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Abstract. Public transport crew scheduling is a worldwide problem, which is NP-hard.
This paper presents a new crew scheduling approach, called GRAVIG, which integrates
Grey Relational Analysis (GRA) into a Variable Iterated Greedy (VIG) algorithm. The
GRA is utilized as a solver for shift selection during the schedule construction process, which
can be considered as a Multiple Attribute Decision Making (MADM) problem, since there
are multiple static and dynamic criteria governing the e�ciency of a shift to be selected
into a schedule. Moreover, in the GRAVIG, a biased probability destruction strategy is
elaborately devised to maintain the `good' shifts in the schedule without compromising the
randomness. Experiments on eleven real-world crew scheduling problems show that the
GRAVIG can generate high-quality solutions close to the lower bounds obtained by the
CPLEX in terms of the number of shifts.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

The crew scheduling problem is one of the important
components of the public transit operations planning
process [1]. It is concerned with �nding the most
e�cient way of partitioning vehicle work into a crew
schedule. E�cient schedules can make signi�cant
monetary savings for transportation operators since
crew wages are a very large cost element of public
transport operations [2-4].

To clarify the problem, some terminologies are
�rst introduced. A shift is the work that a crew carries
out in a day, and it must satisfy a set of prede�ned
operational constraints and labor rules, e.g., the time
for a crew to work without a meal break has to be
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limited to a given number of hours. A schedule is
de�ned as a solution to the problem that contains a
set of shifts that cover all the vehicle work. Vehicle
work is usually presented by a set of blocks. A block
presents a sequence of vehicle work to be operated by
one vehicle during a day. An example of a block is
illustrated in Figure 1.

A Relief Opportunity (RO) is a pair of time and
place where a crew can be relieved for reasons such as
having a meal break and changing vehicle. Not all ROs
will be actually used to relieve crews. The individual
period between any contiguous pair of ROs on the same
vehicle is called a piece of work (piece for short). A spell
is constituted by a set of successive pieces on a vehicle.
A shift contains one or more (at most four in general)
spells with breaks in between, starting and ending with
a sign-on and a sign-o� at a depot. A two-spell shift is
illustrated in Figure 2.

Crew scheduling is the process of compiling a
schedule with smallest number of shifts and least cost.
Meanwhile, each shift must be feasible, and each piece
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Figure 1. An example of a block.

must be assigned to a shift. The problem is NP-
hard and has attracted much research interest since
1960's [5]. Many crew scheduling approaches have
been proposed in a series of international conferences
(e.g., [6]). Since 1990's, metaheuristics have been
widely used to solve the problem. The major classes in-
clude Genetic Algorithm [7-11] and Tabu Search [7,12-
14]. Other metaheuristics have also been employed, e.g.
Variable neighborhood search [15], simulated anneal-
ing [16], self-adjusting approach [17], greedy random-
ized adaptive search procedure [15,18], squeaky wheel
optimization [19], and ant colony optimization [20].

In many crew scheduling approaches, e.g.
[9,11,17,19], shift evaluation methods are essential,
which decide the quality of schedule compilation. The
most straightforward shift evaluation methods are sin-
gle criterion-based, i.e. evaluating a shift based on an
evaluation criterion. However, the solution qualities
of the greedy heuristics with such evaluation methods
have been proven unacceptable [17,21]. Later, multiple
criteria-based evaluation methods have been proposed,
which evaluate a shift comprehensively in light of
multiple criteria. For example, in [9], the authors
presented a genetic algorithm with fuzzy evaluation
for crew scheduling, in which a fuzzy shift evaluation
method was devised based on fuzzy set theory; In [22],
the authors proposed an evolutionary algorithm based
on Grey Relational Analysis (GRA), where a shift eval-
uation method based on GRA was devised and its pa-
rameters were obtained by a hybrid genetic algorithm.

