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Abstract. Process monitoring is a continuous process for improving the quality. Control
chart is a process monitoring tool of SPC tool kit that plays an important role in providing
widespread monitoring, to observe the changes in parameters. Mostly, the mean control
charts are used for monitoring of process location. In a perfect situation, when there are no
outliers, the mean charts are more e�cient than median control charts. In reality, data is
not always free from outliers, so the median charts are considered as the best for monitoring
location parameters. The use of an auxiliary variable in a control chart may be the cause
of e�ciency gain. The current article considers EWMA median charts based on auxiliary
variable(s). Di�erent run length performance measures are considered to expedite the
proposed charts in both contaminated and uncontaminated process environments under
multivariate normal distributions. An illustrative example is provided to validate the
performance of the proposed charts. From the results, we deduce that the performance
of median control charts is much better than that of mean control charts in the presence
of outliers; moreover, the performance of control charts can be enhanced by using more
auxiliary variables.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Statistical Process Control (SPC) is a process moni-
toring tool kit containing di�erent methods that are
used to examine the process [1]. The control charts are
signi�cantly and e�ectively used to monitor the vari-
ation in the manufacturing or service process mecha-
nisms [2]. A variety of control charts have been studied
in literature taking into consideration the Shewhart,
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cumulative sum (CUSUM), and the Exponentially
Weighted Moving Average (EWMA) control charts.
The e�ective performance of these processes largely
depends on the speci�c size of the shifts with regards
to the variables under consideration. In the presence
of shifts in process parameters, quick detection always
bene�ts the manufacturing process and thus improves
the quality of the process. There are two types of
causes involved in any process; assignable causes and
common causes. The random and innate part of
a certain process has non-obvious reasons known as
common causes and assignable or transactional causes
are non-random. The assignable causes have some
premeditated factors of concerned reasons having the
key e�ect on the stability of the process and if these
causes exist, then the process is called an out-of-control
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process. If we manage the variations in the output of a
process by removing these assignable causes, then the
results in the process will be improved. In the presence
of shifts in process parameters, quick detection is
always bene�cial to improve the quality of the process.
These shifts may exist in process mean or in process
dispersion, which are commonly used parameters.

Quality control charts have also found imple-
mentation in the �elds of production, statistics, and
�nance. They entail two main types, namely, memory
less control charts and memory control charts, in
calculating the e�ciency of products and in process
monitoring mechanism. The Shewhart control charts
are also known as memory less control charts and have
been commonly and extensively used for observing the
variation in the process of production. These charts are
less e�cient in showing performance for moderate and
small shifts in process' parameters, which is the main
disadvantage of Shewhart control charts [2]. Because
we rarely determine the exact shift value of a given
process before it is relatively detected, it is important
to look at a wide range of known and unknown mean
shifts. In order to overcome these drawbacks associated
with these charts, an alternative approach is considered
taking into account the cumulative sum (CUSUM) and
Exponentially Weighted Moving Average (EWMA)
control charts, which are memory control charts. The
CUSUM and EWMA control charts were initially stud-
ied by Page [3] and Roberts [4], respectively. Memory
control charts utilize current information as well as past
information for detecting moderate and small shifts in
process parameters while, on the other hand, memory
less control charts only use current information and
ignore past information. As the EWMA control charts
are sensitive and e�cient relative to Shewhart charts;
thus, they are very popular in detecting small shifts in
the process.

The design strategies and properties of EWMA
control charts for monitoring of process mean have been
meticulously explored in many papers (see, e.g. [5-11]).
Many researchers studied EWMA control charts for
variance, e.g. [12-23].

Statistics such as sample median or the range
are used in the statistical process control applications.
However, less attention has been paid for utilizing these
statistics as an instrumental tool for monitoring process
parameters in the literature of quality control. Some
researchers suggested median based control charts as
well as quantile-based control charts. For example,
median rankit control chart was suggested by Kanji and
Arif [24,25] and Chen and Chiou [26]; Yang et al. [27]
proposed CUSUM-median control charts; Generally
Weighted Moving Average (GWMA)-median control
charts were suggested by Sheu and Yang [28,29]; and
mixed EWMA median and range control charts were
suggested by Castagliola [30]. Recently Castagliola et

al. [31] proposed EWMA median charts with estimated
parameters.

The concept of using auxiliary information is
based on the application of estimation and survey
sampling techniques. For example, during the study
of any chemical production process, the temperature
may assist an auxiliary variable, which can be easily
observed. After identifying the auxiliary variable(s)
with study variable, the precision of an estimator
can be enhanced by using earlier information on an
auxiliary variable (cf. [32]). A number of studies in
the existing literature suggest that variables' auxiliary
characteristic information can be used to attain higher
e�ciency, one may refer to [33-42]. This idea of auxil-
iary information is also used in various control chart-
ing procedures to enhance the monitoring of quality
characteristic, such as cause-selecting control charts,
auxiliary information-based control charts, regression-
adjusted control charts, and ranked set-based control
charts. For more details, see [20,33-35,37,43-52].

Khoo [53] presented the control chart structure of
sample median based on the process which is normally
distributed. Ahmad et al. [37] added some more
median estimators under normal distribution based on
the estimators using one and two auxiliary variables
under Shewhart set up. The EWMA control charts
outperform the Shewhart control charts to identify the
moderate and small shifts. By taking inspiration from
these works, we propose a set of EWMA type median
control charts. For these charting structures, we
consider the properties of estimators under study using
simple random sampling from univariate, bivariate,
and trivariate normal distributions.

In our study, we have considered the assumptions
of normality (as many researchers used in literature,
e.g., [33,34,37,54-56]) to evaluate the performance of
proposed EWMA charts. We have also studied the
run length properties for the purpose of performance
evaluation of understudy EWMA charts. The rest of
the paper is organized as follows: Section 2 brie
y
explains the set of median estimators and EWMA
charting structures for these estimators; discussion
about the performance measures for evaluating control
charts is presented in Section 3. Section 4 is based on
the description of simulation study comparison among
various median type control charts. Section 5 exhibits
an illustrative example. The outcomes of this study are
concluded in Section 6.

2. Median estimators and improved EWMA
charts

Let Y denote the quality characteristic and auxiliary
characteristics are denoted by X and Z. The means
and standard deviations ofX, Y , and Z are represented
by �x, �y, �z, and �x, �y, and �z, respectively. Mx,
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My, and Mz represent the population medians of X, Y ,
and Z while the sample medians are shown by M̂x, M̂y;
and M̂z. The correlations between Y&X, Z&Y , and
X&Z are denoted by �xy, �yz, and �zx. Moreover, we
assume that the coe�cients of variations for Z and X
are represented by Cz and Cx while the coe�cients of
kurtosis for X and Z are shown by �2(x) and �2(z),
respectively. Following the above preliminaries, we
have considered a set of mean and median estimators
based on auxiliary characteristics, which are de�ned
below:

Usual median estimator
M1 = M̂y:

The mean and standard deviation of M1 are, re-
spectively, de�ned as �M1 = My, and: �M1 = 0:5q
 f2

y (My), where  = (N � n)=Nn.
Kuk and Mak [57] suggested a ratio estimator for

population median as:

M2 = M̂y
Mx

M̂x
:

Up to the �rst order approximation, the mean and
standard deviation of M2 are shown in Box I, where
fx(Mx), fy(My), and fz(Mz), are the ordinates of
distributions of X, Y , and Z at Mx, My, and Mz
respectively. Also, �xy = �(M̂x;M̂y) = 4P11(x; y) �
1, where P11(x; y) is the proportion of units in the
population with X �Mx and Y �My.

