Yao's
continue to hold under a simple condition that controls
sparsity. Simulation study was also carried out.

The model and notations are de�ned in Section 2.
Section 3 presents the posterior distributions used for
Bayesian analysis. Elicitation of the hyperparameters
and the Rayleigh PC model under Bayesian context
is analyzed in Section 4. Conclusion of the study is
reviewed in Section 5.

2. Model and notations

The Rayleigh PC model and its notation are expressed
in this section. Let rij be a random variable associated
with the rank of the treatments in the kth repetition
of treatment pair (Ti; Tj), where i 6= j; i � 1, j � m;
k = 1; 2; :::; nij ; and m is the number of observations.

- ri:ijk = 1 or 0 accordingly, as treatment Ti is
preferred to treatment Tj or not in the kth repetition
of comparison;

- rj:ijk = 1 or 0 accordingly, as treatment Tj is

preferred to treatment Ti or not in the kth repetition
of comparison;

- ri:ij =
P
k ri:ijk = the number of times treatment Ti

is preferred to treatment Tj ;
- rj:ij =

P
k rj:ijk = the number of times treatment

Tj is preferred to treatment Ti;
- nij = the number of times treatment Ti is compared

with treatment Tj ,
- nij = ri:ij + rj:ij .

As the Rayleigh distribution can be used in com-
munication theory, in a paired comparison, perception
of the preference for one object is communicated to
the other object in a pair; for this reason, the Rayleigh
distribution may be considered for PC model. Model
criterion proposed by Stern [12] was used to develop the
Rayleigh PC model. The probability of the preference
of Ti over Tj is denoted by �i:ij and de�ned as follows:

�i:ij = P (Ti � Tj);

�i:ij =
Z 1

0

Z 1
tj

ti
�2
i
e
� t2i

2�2
i
tj
�2
j
e
� t2j

2�2
j dtidtj ;

�i:ij =
�2
i

�2
i + �2

j
; (1)

where �j:ij is the probability of Tj being preferred over
Ti which is obtained as follows:
�j:ij = 1� �i:ij ;

�j:ij =
�2
j

�2
i + �2

j
; (2)

where �i; (i < j) = 1; 2; :::;m are the treatment
parameters. Eqs. (1) and (2) represent the model called
the Rayleigh model for PC.

3. The posterior distribution

The posterior distribution is constituted through the
combination of the prior and sample information. The
posterior distribution re
ects the updated beliefs from
which all decisions and inferences are made:
p(�jr) _ prior� likelihood:

The likelihood function of the Rayleigh PC model for
the observed outcomes of trials r and parameters � =
�1; �2; :::; �4 is:

l(r;�) =
mY

i<j=1

nij !
rij ! (nij � rij)!

�2ri:ij
i �2rj:ij

j

(�2
i + �2

j )ri:ij+rj:ij

�i > 0: (3)

The constraint is imposed upon the treatment param-
eters

Pm
i=1 �i = 1; therefore, the parameters are well

de�ned.
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3.1. The posterior distribution using the
conjugate prior

According to Rai�a and Schlaifer [13], a distribution
is said to be natural for the Conjugate in a given
sampling process if its probability density function
is proportional to a likelihood function corresponding
to some conceivable samples from the process. The
Conjugate prior of the Rayleigh PC model is as follows:

pc(�) =
mY

i<j=1

�2ci
i

(�2
i + �2

j )cm+1
; � > 0;

mX
i=1

�i = 1;
(4)

where ci (i = 1; :::;m + 1) are the hyperparameters.
The joint posterior distribution of the Rayleigh PC
model parameters �1; :::; �m given data, using Eq. (3)
and p(�), (prior distribution) is:

p(�1; :::; �mjr) =
1
K
p( �)

mY
i<j=1

nij !
rij ! (nij � rij)!