This paper proposes a new crew scheduling ap-
proach, called GRAVIG, which integrates GRA into
a Variable Iterated Greedy (VIG) algorithm. The
VIG is a metaheuristic that has been successfully
applied to solve a variety of combinatorial optimization
problems such as traveling salesman problem with time
windows [23-25], which is composed of �ve phases: ini-
tialization, destruction, construction, local search, and
acceptance criterion. Applying the VIG for the crew
scheduling problem, shift selection plays an essential

role during the schedule construction and destruction
processes. The GRAVIG employs the GRA as a
solver for the shift selection, which can be considered
as a Multiple Attribute Decision Making (MADM)
problem, since there are multiple static and dynamic
criteria governing the e�ciency of a shift to be selected
into or removed from a schedule. Moreover, in the
GRAVIG, a biased probability destruction strategy is
elaborately devised to maintain the `good' shifts in the
schedule without compromising the randomness. The
GRAVIG can be classi�ed as the Generate and Select
(GaS) approach. The GaS approach �rst generates a
large set of shifts satisfying all the given operational
constraints and labor rules (called generation phase),
from which a subset is selected to form the schedule
(called selection phase).

The rest of the paper is organized as follows. The
formulation of the crew scheduling problem is presented
in Section 2. The shift evaluation method based on
GRA is described in Section 3. The details of the
proposed GRAVIG are then presented in Section 4. Ex-
perimental results on real-world problems are displayed
in Section 5. Finally, concluding remarks are given in
Section 6.

2. Formulation of the crew scheduling problem

Given m pieces P = fp1; p2; :::; pmg and n shifts S =
fS1; S2; :::; Sng, where each shift Sj covers a subset of
pieces, the crew scheduling problem can be formulated
as the following set covering problem:

Minimize
nX
j=1

(C + cj)xj ; (1)

Subject to
nX
j=1

aijxj � 1; 8i 2 f1; 2; :::;mg; (2)

xj = 0 or 1; 8j 2 f1; 2; :::; ng; (3)

where xj = 1 if Sj is selected, otherwise xj = 0; aij = 1
if Sj covers piece pi, otherwise aij = 0; cj is the cost of
Sj , and C is a large constant.

Figure 2. Illustration of the composition of a two-spell shift.
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Eq. (1) minimizes the number of shifts selected
and corresponding shift cost, where minimizing the
number of shifts has priority over minimizing the shift
cost; Relation (2) ensures that each piece is covered by
at least a shift; and Eq. (3) assures that all the shifts
are considered. The quality of a schedule is attributable
to the number of shifts included and the cost of each
component shift.

3. A shift evaluation method based on GRA

Given a crew scheduling with n shifts, S = fS1; S2;
:::; Sng, a schedule with minimal number of shifts and
shift cost is to be constructed. Shift selection plays
an important role. Such a shift selection problem
can be considered as an MADM problem, since there
are multiple static and dynamic criteria governing the
e�ciency of a shift to be selected into a schedule.

GRA is one of the most important components of
grey system theory [26-28]. It belongs to the family of
MADM methods, which select the best from the exist-
ing alternatives by considering multiple criteria [29,30].
In this paper, GRA is employed for the shift selection
during the schedule construction process.

GRA is an impact evaluation model that mea-
sures the degree of similarity or di�erence between
two comparability sequences based on the grade of
relation. A comparability sequence consists of the
performances evaluated by each criterion in the given
set of criteria. Given a set of comparability sequences,
an ideal target sequence can be easily generated, called
reference sequence. The basic principle of GRA is that
a comparability sequence is regarded as the best if it
has the highest grey relational grade with the reference
sequence.

Tailoring GRA for the shift selection, a dynamic
criterion and �ve static criteria, i.e. working time
(C1), ratio of working time over wage cost (C2),
number of pieces (C3), number of spells (C4), and
value in the relaxed LP solution (C5), are considered.
The values of the �ve static criteria for each shift
Sj 2 S are called a performance sequence, denoted
by Yj = (yj(1); yj(2); yj(3); yj(4); yj(5)), according to
which the comparability sequence is �rst obtained and
then the reference sequence is de�ned. Finally, the grey
relational grade between the comparability sequence
and reference sequence is calculated, which is called
static evaluation. Moreover, the dynamic criterion is
measured by the over-cover of pieces by shifts and
called dynamic evaluation, which reects how well it
�ts the other shifts in the schedule. A comprehensive
evaluation based on the two parts is devised.