Ahmad et al. [37] suggested a median estimator,

which was a modi�ed form of mean estimator (�ySD)
suggested by Sisodia and Dwived [58]:

M3 = M̂y

�
Mx + Cx
M̂x + Cx

�
:

They also [37] suggested the median form of mean
estimator (�ySK) suggested by Singh and Kakran [59]:

M4 = M̂y

 
Mx + �2(x)
M̂x + �2(x)

!
:

Upadhyaya and Singh [60] suggested two new ratio type
estimators for mean (�yUS1 and �yUS2) and Ahmad et
al. [37] proposed their median estimators:

M5 = M̂y

 
Mx�2(x) + Cx
M̂x�2(x) + Cx

!
;

M6 = M̂y

 
MxCx + �x(x)
M̂xCx + �x(x)

!
:

Up to the �rst order approximation, the mean and
standard deviation of M3, M4, M5, and M6 are shown
in Box II, where:

�1x =
Mx

Mx + Cx
; �2x =

Mx

Mx + �2(x)
;

�3x =
Mx�2(x)

Mx�2(x) + Cx
; �4x =

MxCx
MxCx + �2(x)

;

�1z =
Mz

Mz + Cz
; �2z =

Mz

Mz + �2(z)
;

�M2 =
0:25My

M2
xf2
x(Mx)

�
 
�

1� �xyMxfx(Mx)
Myfy(My)

�
+ 4M2

xf
2
x(Mx)

�
;

and:

�M2 =

vuut 0:25 
f2
y (My)

"
1 +

�
Myfy(My)
Mxfx(Mx)

�2�
1� 2�xy

Mxfx(Mx)
Myfy(My)

�#
:

Box I

�Mi =
0:25My

M2
xf2
x(Mx)

�
 �jx

�
�jx � �xyMxfx(Mx)

Myfy(My)

�
+ 4M2

xf
2
x(Mx)

�
;

�Mi =

vuut 0:25 
f2
y (My)

"
1 + �jx

�
Myfy(My)
Mxfx(Mx)

�2�
�jx � 2�xy

Mxfx(Mx)
Myfy(My)

�#
;

for i(j) = 3; 4; 5 and 6(1; 2; 3 and 4), respectively.

Box II
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�3z =
Mz�2(z)

Mz�2(z) + Cz
; �4z =

MzCz
MzCz + �2(z)

:

Ahmad et al. [37] introduced the estimator of median
involving two auxiliary variables:

M7 = M̂y

�
Mx

M̂x

��1 �Mz

M̂z

��2
;

where:

�1 =
(�xy � �yz�xz)Mxfx + (Mx)

(1� �2
xz)Myfy(My)

;

�2 =
(�yz � �xy�xz)Mzfz(Mz)

(1� �2
xz)Myfy(My)

:

Up to the �rst order approximation, the mean and
standard deviation of M7 are, respectively:

�M7 =
0:125(1��2

xz)�1

Myf2
y (My)

"
 
Myfy(My)
Mxfx(Mx)

(�xy��yz�xz)

+  
Myfy(My)
Mzfz(Mz)

(�yz � �xy�xz)

�  (�2
xy + �2

yz � 2�xy�yz�xz)

+ 8M2
y f

2
y (My)(1� �2

xz)

#
;

and:

�M7 =

s
0:25 
f2
y (My)

�
1�
��2

xy+�2
yz�2�xy�yz�xz
1� �2

xz

��
:

Gupta and Shabbir [61] proposed generalized
ratio type estimators of (�ySD; �ySK; �yUS1 ; �yUS2) using two
auxiliary variables. Ahmad et al. [37] introduced their
median estimators:

M8 = M̂y

�
Mx + Cx
M̂x + Cx

�
1 �Mz + Cz
M̂z + Cz

�
2

;

M9 = M̂y

 
Mx + �2(x)
M̂x + �2(x)

!
1  
Mz + �2(z)
M̂z + �2(z)

!
2

;

M10 = M̂y

 
Mx�2(x)+Cx
M̂x�2(x)+Cx

!
1 
Mz�2(z)+Cz
M̂z�2(z)+Cz

!
2

;

and:

M11 =M̂y

 
MxCx+�2(x)
M̂xCx+�2(x)

!
1 
MzCz+�2(z)
M̂zCz+�2(z)

!
2

:

Up to �rst order approximation, the means and stan-
dard deviations of M8, M9, M10, and M11 are:

�Mi =
0:125(1� �2

xz)�1

Myf2
y (My)"

 �jx
Myfy(My)
Mxfx(Mx)

(�xy � �yz�xz)

+  �jz
Myfy(My)
Mzfz(Mz)

(�yz � �xy�xz)

�  (�2
xy + �2

yz � 2�xy�yz�xz)

+ 8M2
y f

2
y (My)(1� �2

xz)

#
;

and:

�Mi =

s
0:25 
f2
y (My)

�
1�
��2

xy+�2
yz�2�xy�yz�xz
1� �2

xz

��
;

where i(j) = 8; 9; 10 and 11(1; 2; 3 and 4), respectively;


1 =
(�xy � �yz�xz)Mxfx(Mx)
�jx(1� �2

xz)Myfy(My)
;

and:


2 =
(�yz � �xy�xz)Mzfz(Mz)
�jx(1� �2

xz)Myfy(My)
:

The properties of these estimators can be found
in [37,61,62]. In this article, we use the EWMA control
charting structure for median estimators M1 �M11 as
discussed by Ahmad et al. [37] in Shewhart set up. The
description of EWMA design for these estimators is as
follows.

Roberts [4] �rst introduced the EWMA control
charts and claimed that for moderate and small shifts
in the process, the performance of EWMA type control
charts was superior to that of the Shewhart-type con-
trol charts. The EWMA's statistic is a comprehensive
mixture of the past and current information and is
de�ned as:
Zj = �Mj + (1� �)Zj�1; (1)

where � is the smoothing parameter that ranges from
0 to 1(0 < � � 1), Zj�1 is the past information, and
Mj is the current information (for j = 1; 2; 3; � � � ). A
substituted form of the statistic given in Eq. (1) can be
expressed as:

Zj =
j�1X
i=1

�(1� �)iMj�1 + (1� �)jZ0: (2)

When sample observations become less recent, the
weights �(1 � �)i in Eq. (2) decrease geometrically.
Since the sensitivity and e�ciency of these charts
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amplify using a smaller value of �, � can be called
the sensitivity parameter of EWMA charts. EWMA
control charts and Shewhart control charts will be the
same if � = 1. This implies that all weights were given
in the recent information, not in the past information.
It is, therefore, precise to conclude that Shewhart-
type control charts are the special case of EWMA
control charts. The estimated value of the average of
preliminary data can be used if we have no detailed
information about target mean. EWMA statistic has
the following mean and variance:

Mean(Zj) = �0;

Variance(Zj) = �2
�

�
2� �

�
1� (1� �)2j�� ; (3)

where �2 is the process variance. Here, we use either
the known value of �2, i.e. �2

0 , or estimated value
from samples of the initial in-control process. We
carry out an analysis in which the known parameters
are considered. Given the above results, the EWMA
control charts' structure for median estimators is given
as:

LCL = �0 � L�
r

�
2� � (1� (1� �)2j);

CL = �0;

UCL = �0 + L�
r

�
2� � (1� (1� �)2j): (4)

The range of these control limits is determined by L,
and its values depend on the choice of the constant �
and prede�ned value of ARL0. These limits are also
known as time varying limits of EWMA type control
charts. With the large value of j, the limits given in
Eq. (4) converge to the constant limits, which can be
shown as:

LCL = �0 � L�
r

�
2� �;

CL = �0;

UCL = �0 + L�
r

�
2� �: (5)

It is worth mentioning that when the number of
samples increases, the factor (1� (1� �)2j) in Eq. (4)
tends to 1.