� �2ri:ij
i �2rj:ij

j

(�2
i + �2

j )ri:ij+rj:ij
;

�i > 0;
mX
i=1

�i = 1;

where K is the normalizing constant, de�ned as:

K =
Z 1

0

Z 1��1

0
:::
Z 1��1:::��m�2

0
p(�)

mY
i<j=1

nij !
rij !(nij � rij)!

� �2ri:ij
i �2rj:ij

j

(�2
i + �2

j )ri:ij+rj:ij
d�m�1:::d�2d�1:

The marginal posterior distribution of the Rayleigh PC
model parameter of �1 given data, under Conjugate
prior using Eqs. (3) and (4), is:

p(�1jr) =
Z 1��1

0

Z 1��1:::��m�2

0
pc(�)

mY
i<j=1

nij !
rij !(nij � rij)!

� �2ri:ij
i �2rj:ij

j

(�2
i + �2

j )ri:ij+rj:ij
d�m�1:::d�2;

�i > 0;
mX
i=1

�i = 1: (5)

3.2. The posterior distribution using the
Dirichlet prior

The Dirichlet distribution is used as another informa-
tive prior, which is compatible with the parameters of

Table 1. Data of cigarette brands.

Cigarette brands ri:ij rj:ij nij
(GL, ML) 12 8 20
(GL, DH) 13 7 20
(GL, BH) 10 10 20
(ML, DH) 14 6 20
(ML, BH) 7 13 20
(DH, BH) 9 11 20

the Rayleigh PC model as follows:

pd(�) =
�(d1 + :::+ dm)
�(d1):::�(dm)

mY
i=1

�di�1
i ;

�i > 0;
mX
i=1

�i = 1; (6)

where di (i = 1; :::;m) are the hyperparameters. The
marginal posterior distribution of the Rayleigh PC
model parameter of �1 given data under the Dirichlet
prior using Eqs. (3) and (6) is:

p(�1jr) =
Z 1��1

0

Z 1��1:::��m�2

0
pd(�)

mY
i<j=1

nij !
rij !(nij � rij)!

� �2ri:ij
i �2rj:ij

j

(�2
i + �2

j )ri:ij+rj:ij
d�m�1:::d�2;

�i > 0;
mX
i=1

�i = 1: (7)

The dataset of 20 observations of four cigarette brands
commonly used among the students of Quaidi-Azam
University is presented in Table 1.

4. Elicitation

Elicitation is the exercise of excavating the probabili-
ties and utilities from individuals regarding uncertain
events or phenomena. There are two main modules
to this exercise: First, the psychological background
on how individuals can best answer questions for
probability encoding; second, the statistical aspects of
how to use the answers to determine a prior distribu-
tion. Aslam [1] focused on the procedure of elicitation
using prior predictive distribution. Three di�erent
methods are de�ned to elicit the hyperparameters:
prior predictive probabilities, predictive mode, and a
con�dence level and elicitation of con�dence levels.

The elicitation method of con�dence levels
through prior predictive distribution for the hyperpa-
rameters of the prior density for the parameter of the
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model suggested in [1] is used in the paper to elicit the
hyperparameters.

The con�dence levels of the prior predictive dis-
tribution would be elicited for speci�c intervals. The
hyperparameters can be elicited through the following
function:

	(c) = min(c)
mX
i=1

j(CCL)h � (ECL)hj :
As `m' is the number of interval considered for elicita-
tion, c is a vector of elicited hyperparameters, CCL is
the con�dence level of hyperparameters, and ECL is the
elicited con�dence level. The set of hyperparameters
with minimum value of 	(c) in the above equation is
considered as the elicited values of hyperparameters.

4.1. Elicitation of hyperparameters of the
conjugate prior

The prior predictive distribution of using the Conjugate
prior is:

p(rij) =
Z
�

m=4Y
i<j=1

nij !
rij !(nij � rij)!