3.1. Static evaluation
3.1.1. Grey relational generating
Grey relational generating is to transform the

performance sequence of each shift into a comparability
sequence.

Criteria C1, C2, C3, and C5 belong to the
larger-the-better criteria, since a shift with larger
yj(k) (k = 1; 2; 3; 5) is generally regarded better,
while C4 belongs to the closer-to-the-desired-value-
the-better criteria, because a shift with 2 spells is
always considered better, i.e. the desired value is
2. Yj is transformed into a comparability sequence,
Xj = (xj(1); xj(2); xj(3); xj(4); xj(5)), by employing
the following Eqs. (4) and (5), where xj(k) is in the
range [0,1]:

xj(k) =
yj(k)�min

j
yj(k)

max
j
yj(k)�min

j
yj(k)

;

j = 1; 2; :::; n; k = 1; 2; 3; 5; (4)

xj(k) = 1� jyj(k)� 2j
max

�
max
j
yj(k)� 2; 2�min

j
yj(k)

� ;
j = 1; 2; :::; n; k = 4: (5)

3.1.2. Reference sequence
After obtaining the comparability sequences for all the
shifts, reference sequence X0 = (x0(1); x0(2); x0(3);
x0(4); x0(5)) can be de�ned by setting x0(k) =
maxfxj(k)jj = 1; 2; :::; ng; k = 1; 2; :::; 5. Therefore,
X0 = (1; 1; 1; 1; 1) corresponds to the arti�cial shift S0.

3.1.3. Grey relational coe�cient
A grey relational coe�cient (denoted as (x0(k);
xj(k))) is the foundation for calculating the grey
relational grade between Xj and X0 according to the
kth criterion. It is calculated by Eq. (6):

(x0(k); xj(k)) =
�min + ��max

jx0(k)� xj(k)j+ ��max

j = 1; 2; :::; n; k = 1; 2; 3; 4; 5; (6)

where �min = min
j

min
k
jx0(k)� xj(k)j, �max = max

j
max
k
jx0(k)� xj(k)j, � 2 [0; 1] is the distinguishing

coe�cient, and usually � = 0:5.

3.1.4. Grey relational grade
Grey relational grade between Xj and X0, denoted as
(x0; xj), is calculated by Eq. (7):

(x0; xj) =
5X
k=1

wk(x0(k); xj(k)); (7)

where wk (wk � 0) denotes the weight of criterion Ck
and

P5
k=1 wk = 1.

3.1.5. Static evaluation functions
(x0; xj) can be used as the static evaluation function
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for shift Sj , denoted as f(Sj), i.e.:

f(Sj) = (x0; xj): (8)

Moreover, relative grey relational grade, which inte-
grates the ideas of GRA and TOPSIS, is suggested
to be used as the static evaluation function, and it is
de�ned as follows:

f(Sj) =
(x0; xj)

(x0; xj) + (x0; xj)
; (9)

where (x0; xj) denotes the grey relational grade
between Xj and the negative ideal sequence
X 0 = (x0(1); x0(2); x0(3); x0(4); x0(5)), and x0(k) =
minfxj(k)jj = 1; 2; :::; ng.
3.2. Comprehensive evaluation
Dynamic evaluation function, denoted by g(Sj), is
realized by measuring over-cover of pieces, where over-
cover means a piece is covered by more than one shift.
It is de�ned in Eq. (10):

g(Sj) =
jSj jX
k=1

(�jk � �jk)

,jSj jX
k=1

�jk; (10)

where jSj j denotes the number of pieces in Sj , and �jk
is the working time of piece k in Sj :

�jk =

(
0; if piece k in Sj is covered
1; otherwise

(11)

Based on the static evaluation function and dynamic
evaluation function, comprehensive evaluation function
is devised in Eq. (12):

F (Sj) = (f(Sj))� � (g(Sj))� ; j = 1; 2; :::; n; (12)

where �; � 2 [0; 1] reects the relative inuence of the
static evaluation and dynamic evaluation.