3. Performance measures and simulation
procedure

The performance of control charts can be measured
by using di�erent techniques. Usually, there are two
classi�cations of these measures: measures for speci�c
shifts and measures based on overall shifts in the
process parameters. We evaluate the performances

of the EWMA median and mean control charts using
ARL, EQL, RARL, and PCI in an uncontaminated
environment. The ARL can evaluate control chart's
performance at any speci�c shift point while, over
the whole range of shifts, the e�ectiveness of control
charts can be evaluated by EQL, RARL, and PCI. The
descriptions of these measures are given below:

� Average Run Length (ARL): Mainly two values
of ARL, which are denoted by ARL0 and ARL1,
are used to evaluate the performance. Under the
conditions of the in-control situation, the expected
number of samples before an out-of-control false
alarm is detected and de�ned as ARL0, while the
expected number of samples when the process is
shifted to an out-of-control situation is de�ned as
ARL1. Wu et al. [63] stated that charts were said to
be more pro�cient provided that they had a smaller
ARL1 at more points. In general, larger values of
ARL0 and smaller values of ARL1 are desirable;

� Extra Quadratic Loss (EQL): It can be de-
scribed as a weighted average run length over the
whole process domain of shifts (�min < � < �max)
using a square of shift (�2) as weights. Mathemati-
cally, this de�nition follows:

EQL =
1

�max � �min

�maxZ
�min

�2ARL(�)d�; (6)

where ARL(�) indicates the ARL value of a speci�c
chart at the shift �;

� Relative Average Run Length (RARL): It
evaluates the average of the quotients between ARL
of a speci�c chart, i.e. ARL(�), and ARL of a stan-
dard chart, i.e. ARLstandard(�). Mathematically,
RARL is de�ned as:

RARL =
1

�max � �min

�maxZ
�min

ARL(�)
ARLstandard(�)

d�: (7)

A standard chart is selected based on the lowest
value of EQL and the value of its RARL will be
one. However, this value will be greater than one
for other charts. The di�erence between RARLs
of other charts and the standard chart shows the
amount of inferior performance of a chart to that of
the standard chart. We use numerical integration
method for the calculations of RARL and EQL
for all EWMA charts based on median estimators
M1 �M11 and mean estimators T1 � T11;

� Performance Comparison Index (PCI): It is
the quotient of dividing the EQL of a chart to the
EQL of the superior chart, that is:

PCI =
EQL

EQLsuperior
: (8)
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Therefore, the value of PCI will be one for the su-
perior chart and more than one for other competing
charts. The same de�nitions are also provided by
Montgomery [2], Abbasi et al. [13], and Ahmad et
al. [37].

3.1. Simulation procedure
Di�erent approaches can be used for calculating the
ARL, for example, Monte Carlo simulations, integral
equations, and Markov chains approximations. To
obtain the ARL values, we choose the Monte Carlo
simulation approach. The simulation algorithms of all
median estimators for the calculations of ARL values
are developed using R language software package. In
our study, we use 100,000 Monte Carlo simulations
to get the results of estimators taking into account
5,000 repetitions. For the number of Monte Carlo
simulations in quality control, one may refer to Scha�er
and Kim [64].

An appropriate number of samples, say 100,000,
having a �xed size, n, are produced by N(� + ��; �2),
where � and �2 are mean and variance of the process,
respectively. � is a quantity of shift in the process.
Generally, � = 0 shows the in-control situation, while
� 6= 0 represents the out-of-control situation. For � = 0,
the ARL0 values are calculated with the help of their
corresponding Ls and for � 6= 0, ARL1 values are
calculated by presenting various shifts in the process.

4. Comparative analysis

For the purpose of analyzing run length characteristics
of our charts, random samples are generated from
trivariate normal distribution of size n, using di�erent
correlation combinations of high, moderate, and weak
correlations, �xy, �yz, and �zx. We determine the
EWMA control structures de�ned in Eq. (5) for both
median (M1 � M11) and mean (T1 � T11) control
charts using ARL0 = 200; n = 5; 10; 15, and � =
1:0; 0:75; 0:5; 0:25. We may get Shewhart structure
as a special case of EWMA control charts when
� = 1:0. We calculate the values of L for each
chart that �x the control limits Eq. (5) to obtain in-
control ARL (ARL0 = 200) and the out-of-control
ARL (ARL1) values at discrete points of shift as � =
0:10; 0:15; 0:20; 0:25; 0:50; 0:75; � � � ; 3:0.

4.1. Comparison of control charts under
uncontaminated environment

Without loss of generality, the values of 5 and 1 are
respectively, used for �is and �is. After �xing ARL0 at
200 and with multiple choices of �, the ARL analysis is
performed for estimators M1�M11 and T1�T11 based
on the results of means and standard deviations of these
estimators. Under the uncontaminated environment,
we have compared mean and median control charts in
three di�erent ways:

i. Comparison of median control charts: To
compare the performances of EWMA control
charts using di�erent median estimators, we
construct ARL-curves for control charts based on
Mi (i = 1; 2; � � � ; 11); the ARL values are used at
varying shifts. These ARL curves are presented
in Figure 1 and are based on some selected
combinations of correlations. For these curves, we
used log (ARL) on Y -axis for improved scaling.
Figure 1 represents the comparison of all median
control charts.

By the comparison of all median control
charts, it can be seen that for all categories (high,
moderate, and low) of correlation combinations
�xy, �yz, and �zx, as considered in Figure 1,
the ARL curves indicate that the performance of
estimators M8 � M11 is unparalleled among all
estimators included in this study. The superiority
order of remaining estimators M1�M7 is observed
as: The ARL output of M7 based control chart is
the best for the same values of �xy and �zx; for
high values of �xy and �zx, the superiority order of
control charts is observed as: M4, M3, M5, and M2
followed by M6 and M1; for moderate values of �xy
and high or moderate values of �yz, the superiority
order of charting structures will be given by M6,
M4, M1, and M3 followed by M5 and M2. The
performance of M1 is the most inferior, in general,
for the high values of �xy and most inferior perfor-
mance is demonstrated by M2 if �xy is moderate.

EWMA control charts for median estimators
M1 � M11 are compared by some suitable
properties of run length, e.g. RARL, EQL, and
PCI. Table 1 presents the values of EQL, RARL,
and PCI for all correlation combinations at
� = 0:25 and sample size 5. In Tables 2 and 3,
we present the values of EQL, RARL, and PCI
with all four values of � and selective correlation
combinations of �xy, �yz, and �zx for the sample
sizes of 10 and 15, respectively.

It can be observed from EQL values provided
in Tables 1-3 that the e�ciency of the charts
improved with the increment in sample size.
EWMA median charts are more e�cient at the
lower values of � and small shifts in the process,
which can also be observed in our study. For the
EQL values, the EWMA median charts become
more e�cient at the lowest value of � for the
detection of process shift in the mean. It is also
observed from EQL values that EWMA median
charting structures (at � = 0:75; 0:50; 0:25) give
better results than Shewhart median control
charts (at � = 1) do. Similar picture about the
e�ciency of EWMA median charts to that we
observed in EQL results, provided in Tables 1-3,
can be observed for the RARL and PCI values.
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Figure 1. ARL curves for EWMA median control charts at ARL0 = 200, and � = 0:50: (a) n = 5, �xy = 0:90, �yz = 0:75,
and �zx = 0:50; (b) n = 5, �xy = 0:60, �yz = 0:75, and �zx = 0:30; (c) n = 10, �xy = 0:90, �yz = 0:90, and �zx = 0:90; (d)
n = 10, �xy = 0:90, �yz = 0:60, and �zx = 0:30; (e) n = 15, �xy = 0:90, �yz = 0:75, and �zx = 0:50; and (f) n = 15,
�xy = 0:50, �yz = 0:50, and �zx = 0:10.

ii. Comparison of mean control charts: We
have also compared the performance of EWMA
mean control charts based on the estimators
Ti(i = 1; 2; � � � ; 11) for the same choices n, �xy,
�yz, �zx, and � as used for EWMA median control
charts using ARL curves and other measures.
The ARL curves (using log (ARL) on Y -axis)
are presented in Figure 2 while other measures
are presented in Table 4. It can be observed
that the EWMA mean charts, T8 � T11, which
are based on two auxiliary variables, have low
curves as compared to other charts (cf. Figure 2).
It means that the detection ability of EWMA
mean charts is enhanced due to the use of more
auxiliary variables, which is also observed in the

case of EWMA control charts based on median
estimators. The values of EQL, RARL, and PCI
presented in Table 4 also indicate the dominant
performance of control charts based on T8 � T11.

iii. Comparison of mean and median control
charts: In order to do a cross comparison for
the performance of EWMA mean and median
control charts, we construct ARL curves for some
selective estimators and choices of n, �xy, �yz, �zx,
and �, which are presented in Figure 3. It can be
observed from the comparative analysis of Figure 3
that the ARL curves for EWMA mean charts are
lower than the ARL curves of EWMA median
charts for some selected estimators. It means that
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Table 1. EQL, RARL, and PCI for EWMA median charts with n = 5, ARL0 = 200, and � = 0:25.