��
2(ri:ij+ci)
i (1� �i)2(rj:ij+cj)

(�2
i + (1� �i)2)(nij+c5) d�i:

Herein, c1, c2, c3, c4, and c5 are the hyperparameters.
The six expert con�dence levels at di�erent intervals,
using the Conjugate prior predictive distribution, are
as follows:

5X
r12=0

p(r12) = 0:05;
6X

r13=1

p(r13) = 0:02;

7X
r14=2

p(r14) = 0:04;
6X

r23=0

p(r23) = 0:03;

8X
r24=3

p(r24) = 0:08;
7X

r34=2

p(r34) = 0:05:

The program was designed in the SAS package for
the elicitation of hyperparameters using the Conjugate
prior. The elicited hyperparameters are given in Ta-
ble 2.

4.2. Elicitation of hyperparameters of the
Dirichlet prior

The prior predictive distribution of using the Dirichlet
prior is:

p(rij) =
Z
�

m=4Y
i<j=1

nij !
rij !(nij � rij)! �

�(di + dj)
�di�dj

�2ri:ij+di�1
i (1� �i)2rj:ij+dj�1

(�2
i + (1� �i)2)nij

d�i:

Table 2. Elicited hyperparameters of the conjugate prior.

c1 c2 c3 c4 c5

2.27 2.25 2.43 2.06 4.27

Table 3. Elicited hyperparameters of the Dirichlet prior

d1 d2 d3 d4

2.11 1.76 1.84 1.86

Table 4. The posterior estimate.

Parameters Posterior estimate
Conjugate-prior Dirichlet-prior

�1 0.27981 0.28245
�2 0.24226 0.24139
�3 0.20556 0.20174
�4 0.27238 0.27443

Herein, d1, d2, d3, and d4 are hyperparameters.
The six expert con�dence levels at di�erent inter-

vals, using the Dirichlet prior predictive distribution,
are:

5X
r12=2

p(r12) = 0:05;
4X

r13=2

p(r13) = 0:03;

4X
r14=2

p(r14) = 0:05;
4X

r23=2

p(r23) = 0:02;

4X
r24=3

p(r24) = 0:08;
6X

r34=3

p(r34) = 0:06:

The program was designed in the SAS package for the
elicitation of hyperparameters. Table 3 comprises the
elicited hyperparameters of the Dirichlet prior, and
these values are used for further analysis.

5. The Rayleigh PC model under Bayesian
analysis

In this section, the Rayleigh PC model is studied
under Bayesian analysis using the posterior estimates of
parameter. The preference probabilities are also calcu-
lated. The predictive probabilities for the single future
values of the parameters are evaluated. The posterior
probabilities are obtained. The appropriateness of the
model is also investigated.

5.1. The posterior estimate
The posterior means are computed as the estimates
of parameter. The posterior estimates (mean) of the
Rayleigh PC model using the Conjugate and Dirichlet
priors are calculated and given in Table 4.



M. Aslam and T. Kifayat/Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 983{990 987

Figure 1. The marginal posterior distributions for �i of
the Rayleigh model using conjugate prior.

Figure 2. The marginal posterior distributions for �i of
the Rayleigh model using Dirichlet prior.

As noticed from Table 4, the GL is the highest
favored cigarette brand among the students as the
posterior estimates are the largest. The BH is favored
more than the ML and DH. Moreover, the DH is
the least favorable brand among the students as the
parameter estimates are the smallest.

5.2. Graphs of the marginal posterior
distribution

The graphs of the marginal posterior distribution for
the Rayleigh PC model using dataset in Table 1 for the
Conjugate and Dirichlet priors are drawn. Figures 1
and 2 have a symmetrical shape.

5.3. The Bayes estimator under loss functions
This section contains the derivation of the Bayes
estimator under loss functions. The Bayes decision is
a decision `�' which minimizes risk function and ��

is the best decision. If the decision is the choice of an
estimator, then the Bayes decision is a Bayes estimator.
We use three squared loss functions.