4. The GRAVIG approach

The VIG only provides a general framework, which
should be elaborately tailored for solving di�erent com-
binatorial optimization problems. To solve the crew
scheduling problem, this section proposes the GRAVIG
approach, which considerably enhances the VIG by
integrating with GRA. The GRA is employed in the
initialization, construction, and destruction processes,
aimed at selecting the most suitable shifts to construct
or destruct a schedule. Such a shift selection problem
can be regarded as an MADM problem, where multiple
criteria are applied. The GRAVIG also devises a
biased probability destruction replacing the traditional
random destruction, which is able to maintain the
`good' shifts in the schedule without compromising the
randomness. The details of the GRAVIG are described
below.

4.1. Initialization
To construct an initial schedule X0, the GRA is
employed to decide which shifts will be used: The
higher the evaluation value of a shift, the higher the
desirability of using it in the schedule will be, which is
described as follows:

1. Set the initial schedule, X0 = �;
2. For each piece pi 2 P , build a coverage list, denoted

as Li, which contains all the shifts covering pi; then,
sort the pieces by the size of their coverage list in
ascending order;

3. For the piece pi 2 P , �nd the shift Sk 2 Li
satisfying F (Sk) = maxfF (Sj)jSj 2 Lig and set
X0 = X0 [ fSkg and P = P � fSkg;

4. Output X0.

4.2. Biased probability destruction
In the biased probability destruction, the current sched-
ule (say X1) is destructed by removing d shifts, where
d is called destruction size. We devise a biased
probability selection to achieve this: Evaluate the shifts
in X1 by the GRA �rst, sort them by the evaluation
values in ascending order, and then select d di�erent
shifts according to a biased probability distribution,
where the shift of rank i is selected with probability
Pi:

Pi =
i��

jX1jP
i=1

i��
; (13)

where � is a positive real number and we set � = 1:2 in
this paper. A shift with a higher evaluation value will
have lower probability to be removed, i.e. the `good'
shifts have higher probability of being maintained in
the schedule. This is di�erent from the canonical VIG,
where the worst or randomly selected elements are to
be removed.

The initial destruction size is set as dmin, and then
d adjusts adaptively within a range [dmin; dmax] (called
destruction size range), where dmin and dmax denote
minimum and maximum destruction sizes, respectively.
At each iteration, if d becomes larger than dmax or the
solution is better than the best solution found so far,
set d = dmin; otherwise, add 1 to d. This is di�erent
from the canonical VIG, where d is set to be dmin if d
is larger than dmax or the solution obtained is better
than the current solution. Moreover, the destruction
size range may inuence the quality of the �nal results,
since a small value of d will make it di�cult for the
GRAVIG approach to escape from local optima while
a large value of d will make this destruction procedure
similar to a randomized procedure. Di�ering from
the canonical VIG, where the destruction size range
is usually set to be [1; N ], in this paper, we set the
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destruction size range to be [a�N; b�N ] (0 < a < b <
1), where N is the number of shifts in the current
schedule minus one, a and b are set to be 0.1 and 0.4,
respectively.

4.3. Construction
In the destruction, d shifts are removed. The obtained
partial schedule is denoted as X2. Consequently, the
pieces, which are covered by the d shifts exclusively,
become uncovered. To cover them, the GRA is
employed to determine which shifts should be selected.
The major steps are as follows:

1. Set U = fthe pieces which are uncoveredg;
2. For each piece, pi 2 U , build a coverage list,

denoted as Li, which contains all the shifts covering
pi; then, sort the pieces by the size of their coverage
list in ascending order;

3. For the piece pi 2 U , �nd the shift Sk 2 Li with
F (Sk) = maxfF (Sj)jSj 2 Lig, and set X2 = X2 [
fSkg, U = U � fSkg;

4. Output X2.

4.4. Local search
To further improve the new schedule, X2, generated
by the construction, a local search is employed, which
focuses on removing redundant shifts and replacing
shifts. A shift is de�ned as redundant if all of its pieces
can be covered by the other shifts in the schedule. The
local search contains the following steps:

1. Sort the shifts in X2 by cost in descending order;

2. Delete the redundant shifts in X2;

3. Check each shift in X2 in descending order: If
it is a redundant shift, then delete it; otherwise,
if it can cover k (1 � k � 3) pieces exclusively,
replace it with a shift Sj =2 X2, which can cover k
pieces and has the lowest cost. If any of the above
two conditions occurs, re-execute step 3; otherwise,
terminate and output X2.