Correlations Performance measures M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

�xy = 0:90 EQL 3.27 3.09 3.08 3.08 3.09 3.15 3.30 3.06 3.06 3.06 3.06

�yz = 0:90 RARL 1.58 1.07 1.06 1.05 1.06 1.23 1.67 1.01 1.00 1.01 1.00

�zx = 0:90 PCI 1.07 1.01 1.01 1.01 1.01 1.03 1.08 1.00 1.00 1.00 1.00

�xy = 0:90 EQL 3.27 3.09 3.08 3.08 3.09 3.15 3.20 3.05 3.05 3.05 3.05

�yz = 0:75 RARL 1.66 1.10 1.09 1.08 1.09 1.28 1.43 1.01 1.00 1.01 1.00

�zx = 0:50 PCI 1.07 1.01 1.01 1.01 1.01 1.03 1.05 1.00 1.00 1.00 1.00

�xy = 0:90 EQL 3.27 3.09 3.08 3.08 3.09 3.15 3.15 3.06 3.06 3.06 3.06

�yz = 0:60 RARL 1.58 1.07 1.06 1.05 1.06 1.23 1.23 1.01 1.00 1.01 1.00

�zx = 0:30 PCI 1.07 1.01 1.01 1.01 1.01 1.03 1.03 1.00 1.00 1.00 1.00

�xy = 0:50 EQL 3.27 3.41 3.39 3.25 3.40 3.22 3.35 3.20 3.19 3.20 3.19

�yz = 0:50 RARL 1.10 1.30 1.27 1.07 1.29 1.04 1.19 1.01 1.00 1.01 1.00

�zx = 0:10 PCI 1.03 1.07 1.06 1.02 1.07 1.01 1.05 1.00 1.00 1.00 1.00

�xy = 0:60 EQL 3.27 3.34 3.31 3.21 3.33 3.21 3.52 3.12 3.12 3.12 3.12

�yz = 0:75 RARL 1.29 1.46 1.41 1.17 1.44 1.16 1.79 1.01 1.01 1.01 1.00

�zx = 0:30 PCI 1.05 1.07 1.06 1.03 1.07 1.03 1.13 1.00 1.00 1.00 1.00

�xy = 0:50 EQL 3.27 3.41 3.38 3.24 3.40 3.22 3.23 3.23 3.23 3.23 3.23

�yz = 0:10 RARL 1.04 1.22 1.18 1.02 1.21 1.00 1.01 1.01 1.00 1.01 1.00

�zx = 0:10 PCI 1.01 1.06 1.05 1.01 1.06 1.00 1.00 1.00 1.00 1.00 1.00

�xy = 0:75 EQL 3.27 3.21 3.20 3.15 3.21 3.18 3.16 3.15 3.15 3.15 3.15

�yz = 0:10 RARL 1.18 1.11 1.09 1.00 1.10 1.05 1.01 1.01 1.01 1.01 1.01

�zx = 0:10 PCI 1.04 1.02 1.02 1.00 1.02 1.01 1.00 1.00 1.00 1.00 1.00

the performance of EWMA median charts is not
better than that of EWMA mean charts under
the uncontaminated process environment. Due to
this reason, we have compared both the EWMA
median and mean charts under the contaminated
process environment in the following section.

4.2. Comparison of control charts under
contaminated environments

In this section, we have considered an uncontaminated
process environment and three contaminated process
environments in order to compare the robustness of
proposed EWMA median charts. Without loss of
generality, we have used �0 = 5 and �2

0 = 1 as

uncontaminated process environment throughout the
study so far, which is denoted as (E1) here. To
study the robustness of EWMA median and mean
charts, we have considered three contaminated process
environments, namely, E2, E3, and E4, with certain
percentages of di�used outliers. The description of
these process environments is as follows:

� E1: (1 � �)100% data from �y = 6; �x = �z = 5
and �2

y = �2
x = �2

z = 1;
� E2: (1 � �)100% data from �y = �x = �z = 5 and
�2
y = �2

x = �2
z = 1 and (�)100% observations from

�y = �x = �z = 6 and �2
y = �2

x = �2
z = 1;

� E3: (1 � �)100% observations from �y = �x =
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Table 2. EQL, RARL, and PCI for EWMA median charts with n = 10 and ARL0 = 200.

�xy = 0:90, �yz = 0:90, �zx = 0:90
� M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

1.0
EQL 3.96 3.28 3.26 3.30 3.27 3.59 4.06 3.19 3.19 3.19 3.19
RARL 1.86 1.11 1.09 1.12 1.11 1.44 1.97 1.00 1.00 1.00 1.00
PCI 1.24 1.03 1.02 1.03 1.03 1.13 1.27 1.00 1.00 1.00 1.00

0.75
EQL 3.50 3.15 3.14 3.15 3.15 3.30 3.55 3.10 3.10 3.10 3.10
RARL 1.69 1.09 1.08 1.08 1.08 1.34 1.78 1.00 1.00 1.00 1.00
PCI 1.13 1.02 1.01 1.02 1.01 1.07 1.15 1.00 1.00 1.00 1.00

0.50
EQL 3.25 3.08 3.07 3.08 3.08 3.15 3.27 3.05 3.05 3.05 3.05
RARL 1.56 1.07 1.06 1.06 1.06 1.27 1.62 1.00 1.00 1.00 1.00
PCI 1.06 1.01 1.01 1.01 1.01 1.03 1.07 1.00 1.00 1.00 1.00

0.25
EQL 3.10 3.03 3.03 3.03 3.03 3.06 3.10 3.02 3.02 3.02 3.02
RARL 1.60 1.09 1.08 1.07 1.09 1.29 1.64 1.01 1.00 1.01 1.00
PCI 1.03 1.00 1.00 1.00 1.00 1.01 1.03 1.00 1.00 1.00 1.00

�xy = 0:75, �yz = 0:10, �zx = 0:10
� M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

1.0
EQL 3.96 3.70 3.65 3.52 3.68 3.69 3.53 3.53 3.53 3.53 3.53
RARL 1.24 1.10 1.08 1.00 1.09 1.09 1.00 1.00 1.00 1.00 1.00
PCI 1.12 1.05 1.04 1.00 1.05 1.05 1.00 1.00 1.00 1.00 1.00

0.75
EQL 3.50 3.37 3.35 3.27 3.36 3.36 3.27 3.27 3.27 3.27 3.27
RARL 1.20 1.09 1.07 1.00 1.08 1.07 1.00 1.00 1.00 1.00 1.00
PCI 1.07 1.03 1.02 1.00 1.03 1.03 1.00 1.00 1.00 1.00 1.00

0.50
EQL 3.25 3.18 3.18 3.14 3.18 3.17 3.14 3.14 3.14 3.14 3.14
RARL 1.16 1.07 1.06 1.00 1.07 1.05 1.00 1.00 1.00 1.00 1.00
PCI 1.04 1.02 1.01 1.00 1.01 1.01 1.00 1.00 1.00 1.00 1.00

0.25
EQL 3.10 3.08 3.07 3.06 3.07 3.07 3.06 3.06 3.06 3.06 3.06
RARL 1.10 1.05 1.04 1.00 1.04 1.03 1.00 1.00 1.00 1.00 1.00
PCI 1.01 1.01 1.01 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00

�xy = 0:90, �yz = 0:60, �zx = 0:30
� M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

1.0
EQL 3.96 3.28 3.26 3.30 3.27 3.59 3.52 3.19 3.19 3.19 3.20
RARL 1.85 1.11 1.09 1.11 1.10 1.43 1.37 1.00 1.00 1.00 1.00
PCI 1.24 1.03 1.02 1.03 1.02 1.12 1.10 1.00 1.00 1.00 1.00

0.75
EQL 3.50 3.15 3.14 3.15 3.15 3.30 3.27 3.10 3.10 3.10 3.10
RARL 1.69 1.09 1.07 1.08 1.08 1.34 1.30 1.00 1.00 1.00 1.00
PCI 1.13 1.01 1.01 1.02 1.01 1.06 1.05 1.00 1.00 1.00 1.00

0.50
EQL 3.25 3.08 3.07 3.08 3.08 3.15 3.14 3.05 3.05 3.05 3.05
RARL 1.56 1.07 1.06 1.06 1.06 1.27 1.24 1.00 1.00 1.00 1.00
PCI 1.06 1.01 1.01 1.01 1.01 1.03 1.03 1.00 1.00 1.00 1.00

0.25
EQL 3.10 3.03 3.03 3.03 3.03 3.06 3.06 3.02 3.02 3.02 3.02
RARL 1.63 1.10 1.09 1.07 1.10 1.31 1.29 1.01 1.00 1.01 1.00
PCI 1.03 1.00 1.00 1.00 1.00 1.01 1.01 1.00 1.00 1.00 1.00
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Table 3. EQL, RARL, and PCI for EWMA median charts with n = 15 and ARL0 = 200.