5.3.1. Quadratic loss function
The quadratic loss function is given as:

L1(�; ��) =
�

1� ��
�

�2

;

�� = E(��1)
E(��2) , is the Bayes estimator, and �1(��) =

1� E(��1)2

E(��2) , is the Bayes posterior risk.

5.3.2. Weighted loss function
The weighted loss function is given as follows:

L2(�; ��) =
� � ��
�

;

�� = 1
E(��1) , is the Bayes estimator, and �2(��) =

E(�)� 1
E(��1) , is the Bayes posterior risk.

5.3.3. Squared error loss function
The squared loss function is given as:

L3(�; ��) = (� � ��)2;

�� = E(�), is the Bayes estimator, and �2(��) =
E(�2)� E(�)2, is the Bayes posterior risk.

Table 5 comprises the Bayes estimators and pos-
terior risk under loss functions. The Bayes posterior
risks are given in parentheses.

Table 5. The Bayes estimator under loss functions.

Parameters Conjugate-prior
L1 L2 L3

�1
0.27506 0.27743 0.27981

(0.00855) (0.00238) (0.00067)

�2
0.23781 0.24003 0.24226

(0.00927) (0.00222) (0.00054)

�3
0.20125 0.20341 0.20556

(0.01061) (0.00215) (0.00044)

�4
0.26770 0.27003 0.27238

(0.00866) (0.00234) (0.00064)

Parameters Dirichlet-prior
L1 L2 L3

�1
0.27741 0.27993 0.28245

(0.00898) (0.00252) (0.000071)

�2
0.23663 0.23901 0.24139

(0.00996) (0.00238) (0.00057)

�3
0.19708 0.19942 0.20174

(0.01171) (0.00232) (0.00047)

�4
0.26946 0.27194 0.27443

(0.00913) (0.00249) (0.00068)
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The Bayes estimators under loss function, L3,
have overall minimum risk, more than those under
L1 and L2 using both the Conjugate and Dirichlet
priors. These estimates are used to �nd the preference
probabilities.

5.4. The preference probabilities
To check out the supremacy among the cigarette
brands, the preference probabilities are computed in
Table 6. The preference probabilities signify that the
GL is considered to be a greatly preferred cigarette
brand, where the BH is more preferred than the ML.
The DH is given the lowest preference among the
brands.

5.5. The predictive probabilities
The single future preference of a treatment over an-
other treatment is forecast by the predictive probabili-
ties. It is concluded from Table 7 that there is a 56.43%
chance that GL will be preferred to ML and a 64.94%
chance that GL will be preferred to DH in a single
future PC. Similarly, there is a 36.52% chance that DH
will be preferred to BH in a single future PC.

5.6. The hypotheses testing
The hypotheses testing de�ne the evidence of the
quality for one model speci�cation over another. In
Bayesian analysis, the posterior probabilities are di-
rectly calculated, and one may decide between hy-

Table 6. The preference probabilities.

Pairs �i:ij
Conjugate-

prior
Dirichlet-

prior

(GL, ML) �1:12 0.57156 0.57790

(GL, DH) �1:13 0.64948 0.66218

(GL, BH) �1:14 0.51345 0.51439

(ML, DH) �2:23 0.58141 0.58877

(ML, BH) �2:24 0.44167 0.43621

(DH, BH) �3:34 0.36287 0.35082

Table 7. The predictive probabilities.

Pairs Pij
Conjugate-

prior
Dirichlet-

prior

(GL, ML) P12 0.56427 0.57120

(GL, DH) P13 0.64944 0.65744

(GL, BH) P14 0.51598 0.51661

(ML, DH) P23 0.58835 0.58988

(ML, BH) P24 0.45151 0.44516

(DH, BH) P34 0.36521 0.35770

Table 8. The posterior probabilities.