It should be mentioned that the parameter k = 3
in the local search is only implemented for the best
schedule produced by the GRAVIG. The purpose is to
achieve a tradeo� between less CPU time and better
results.

4.5. Acceptance criterion
The new schedule should be evaluated and it should
be decided whether it is acceptable. We adopt a
acceptance criterion as follows: The new schedule X2

replaces the original schedule X1 with the probability
min(1; e�(G(X2)�G(X1))/T ), where G(X1) and G(X2)

denote the costs of X1 and X2, respectively, i.e.:

G(X1) =
X

Sj2X1

(C + cj);

G(X2) =
X

Sj2X2

(C + cj):

T is the temperature at the current iteration, which
decreases according to a proportional temperature
cooling schedule, i.e. T = cT , where c is set to be 0.9
in this paper.

4.6. Framework of the GRAVIG approach
Let T0 denote an initial temperature, M denote the
maximum number of iterations at the current tem-
perature T , and N denote the maximum number
of iterations for the GRAVIG; the framework of the
GRAVIG is presented as follows:

1. Generate an initial schedule X0 by initialization
and improve it by local search; then, obtain a new
schedule, X1, set the best schedule X� = X1;

2. Set n = 0 and T = T0;
3. Initialize the destruction size range by setting

dmin = jX1j�a and dmax = jX1j�b, and set d = dmin;
4. Improve X1 by M iterations at the temperature

T , and update X�, which can be illustrated by the
following steps:
4.1 Set m = 0;
4.2 Generate a new schedule, X2, by sequentially

employing biased probability destruction and
construction, and then improve it by local
search;

4.3 If X2 is better than X�, i.e. G(X2) < G(X�),
set X� = X2, d = dmin; otherwise, set d =
d+ 1;

4.4 Set X1 = X2 if acceptance criterion is satis-
�ed;

4.5 Update the values of dmin and dmax by setting
dmin = jX1j�a and dmax = jX1j�b, and if d is
out of the destruction size range [dmin; dmax],
set d = dmin;

4.6 Set m = m+ 1 and n = n+ 1;
4.7 If m < M , go to step 4.2.

5. Decrease T by setting T = cT ;
6. If the termination condition has been met (e.g. n �

N), improve X� using local search, and then output
X�; otherwise, go to step 4.

5. Computational results

The major concern about using heuristics is the quality
of the obtained solution. In this paper, to evaluate the
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Table 1. Size of test instances.

Data Number of
blocks

Number of
pieces

Number of
shifts

BT08 8 184 14218
WH5 14 162 9714

ZJQZ2 18 491 31712
WJ302 30 389 74864
ZH40 40 528 31493
HS9 43 302 48267
HK4 46 467 97386
BJ41 54 410 55977

GZBM 30 750 93853
GZHD 49 584 137355
SY40 62 830 112142

e�ciency of the proposed GRAVIG, we have carried
out experiments on 11 crew scheduling instances, which
are derived from real-world problems in China. Their
characteristics are shown in Table 1.

The GRAVIG is coded in C++ and implemented
on a 2.60 GHz PC with 992M RAM under Windows
XP, while the CPLEX 12.4 is run on a 2.13 GHz PC
with 2GB RAM under Windows 7. The parameters
are set as follows: T0 = 100, N = 700, M = 100,
� = 0:5, (�; �) = (1:0; 1:0), and (w1; w2; w3; w4; w5) =
(0:15; 0:15; 0:15; 0:15; 0:4), which is a good parameter
Li and Kwan [9].

For comparison purpose, the benchmark exper-
imental results in terms of shift number and total
cost are conducted by comparing the GRAVIG with

CPLEX 12.4. Moreover, computational experiments
are also conducted by comparing the GRAVIG with
the following 3 algorithms: a recently proposed crew
scheduling approach, i.e. Adaptive Evolutionary Crew
Scheduling (AECS) approach in [11], the VIG, and an
Iterated Greedy (IG) algorithm. This paper applies
Relative Percentage Deviation (RPD) to the results
of CPLEX, AECS, VIG, and IG to measure the
performance of the GRAVIG, where:

RPD =
�

GRAVIG0s result�A0s result
A0s result

�
� 100%;

where A denotes CPLEX, AECS, VIG, or IG.