�xy = 0:50, �yz = 0:50, �zx = 0:10
� M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

1.0
EQL 3.62 3.92 3.87 3.58 3.90 3.54 3.78 3.45 3.45 3.45 3.45
RARL 1.11 1.30 1.27 1.08 1.29 1.05 1.21 1.00 1.00 1.00 1.00
PCI 1.05 1.14 1.12 1.04 1.13 1.02 1.10 1.00 1.00 1.00 1.00

0.75
EQL 3.33 3.49 3.46 3.31 3.48 3.28 3.41 3.24 3.24 3.24 3.24
RARL 1.09 1.25 1.22 1.07 1.24 1.04 1.17 1.00 1.00 1.00 1.00
PCI 1.03 1.08 1.07 1.02 1.07 1.01 1.05 1.00 1.00 1.00 1.00

0.50
EQL 3.17 3.24 3.23 3.16 3.24 3.14 3.21 3.12 3.12 3.12 3.12
RARL 1.07 1.21 1.18 1.06 1.20 1.03 1.14 1.00 1.00 1.00 1.00
PCI 1.02 1.04 1.04 1.01 1.04 1.01 1.03 1.00 1.00 1.00 1.00

0.25
EQL 3.07 3.10 3.09 3.07 3.10 3.06 3.08 3.05 3.05 3.05 3.05
RARL 1.04 1.13 1.11 1.04 1.12 1.02 1.08 1.00 1.00 1.00 1.00
PCI 1.01 1.02 1.01 1.00 1.01 1.00 1.01 1.00 1.00 1.00 1.00

�xy = 0:90, �yz = 0:75, �zx = 0:50
� M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

1.0
EQL 3.62 3.27 3.26 3.24 3.26 3.40 3.49 3.18 3.18 3.18 3.18
RARL 1.53 1.12 1.10 1.07 1.11 1.26 1.37 1.00 1.00 1.00 1.00
PCI 1.14 1.03 1.03 1.02 1.03 1.07 1.10 1.00 1.00 1.00 1.00

0.75
EQL 3.33 3.15 3.14 3.13 3.15 3.21 3.26 3.10 3.09 3.10 3.09
RARL 1.44 1.11 1.09 1.06 1.10 1.20 1.31 1.00 1.00 1.00 1.00
PCI 1.08 1.02 1.01 1.01 1.02 1.04 1.05 1.00 1.00 1.00 1.00

0.50
EQL 3.17 3.07 3.07 3.06 3.07 3.10 3.13 3.05 3.05 3.05 3.05
RARL 1.36 1.08 1.07 1.04 1.08 1.16 1.24 1.00 1.00 1.00 1.00
PCI 1.04 1.01 1.01 1.01 1.01 1.02 1.03 1.00 1.00 1.00 1.00

0.25
EQL 3.07 3.03 3.03 3.03 3.03 3.04 3.06 3.02 3.02 3.02 3.02
RARL 1.43 1.11 1.09 1.05 1.10 1.19 1.31 1.01 1.00 1.00 1.00
PCI 1.02 1.00 1.00 1.00 1.00 1.01 1.01 1.00 1.00 1.00 1.00

�xy = 0:50, �yz = 0:10, �zx = 0:10
� M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

1.0
EQL 3.62 3.92 3.87 3.58 3.90 3.54 3.54 3.53 3.54 3.53 3.53
RARL 1.05 1.22 1.20 1.03 1.21 1.00 1.00 1.00 1.00 1.00 1.00
PCI 1.03 1.11 1.10 1.01 1.10 1.00 1.00 1.00 1.00 1.00 1.00

0.75
EQL 3.33 3.49 3.46 3.31 3.48 3.28 3.28 3.28 3.28 3.28 3.28
RARL 1.04 1.18 1.16 1.03 1.17 1.00 1.00 1.00 1.00 1.00 1.00
PCI 1.02 1.06 1.05 1.01 1.06 1.00 1.00 1.00 1.00 1.00 1.00

0.50
EQL 3.17 3.24 3.23 3.16 3.24 3.14 3.14 3.14 3.14 3.14 3.14
RARL 1.04 1.16 1.14 1.03 1.15 1.00 1.00 1.00 1.00 1.00 1.00
PCI 1.01 1.03 1.03 1.01 1.03 1.00 1.00 1.00 1.00 1.00 1.00

0.25
EQL 3.07 3.10 3.09 3.07 3.10 3.06 3.06 3.06 3.06 3.06 3.06
RARL 1.02 1.10 1.08 1.02 1.09 1.00 1.00 1.00 1.00 1.00 1.00
PCI 1.00 1.01 1.01 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00
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Figure 2. ARL curves for EWMA mean control charts at ARL0 = 200, and � = 0:50: (a) n = 5, �xy = 0:90, �yz = 0:75,
and �zx = 0:50; (b) n = 5, �xy = 0:60, �yz = 0:75, and �zx = 0:30; (c) n = 10, �xy = 0:90, �yz = 0:90, and �zx = 0:90; (d)
n = 10, �xy = 0:90, �yz = 0:60, and �zx = 0:30; (e) n = 15, �xy = 0:90, �yz = 0:75, and �zx = 0:50; and (f) n = 15,
�xy = 0:50, �yz = 0:50, and �zx = 0:10.

�z = 5 and �2
y = 2; �2

x = �2
z = 1 and (�)100%

observations from �y = �x = �z = 5 and �2
y = �2

x =
�2
z = 2;

� E4: (1��)100% observations from �y = �x = �z =
5 and �2

y = �2
x = �2

z = 1 and (�)100% observations
from �y = 6; �x = �z = 5 and �2

y = 2; �2
x = �2

z = 1.

Here, we examine two types of contamination
e�ects on ARL, namely, ARL0 contamination e�ect
(examined relative to the corresponding ARL0 values)
and ARL1 contamination e�ect (studied by adjusting
the control limits for contamination e�ects to �x
ARL0 = 200). For this purpose, we have generated
data from normally distributed process environments

(E1 � E4) for n = 5; 10; 15 and � = 0:5 at selected
choices of �xy, �yz, �zx, and presented it in the form
of bar charts in Figures 4-7. Figures 4 and 5 represent
the ARL0 contamination e�ect of all EWMA median
and mean charts, respectively, relative to ARL0 = 200,
while Figures 6 and 7 explain ARL1 contamination
e�ect at only two selective values of shifts (i.e., � = 0:10
and 0:15).

From Figure 4, it can be observed that the
contaminated ARL0 bars for the EWMA median charts
under the contaminated environments (E2 � E4) are
relatively closer to the ARL0 bars under the uncon-
taminated environment E1 than the bar charts for
EWMA mean charts, provided in Figure 5, are. It
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Table 4. EQL, RARL, and PCI for EWMA mean charts ARL0 = 200 and � = 0:50.