Hypotheses
Conjugate-prior Dirichlet-prior

pij B pij B

�1 � �2 0.59442 1.46560 0.62618 1.67508

�1 � �3 0.91732 11.09482 0.93796 15.11863

�1 � �4 0.47263 0.89620 0.46819 0.88037

�2 � �3 0.77775 3.49944 0.76825 3.31499

�2 � �4 0.05565 0.05893 0.05352 0.05654

�3 � �4 0.00272 0.00273 0.00243 0.00244

potheses. The hypotheses can be de�ned as follows:

Hij : �i � �j vs. Hji : �i < �j :

The posterior probability for hypothesis Hij is:

pij =
Z 1

�=0

Z (1+�)=2

�=�
p(�; �jr)d�d�:

The posterior probability for hypothesis Hji is:

qij = 1� pij ;
where � = �i and � = �i � �j .

The Bayes factor is used as the decision rule for
the hypotheses. It can be interpreted as the odds for
Hij to Hji that are given by the data. Je�reys [14]
presented the following typology by comparing Hij to
Hji:

B � 1 supports Hij

10�0:5 � B � 1 minimal evidence against Hij

10�1�B�10�0:5 substantial evidence against Hij

10�2 � B � 10�1 strong evidence against Hij

B � 10�2 decisive evidence against Hij

From Table 8, it is observed that H12, H13, and H23
are supported, where H14 has minimal evidence against
H41. It is concluded that H24 has strong evidence
against H42 and H34 has decisive evidence against the
alternative hypothesis.

5.7. Appropriateness of the model
The Chi-square test is used for the appropriateness of
the models. The hypothesis is de�ned as:
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Table 9. Appropriateness of the Rayleigh PC model.

Rayleigh PC model

Conjugate-prior Dirichlet-prior

�2 2.57469 2.56015

P�value 0.5381 0.5355

Bradley Terry PC Model

Conjugate-Prior Dirichlet-Prior

�2 2.57071 2.55719

P�value 0.53735 0.53495

H0 : The model is true for some values of
� = �0,

H1 : The model is not true for any values of
the parameters,

where � = �1; �2; :::; �m is the vector of the unknown
parameters, �i > 0. �2 has the following form:

�2 =
mX
i<j

�
(ri:ij � r̂i:ij)2

r̂j:ij
+

(rj:ij � r̂j:ij)2

r̂j:ij

�
;

with (m� 1)(m� 2)=2 degrees of freedom [15].
The expected number of preferences is obtained

by the following form:

r̂i:ij = rij
�2
i

�ij
and r̂j:ij = rij

�2
j

�ij
;

where �ij = �2
i + �2

j . rij and rj:ij are the observed
numbers of preferences from the dataset given in
Table 1. The appropriateness of the Rayleigh PC
model is compared with the Bradley Terry PC model
in Table 9.

From Table 9, it is interpreted that �2 has high
P -values. Therefore, the both models are good �t.

6. Conclusion

A study was conducted with respect to the developed
Rayleigh PC model in this study. The model was
analyzed under Bayesian paradigm using the Conjugate
and Dirichlet priors. The prior predictive distribution
for elicitation of hyperparameters was used. The
analysis of the study is based on the dataset of
four cigarette brands: Goldleaf, Marlboro, Dunhill,
and Benson & Hedges collected from Quaid-i-Azam
University, Islamabad, Pakistan. The loss functions
include Quadratic Loss Function (QLS), Weighted Loss
Function (WLS), and Squared Error Loss Function
(SELF) for the estimation of parameters. The Bayes

estimators under loss function SELF have the overall
minimum risk, as compared to QLS and WLS, for
both the Conjugate and Dirichlet priors. The posterior
estimates were obtained. The predictive and preference
probabilities were estimated. The appropriateness
of the model was calculated. On the basis of the
estimates, it is concluded that Goldleaf is the most
preferred cigarette among students, while Dunhill is
the least preferred cigarette brand.
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