5.1. Comparison of the GRAVIG with CPLEX
The average results of 10 independent runs for the
GRAVIG are reported in Table 2, where the results
of CPLEX are also given. Columns 2-4 list the
results of CPLEX in terms of shift number, shift
cost, and elapsed time, respectively, where `{' denotes
that integer solution cannot be found by CPLEX. For
comparison purpose, we further calculate the lower
bound of the number of shifts in an optimal schedule
by employing CPLEX to solve the LP relaxation of the
crew scheduling model, i.e. Eqs. (1)-(3) in Section 2;
the corresponding results are listed in the 5th column
of Table 2. The remaining columns report the results
of the GRAVIG and its comparison with CPLEX.

From Table 2, it can be seen that for the �rst 8
instances, CPLEX can �nd the integer solution, and
the average RPDs of the GRAVIG over the CPLEX
are 1.28% and 9.86% in terms of shift number and

Table 2. Comparative results for CPLEX and GRAVIG.

Data CPLEX's solution Lower bound GRAVIG' s schedule
# of
shifts

Cost
(hours)

Time
(sec.)

# of
shifts

# of
shifts

RPDa

(%)
RPDb

(%)
Cost

(hours)
RPDa

(%)
Time
(sec.)

BT08 23 139.43 16 23 23 0 0 156.19 12.0 9.9
WH5 21 151.15 5 21 22 4.76 4.76 156.61 3.61 6.5

ZJQZ2 31 221.37 30 31 32 3.23 3.23 235.57 6.41 36.9
WJ302 44 292.12 41 44 45 2.27 2.27 316.96 8.50 45.1
ZH40 64 380.85 24 64 64 0 0 425.27 11.67 25.1
HS9 68 439.88 43 68 68 0 0 448.36 1.93 21.2
HK4 70 448.77 94 70 70 0 0 491.87 9.60 51.5
BJ41 99 588.33 43 99 99 0 0 736.06 25.11 24.2

GZBM { { { 60 60.2 { 0.33 452.00 { 67.5
GZHD { { { 85 85.9 { 1.06 655.26 { 65.1
SY40 { { { 83 84.2 { 1.45 599.25 { 73.6

Avg. RPDc 1.28 1.19 9.86
a The RPD over the results of CPLEX;
b The RPD over the lower bound;
c The average RPD over the results of CPLEX or the lower bound.
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shift cost, respectively. Therefore, it can be concluded
that the GRAVIG can obtain high-quality solutions
close to the results of the CPLEX, since for the crew
scheduling problem, minimizing the shift number has
priority over minimizing the shift cost; and for the
remaining 3 instances, i.e. the GABM, GZHD, and
SY40, the CPLEX cannot �nd integer solution, while
the GRAVIG can obtain high-quality solutions close to
the lower bounds: The average RPD is 1.19% in terms
of shift number. This demonstrates the e�ectiveness
and promise of the GRAVIG.

5.2. Comparison of the GRAVIG with the
AECS

The comparative results of the GRAVIG with the
AECS are listed in Table 3, where columns 2-4 re-
port the average results of 10 independent runs for
the AECS, and columns 5 and 6 list the GRAVIG's
RPD over the AECS in terms of shift number and
shift cost, respectively. From Table 3, we can see
that the GRAVIG outperforms the AECS, although
it is slightly slower. In terms of shift number, the
GRAVIG performs better than the AECS for 8 out of
11 instances; among the remaining 3 instances, it can
produce the same results for 2 instances. Moreover,
in terms of shift cost, the GRAVIG outperforms the
AECS for 10 instances. On average, the schedule of
the GRAVIG has 1.56% less shifts in terms of shift
number, and is 4.44% cheaper in terms of shift cost.