Correlations T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

n = 5

�xy = 0:90 EQL 3.43 3.05 3.05 3.08 3.05 3.23 3.27 3.02 3.02 3.02 3.02

�yz = 0:75 RARL 3.81 1.32 1.30 1.58 1.31 2.75 3.00 1.00 1.00 1.00 1.00

�zx = 0:50 PCI 1.14 1.01 1.01 1.02 1.01 1.07 1.08 1.00 1.00 1.00 1.00

�xy = 0:60 EQL 3.43 3.32 3.30 3.23 3.32 3.30 4.05 3.08 3.08 3.08 3.08

�yz = 0:75 RARL 1.77 1.56 1.51 1.34 1.54 1.48 2.97 1.01 1.00 1.01 1.00

�zx = 0:30 PCI 1.11 1.08 1.07 1.05 1.08 1.07 1.32 1.00 1.00 1.00 1.00

�xy = 0:75 EQL 3.43 3.16 3.15 3.14 3.16 3.26 3.14 3.14 3.14 3.14 3.14

�yz = 0:10 RARL 1.42 1.04 1.03 1.01 1.04 1.17 1.00 1.00 1.00 1.00 1.00

�zx = 0:10 PCI 1.09 1.01 1.00 1.00 1.01 1.04 1.00 1.00 1.00 1.00 1.00

n = 10

�xy = 0:90 EQL 3.15 3.02 3.02 3.03 3.02 3.09 3.17 3.02 3.02 3.02 3.02

�yz = 0:90 RARL 2.13 1.05 1.04 1.13 1.05 1.63 2.22 1.00 1.00 1.00 1.00

�zx = 0:90 PCI 1.05 1.00 1.00 1.00 1.00 1.02 1.05 1.00 1.00 1.00 1.00

�xy = 0:90 EQL 3.15 3.02 3.02 3.03 3.02 3.09 3.08 3.01 3.01 3.01 3.01

�yz = 0:60 RARL 3.07 1.21 1.20 1.37 1.21 2.27 2.18 1.00 1.00 1.00 1.00

�zx = 0:30 PCI 1.05 1.00 1.00 1.01 1.00 1.02 1.02 1.00 1.00 1.00 1.00

�xy = 0:75 EQL 3.15 3.06 3.06 3.06 3.06 3.10 3.06 3.06 3.06 3.06 3.06

�yz = 0:10 RARL 1.27 1.03 1.02 1.01 1.02 1.11 1.00 1.00 1.00 1.00 1.00

�zx = 0:10 PCI 1.03 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00

n = 15

�xy = 0:90 EQL 3.09 3.02 3.02 3.02 3.02 3.05 3.06 3.01 3.01 3.01 3.01

�yz = 0:75 RARL 2.79 1.17 1.16 1.30 1.16 2.04 2.20 1.00 1.00 1.00 1.00

�zx = 0:50 PCI 1.03 1.00 1.00 1.00 1.00 1.01 1.02 1.00 1.00 1.00 1.00

�xy = 0:50 EQL 3.09 3.09 3.09 3.07 3.09 3.07 3.14 3.04 3.04 3.04 3.04

�yz = 0:50 RARL 1.15 1.16 1.14 1.07 1.15 1.09 1.31 1.00 1.00 1.00 1.00

�zx = 0:10 PCI 1.02 1.02 1.01 1.01 1.02 1.01 1.03 1.00 1.00 1.00 1.00

�xy = 0:50 EQL 3.09 3.09 3.09 3.07 3.09 3.07 3.06 3.06 3.06 3.06 3.06

�yz = 0:10 RARL 1.07 1.07 1.06 1.00 1.07 1.02 1.00 1.00 1.00 1.00 1.00

�zx = 0:10 PCI 1.01 1.01 1.01 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00

means that the EWMA median charts have shown
reasonably more resistance against outliers for ARL0
contamination than EWMA mean charts have done.

As well as concern about ARL1 contamination,
the EWMA median charts show relatively better resis-

tance ability than EWMA mean charts do, which can
be seen in Figures 6 and 7.

From these �gures, we can observe that median
control charts are more robust than mean control
charts are.
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Figure 3. ARL curves for median versus mean control charts at ARL0 = 200, and � = 0:50: (a) n = 5, �xy = 0:60,
�yz = 0:75, and �zx = 0:30; (b) n = 5, �xy = 0:75, �yz = 0:10, and �zx = 0:10; (c) n = 10, �xy = 0:90, �yz = 0:90, and
�zx = 0:90; (d) n = 10, �xy = 0:75, �yz = 0:10, and �zx = 0:10; (e) n = 15, �xy = 0:90, �yz = 0:75, and �zx = 0:50; and (f)
n = 15, �xy = 0:50, �yz = 0:50, and �zx = 0:10

5. Illustrative example

In this section, we provide a descriptive example as well
as a case study to compare the performance of control
charts. Through these illustrative applications of the
control structure, the importance of e�ective changes
detection in parameters of the process using median
based control charts is highlighted. In both cases, we
select three charts representing study variable, Y , �rst
auxiliary variable, X, and second auxiliary variable, Z.
The variables Y , X, and Z can represent di�erent real
life applications; for example:

(i) In process monitoring of missile testing, we may
consider the e�ciency of projectile as Y , its
momentum as X, and the weight of carrier as Z;

(ii) In process monitoring of nuclear power genera-
tion, the amount of power generated can be taken
as Y , the half-life of �ssile material as X, and the
amount of fuel as Z;

(iii) In measuring the resistance of wire, we may take
resistance as Y , the width of wire as X, and
current supplied as Z;

(iv) In chemical reactions, the rate of reaction can
be considered as Y , the activation energy of
molecules as X, and the stoichiometric amount
of reaction as Z;

(v) In materials sample sintering in partial gas pres-
sure, di�erent di�usion of gas into a furnace
chamber can be taken as Y , the area of the
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Figure 4. Median contaminated ARL0s = 200, and � = 0:50: (a) �xy = 0:60, �zx = 0:30, �yz = 0:75, and n = 5; (b)
�xy = 0:75, �yz = 0:10, �zx = 0:10, and n = 10; (c) �xy = 0:50, �yz = 0:50, �zx = 0:10, and n = 15; and (d) �xy = 0:50,
�yz = 0:10, �zx = 0:10, and n = 15.
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Figure 5. Mean contaminated ARL0s = 200, and � = 0:50: (a) �xy = 0:60, �yz = 0:75, �zx = 0:30, and n = 5; (b)
�xy = 0:75, �yz = 0:10, �zx = 0:10, and n = 10; (c) �xy = 0:50, �yz = 0:50, �zx = 0:10, and n = 15; and (d) �xy = 0:50,
�yz = 0:10, �zx = 0:10, and n = 15.
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Figure 6. Median contaminated ARL1s for varying scenarios at ARL0s = 200, and � = 0:50: (a) �xy = 0:60, �yz = 0:75,
�zx = 0:30, � = 0:15, and n = 5; (b) �xy = 0:90, �yz = 0:90, �zx = 0:90, � = 0:15, and n = 10; (c) �xy = 0:90, �yz = 0:60,
�zx = 0:30, � = 0:10, and n = 10; and (d) �xy = 0:90, �yz = 0:75, �zx = 0:50, � = 0:10, and n = 15.
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Figure 7. Mean contaminated ARL1s for varying scenarios at ARL0s = 200, and � = 0:50: (a) �xy = 0:60, �yz = 0:75,
�zx = 0:30, � = 0:15, and n = 5; (b) �xy = 0:90, �yz = 0:90, �zx = 0:90, � = 0:15, and n = 10; (c) �xy = 0:90, �yz = 0:60,
�zx = 0:30, � = 0:10, and n = 10; and (d) �xy = 0:90, �yz = 0:75, �zx = 0:50, � = 0:10, and n = 15.
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chamber as X, and pressure of gas as Z. di�erent
types of such practical situations may be seen in
cf. [37].

5.1. Simulated illustration
For this example, we selected three charts: The �rst
estimator, M6, is selected based on one-auxiliary vari-
able X, and the second estimator M11 is chosen based
on two auxiliary variables X and Z. We compare the
performance of these two selected estimators with that
of the usual median estimator, M1.

The trivariate normal distribution is used to
generate two di�erent data sets with mean vector,
�, and variance-covariance matrix, �. Each data set
contains 50 subgroups with sample sizes n = 5 and 10
at two di�erent levels of smoothing parameter � = 0:75
and � = 0:25. The mean vector, �, and variance-
covariance matrix, �, can be shown as:

� =

0@�y + ��y
�x
�z

1A =

0@5 + �
5
5

1A ;

and:

� =

0@ �2
y �xy �yz

�xy �2
x �xz

�yz �xz �2
z

1A =

0@ 1 0:90 0:90
0:90 1 0:90
0:90 0:90 1

1A :

In these sample data sets, the �rst 30 observations are
generated from the in-control scenario, that is, � = 0,
while the last 20 observations are generated from an
out-of-control scenario with shifts � = 1:0 for � = 0:75
and � = 0:75 for � = 0:25. The computed values of M1,
M6, and M11 based on these data sets are presented in
Tables A.1 and A.2 (see Appendix).

Figure 8 displays a graphical representation of
control charting structures of M1, M6, and M11 based
on di�erent � values and sample sizes. In this �gure,
UCLi and LCLi represent the upper and lower control
limits for control charts based on estimators Mi (i =
1; 6; 11). It is observed from Figure 8(a) that the
control structure based on the estimator M1 detects
4 out-of-control signals at points 40, 45, 49, and 50,
while control structure based on estimator M6 detects
14 out-of-control signals at points 32, 33, 35-39, 42, 44,
45, and 47-50 and control structure based on estimator
M11 detects 17 out-of-control signals at points 31, 32,
34, and 37-50 with � = 0:75, � = 1:0, and n = 5.
This noticeably points out that the control chart based
on estimator M6 detects 10 more out of control points
than the control chart based on estimator M1 does
and the control chart based on estimator M11 detects
13 and 3 more out-of-control points than M1-based
control structure and M6-based control structure do,
respectively. Moreover, the control chart based on
estimator M11 signals earlier than two other control

charts does, which supports our �ndings in this paper,
i.e. the control charts based on two auxiliary variables
are more e�cient than the control charts which are
based on one-auxiliary variable.

One can also notice that Figure 8(b) gives more
detections than Figure 8(a) does. This indicates that
detection capability of charts increases with an increase
in sample size; for example, when n = 5, M1, M6,
and M11 detect 4, 14, and 17 out-of-control points,
respectively, while 14, 18, and 20 out-of-control points
are detected for n = 10 (Figure 8(b)).

From the comparison of Figure 8(a) and (b) with
Figure 8(c) and (d), it can be noted that control
structures are more e�cient with the lower value of �.
For the same sample size, n = 5, charting structures
based on M1, M6, and M11, respectively, detect 4, 14,
and 17 points when � = 0:75 and � = 1:0 (Figure 8(a)),
while they detect 12, 18, and 19 points, respectively,
when � = 0:25 and � = 0:75 (Figure 8(c)). A similar
type of behavior at n = 10 and higher detection ability
of M11 chart can be observed in these �gures.

5.2. Case study
In order to demonstrate the application of the proposed
auxiliary information based median control charts
(Ti), we provide an example here for four di�erent
combinations of charts. In each combination, we
select one chart based on two auxiliary variables and
one chart based on single auxiliary variable, and
make a comparison with usual median control chart.
For the mentioned purpose, we consider the data-set
based on the non-iso-thermal continuous stirred tank
chemical reactor model, namely, the CSTR process,
originally proposed by Marlin [65], which has been
widely used as a benchmark in fault detection and
diagnosis (cf. [66,67]). The CSTR process comprises
nine process variables; the details of variables may be
found in [66,67]. For our example, we have considered
CA (outlet concentration of the product measured in
kmole/m3) as Y , TO (inlet temperature measured in
Kelvin) as X, and FA (
ow rate of reactant A measured
in m3/min) as Z. the mentioned data-set originally
contains 1024 values that are collected at sampling
intervals of half minute. The initial 512 values (the
�rst half of the data) are from the in-control state with
shift zero, whereas shift (� = 0:15) has been introduced
in �y for the second half of data-set to monitor process
location parameter. We have considered the mentioned
trivariate data-set in the form of 102 sub-groups each
of size n = 10 (that is by making each group after 5
minutes). The control limits for all charts have been
constructed for ARL0 = 200 with (� = 0:75) based on
in-control data. The values of three charting statistics
are computed and the results are displayed in the form
of control chart, Figure 9(a)-(d), by plotting charting
statistic values on the vertical axis and sample numbers
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Figure 8. Control chart display for M1, M6 and M11: (a) n = 5, � = 0:75, � = 1:0 and �xy = 0:90, �yz = 0:90, �zx = 0:90;
(b) n = 10, � = 0:75, � = 1:0 and �xy = 0:90, �yz = 0:90, �zx = 0:90; (c) n = 5, � = 0:25, � = 0:75 and �xy = 0:90,
�yz = 0:90, �zx = 0:90; and (d) n = 10, � = 0:25, � = 0:75 and �xy = 0:90, �yz = 0:90, �zx = 0:90.
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Figure 9. Control chart display with n = 10, � = 0:75, and � = 0:15 for (a) M1, M3 and M9; (b) M1, M5 and M7; (c) M1,
M2 and M11; and (d) M1, M4 and M8.



974 S. Hussain et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 954{982

(sub-groups) on the horizontal axis. After the 51st sub-
group, the details of detection ability of each �gure can
be observed as:

� In Figure 9(a), charts T1, T3, and T9 have detected
16, 20, and 31 out-of-control signals, respectively;

� In Figure 9(b), charts T1, T5, and T7 have detected
16, 24, and 28 out-of-control signals, respectively;

� In Figure 9(c), charts T1, T2, and T11 have detected
16, 25, and 36 out-of-control signals, respectively;

� In Figure 9(d), charts T1, T4, and T8 have detected
16, 23, and 32 out-of-control signals, respectively.

It shows that the control charts based on two auxiliary
variables have the best detection ability followed by
one-auxiliary information based control charts and
usual median control chart, respectively, which is in
accordance with the �ndings in Section 4.

6. Conclusions and future recommendations

Variations are an integral part of every process and
these variations need our attention to improve the
quality of the process. We use control charts in
order to classify these variations as natural and un-
natural. For location, monitoring mean is the most
commonly used measure. However, median serves as a
better alternative when processes face sudden outliers.
Moreover, information about auxiliary variables helps
to enhance the precision of the estimators and, hence,
the charting structure. In this article, we proposed the
median-based EWMA control charts to monitor the
location parameter. With the help of one- and two-
auxiliary variables, we designed the mean and median
based EWMA control charts and compared their per-
formances under contaminated and un-contaminated
process environments. Based on these estimators, we
investigated the EWMA control charting structures
and carried out detailed run length using di�erent per-
formance measures ARL, EQL, RARL, and PCI. Based
on our evaluation, in the uncontaminated environment,
mean control charts are better than median control
charts. The detection ability of mean control charts
is better than that of median control charts. However,
under the contaminated environments, median control
charts are better than mean control charts. The
resistance ability of median control charts is higher
than that of mean control charts in the presence of
outliers. By comparison of all median estimators,
results also displayed the overall dominance of control
charting structures based on two-auxiliary variables.
As the analysis of EWMA control charts also includes
� = 1 among the di�erent values of � (which is a
special case of Shewhart control charts), it is worth
mentioning that, for the same estimators, results of

EWMA control charts are better than those of She-
whart control charts. These major �ndings can also
be observed from the illustrative example. From this
example, we can also observe that if the size increases,
these charts will be more e�cient in detecting shifts in
the process. Moreover, the scope of this study can be
further extended to other types of control charts, such
as multivariate EWMA and CUSUM control charts.
Di�erent run rules can also be used to enhance the
detection abilities of these charting structures.
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Nomenclature

ARL Average Run Length
ARL0 In-control ARL
ARL1 Out-of-control ARL
CSTR Continuous Stirred Tank Reactor
CL Central Line
Cx Coe�cient of variations for X
Cz Coe�cient of variations for Z
EQL Extra Quadratic Loss
fx(x) Marginal density function of X
fy(y) Marginal density function of Y
fz(z) Marginal density function of Z
My Median of Y
Mx Median of X
Mz Median of Z