5.3. Comparison of the GRAVIG with the
VIG

As already stated in Section 4, the GRAVIG di�ers
from the canonical VIG mainly in the integration of
the GRA and the design of the destruction. To assess
the e�ciency of the specially-devised biased proba-
bility destruction, comparative experiments between

the GRAVIG and the VIG are carried out, where the
ingredients of the VIG are set to be same as those in the
GRAVIG, except for the destruction. The destruction
of the VIG is as follows: the d shifts to be removed
are completely randomly selected and the destruction
size range is set to be [1; N ], where N is the number of
shifts in the current solution nimus one ; also, at each
iteration, d is set to be 1 if the new schedule obtained is
better than the current schedule or d is larger than N .
Average results of 10 independent runs of the VIG and
its comparison with the GRAVIG are listed in Table 4,
where the RPD column reports the GRAVIG's RPD
over the VIG in terms of shift number and shift cost,
respectively.

From Table 4, one can easily observe that the
GRAVIG outperforms the VIG. On average, the sched-
ule of the GRAVIG has 0.58% less shifts in terms
of shift number, and is 0.27% cheaper in terms of
shift cost. In addition, in terms of shift number,
the GRAVIG is no worse than the VIG for all the
11 instances, while it performs better for 3 instances.
Meanwhile, in terms of shift cost, the GRAVIG outper-
forms the VIG for 7 instances. This con�rms that the
biased probability destruction can enhance the search
power of the GRAVIG.

5.4. Comparison of the GRAVIG with Iterated
Greedy algorithm

To further evaluate the performance of the GRAVIG,
we also compare it with the IG algorithm, which is a
popular metaheuristic having been successfully applied
to address a variety of combinatorial optimization
problems [31,32]. The IG is to some extent di�erent
from the VIG, i.e. the destruction size d in the IG
is static while d in the VIG can adjust adaptively.
Therefore, the value of d in the IG must be given in
the beginning of the IG. For comparison purpose, in

Table 3. Comparative average results of 10 runs for the GRAVIG and AECS.

Data AECS's schedule GRAVIG' s schedule
# of shifts Cost (hours) Time (sec.) RPD (%) RPD (%)

BT08 23.0 158.88 3.5 0 {1.69
WH5 23.0 173.30 6.2 {4.35 {9.63

ZJQZ2 31.9 246.30 17.6 0.31 {4.36
WJ302 45.9 331.90 23.6 {1.96 {4.50
ZH40 64.3 490.67 21.7 {0.47 {13.33
HS9 69.0 465.65 9.3 {1.45 {3.71
HK4 70.0 511.70 16.7 0 {3.88
BJ41 99.9 688.15 18.7 {0.90 6.96

GZBM 61.9 475.42 59.6 {2.75 {4.93
GZHD 87.6 675.88 48.9 {1.94 {3.05
SY40 87.4 642.33 127.6 {3.66 {6.71

Avg. RPD -1.56% {4.44%



838 K. Peng and Y. Shen/Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 831{840

Table 4. Comparative average results of 10 runs for the GRAVIG and VIG and iterated greedy.

VIG's schedule IG-I's schedule IG-II's schedule

Data # of
shifts

RPD
(%)

Cost
(hours)

RPD
(%)

# of
shifts

RPD
(%)

Cost
(hours)

RPD
(%)

# of
shifts

RPD
(%)

Cost
(hours)

RPD
(%)

BT08 23 0 156.48 {0.19 23 0 156.33 {0.09 23.1 {0.43 156.69 {0.32
WH5 22 0 156.87 {0.17 22.6 {2.65 161.85 {3.24 22 0 156.74 {0.08

ZJQZ2 32 0 234.56 0.43 32.1 {0.31 236.55 {0.41 31.9 0.31 233.91 0.71
WJ302 45 0 316.01 0.30 46.1 {2.39 317.28 {0.10 45.1 {0.22 316.40 0.18
ZH40 64 0 430.05 {1.11 64.4 {0.62 424.92 0.08 64 0 430.31 {1.17
HS9 68 0 448.58 {0.05 68.8 {1.16 450.79 {0.54 68.1 {0.15 448.66 {0.07
HK4 71.1 {1.55 496.48 {0.93 71.1 {1.55 495.08 {0.65 70.9 {1.27 495.37 {0.71
BJ41 99 0 733.24 0.38 99.4 {0.40 731.40 0.64 99 0 733.11 0.40

GZBM 60.2 0 451.44 0.12 61.3 {1.79 457.22 {1.14 60.3 {0.17 453.11 {0.24
GZHD 87.2 {1.49 656.42 {0.18 87.9 {2.28 656.44 {0.18 86.7 {0.92 654.72 0.08
SY40 87.1 {3.33 609.16 {1.63 86.8 {3.00 601.44 {0.36 86.3 {2.43 610.5 {1.84

Avg. RPD {0.58 {0.27 {1.47 {0.55 {0.48 {0.28

this section, the IG with two values of d (i.e., dmin
and dmax used in the GRAVIG) are tested, denoted by
IG-I and IG-II, respectively. Their other ingredients
are same as those in the GRAVIG. Average results
of 10 independent runs of the IG-I and IG-II and
speci�c comparative results with the GRAVIG are both
illustrated in Table 4, where the RPD columns denote
the GRAVIG's RPD over the IG-I and IG-II in terms
of shift number and shift cost, respectively.

From Table 4, it can be seen that the GRAVIG
performs better than both the IG-I and IG-II. The
average RPDs over the IG-I and IG-II are {1.47% and
{0.48%, respectively, in terms of shift number, and {
0.55% and {0.28%, respectively, in terms of shift cost.
Furthermore, in terms of shift number, the GRAVIG is

no worse than the IG-I for all the 11 instances, while
it performs better for 10 instances. Meanwhile, the
GRAVIG is no worse than the IG-II for 10 instances,
while it performs better for 7 instances.

5.5. Experiment on the solution distribution of
the GRAVIG

We now turn our attention to testing the solution
distribution of the GRAVIG. Average results of 20
independent runs of the GRAVIG are listed in Table 5.
Table 5 shows that the shift numbers found in the 20
runs by the GRAVIG are the same for 6 instances,
and only vary in 1 shift for 3 out of the remaining 5
instances. Moreover, there is no remarkable variation

Table 5. Results of 20 independent runs for the GRAVIG.

# of shifts Cost (hours)
Data Ave. Min. Max. Max.-Min. Ave. Min. Max. Std. dev.

BT08 23 23 23 0 156.13 155.58 158.83 0.72
WH5 22 22 22 0 156.76 154.93 159.18 1.32

ZJQZ2 31.9 31 32 1 234.99 232.35 238.10 1.77
WJ302 45.1 45 46 1 316.74 312.12 319.93 1.78
ZH40 64 64 64 0 426.33 419.98 432.85 3.20
HS9 68 68 68 0 448.68 447.92 448.75 0.20
HK4 70 70 70 0 492.28 486.62 496.23 2.01
BJ41 99 99 99 0 735.03 724.82 740.70 4.01

GZBM 60.05 60 61 1 450.85 447.80 454.12 1.80
GZHD 86.2 85 87 2 655.02 651.07 660.03 2.41
SY40 84.65 84 86 2 600.80 596.62 605.10 2.32

Avg. RPDa. 1.24% 0.75% 1.83%
a The average RPD over the lower bound in terms of shift number.
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between the 20 runs in terms of shift cost. This
indicates that the GRAVIG is quite robust.

Furthermore, we also compare the results of the
GRAVIG with the lower bound of the number of
shifts illustrated in Section 4.1, the average RPD
of the optimal schedules presented in Table 5 over
the lower bound is 0.75% in terms of shift number.
This demonstrates that the GRAVIG can obtain high-
quality results.

6. Conclusions

This paper proposes a new approach for the public
transit crew scheduling problem, named GRAVIG,
which integrates GRA into a VIG algorithm. The GRA
serves as a solver for shift selection during the schedule
construction and destruction processes, which can be
considered as an MADM problem. Moreover, in the
GRAVIG, an elaborate biased probability destruction
strategy is designed to maintain the `good' shifts in the
schedule without losing randomness. Experiments on
real-world instances show that the GRAVIG obtains
high-quality schedules, which are close to the lower
bounds obtained by the CPLEX in terms of shift
number, and outperforms the AECS, VIG, and IG.
Although we have presented this work in terms of
public transport crew scheduling, it is suggested that
the main idea of the GRAVIG can be extended to other
problems.
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