M̂y Sample median of Y

M̂x Sample median of X

M̂z Sample median of Z
n Sample size
P11(x; y) Pr(X �Mx and Y �My)
P11(y; z) Pr(Y �My and Z �Mz)
P11(z; x) Pr(Z �Mz and X �Mx)
LCL Lower Control Limit
UCL Upper Control Limit
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X First auxiliary characteristic
Y Quality characteristic of interest
Z Second auxiliary characteristic
�2(x) Coe�cient of kurtosis for X
�2(z) Coe�cient of kurtosis for Z
� Amount of shift
�max Maximum value of �
�min Minimum value of �
�x Mean of X
�y Mean of Y
�z Mean of Z
�xy Correlation coe�cient between X and

Y
�yz Correlation coe�cient between Y and

Z
�zx Correlation coe�cient between Z and

X
�x Standard deviation of X
�y Standard deviation of Y
�z Standard deviation of Z
�xy Correlation coe�cient between

sampling distribution of M̂x and M̂y

�yz Correlation coe�cient between
sampling distribution of M̂y and M̂z

�zx Correlation coe�cient between
sampling distribution of M̂z and M̂x

� Mean vector
� Variance co-variance matrix
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Appendix

We provided some additional results of our proposed
study in Tables A.1-A.4. Table A.1 describes the
generated values charts M1, M6, and M11 which we
used to compare the performance of control charts
in Section 5.1. Tables 1-4 represent the performance
measures of control charts used in his study. The ARL
values for some selective combinations are presented in
Tables A.2-A.4.

Table A.1. The values of M1, M6 and, M11.

Sub
groups

�xy = 0:90, �yz = 0:90, �zx = 0:90,
� = 0:75 and � = 1:0

�xy = 0:90, �yz = 0:90, �zx = 0:90,
� = 0:25 and � = 0:75

n = 5 n = 10 n = 5 n = 10
M1 M6 M11 M1 M6 M11 M1 M6 M11 M1 M6 M11

1 4.529 4.594 5.246 4.598 5.115 5.002 4.998 4.954 5.052 4.986 5.041 4.996
2 5.069 4.981 4.996 4.920 5.014 4.906 5.135 4.838 5.129 4.988 5.034 4.996
3 4.573 5.073 5.074 5.352 4.358 5.003 5.062 4.936 5.191 4.951 5.140 4.987
4 4.711 4.804 5.270 5.116 5.075 4.923 4.934 4.928 5.064 4.944 5.083 5.012
5 5.140 5.574 4.883 4.693 5.252 4.930 4.865 4.844 4.859 4.997 5.014 5.034
6 4.672 5.180 4.695 4.696 5.424 5.067 4.888 4.711 4.996 5.032 5.128 5.018
7 4.405 5.569 4.975 5.127 5.203 4.925 4.954 4.865 4.957 5.115 5.088 5.010
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Table A.1. The values of M1, M6 and, M11 (continued).

Sub
groups

�xy = 0:90, �yz = 0:90, �zx = 0:90,
� = 0:75 and � = 1:0

�xy = 0:90, �yz = 0:90, �zx = 0:90,
� = 0:25 and � = 0:75

n = 5 n = 10 n = 5 n = 10
M1 M6 M11 M1 M6 M11 M1 M6 M11 M1 M6 M11

8 4.771 5.302 4.784 4.729 4.808 4.971 4.853 4.956 5.005 5.092 5.019 5.042
9 4.592 5.393 4.600 4.553 4.619 4.870 5.154 5.102 4.912 4.959 4.899 4.963
10 4.849 4.965 5.343 5.053 5.007 5.136 5.155 5.118 4.984 4.881 4.905 4.964
11 4.674 4.897 5.222 5.501 5.009 5.012 5.066 4.989 5.013 4.891 4.914 4.993
12 4.667 5.097 4.757 4.921 4.840 4.801 5.078 5.165 4.977 4.705 4.903 4.938
13 5.760 4.755 4.844 5.210 4.912 4.834 5.298 5.172 4.912 4.800 4.908 5.098
14 5.192 4.908 4.988 4.838 4.981 5.017 5.059 5.126 4.870 4.678 4.874 5.048
15 5.321 5.064 5.488 4.533 5.442 5.043 4.845 4.983 4.864 4.812 4.864 5.039
16 5.276 4.689 5.110 4.446 5.023 4.941 4.836 4.920 4.863 4.805 4.966 5.004
17 4.859 4.513 4.562 4.702 5.078 5.097 4.745 5.013 4.853 4.747 5.037 5.007
18 4.438 4.865 4.857 4.652 4.819 4.679 4.593 4.944 4.938 4.805 4.915 5.024
19 4.785 4.794 5.366 4.907 4.996 5.226 4.551 4.940 5.044 4.818 4.811 5.051
20 4.957 4.643 5.200 5.329 5.117 5.010 4.677 4.999 4.979 4.758 4.864 5.019
21 5.547 4.789 4.938 4.855 4.981 4.953 4.811 5.093 5.069 4.745 4.931 4.965
22 4.960 5.222 4.864 4.605 4.960 4.850 4.753 5.063 5.058 4.809 4.941 4.859
23 5.164 5.321 5.220 4.839 4.485 5.033 4.965 4.963 5.072 4.955 4.955 4.932
24 5.438 4.933 5.505 4.849 4.778 4.995 4.949 5.018 5.034 4.901 5.071 5.026
25 5.133 5.071 5.240 5.021 5.246 5.105 5.033 4.926 5.022 4.941 5.107 4.990
26 5.154 5.230 5.155 4.709 4.605 4.962 5.020 4.747 5.029 4.935 5.070 5.045
27 5.047 5.073 4.786 5.331 5.376 4.836 4.926 4.732 4.943 4.887 5.036 5.026
28 4.930 4.804 4.956 5.558 4.938 5.077 4.874 5.024 4.966 5.056 5.176 5.125
29 4.436 5.142 4.547 5.401 5.269 5.262 4.804 4.920 4.979 5.063 5.027 5.083
30 5.023 4.945 5.109 5.283 4.865 5.312 4.666 4.870 4.960 4.967 4.998 5.036
31 5.541 5.482 5.912 5.095 5.735 6.110 4.857 5.028 5.105 5.137 5.181 5.267
32 5.635 6.132 5.734 5.391 6.046 5.985 4.895 5.112 5.234 5.175 5.231 5.337
33 5.632 5.884 6.076 6.602 6.073 5.935 4.877 5.356 5.418 5.325 5.327 5.520
34 5.547 6.308 5.484 6.274 6.036 5.863 4.944 5.384 5.532 5.345 5.614 5.573
35 5.718 6.468 5.798 5.939 5.936 5.757 5.132 5.643 5.603 5.544 5.777 5.651
36 6.062 6.098 5.777 6.242 5.793 5.861 5.248 5.510 5.696 5.506 5.725 5.657
37 5.715 6.580 6.156 5.663 6.253 6.128 5.335 5.664 5.824 5.390 5.702 5.614
38 5.784 6.046 6.419 5.579 6.083 5.734 5.301 5.792 5.734 5.496 5.724 5.638
39 5.451 5.666 6.117 6.044 5.681 6.046 5.529 5.836 5.761 5.475 5.710 5.668
40 5.959 6.228 5.794 6.386 5.694 5.843 5.558 5.940 5.643 5.589 5.633 5.642
41 6.719 6.068 6.110 5.882 5.971 5.635 5.727 6.075 5.681 5.678 5.541 5.718
42 5.795 5.829 5.913 5.704 5.742 5.797 5.697 5.951 5.732 5.826 5.589 5.734
43 5.917 5.860 5.942 5.531 5.636 6.210 5.684 5.798 5.693 5.916 5.592 5.647
44 5.573 5.849 5.879 5.916 5.880 6.271 5.768 5.710 5.745 5.813 5.647 5.641
45 5.736 6.084 5.626 5.905 5.704 6.334 5.896 5.821 5.763 5.908 5.703 5.717
46 6.456 6.471 5.993 6.244 6.078 6.002 5.848 5.692 5.768 5.716 5.793 5.745
47 6.387 6.674 5.794 5.493 5.916 5.949 5.783 5.773 5.744 5.776 5.761 5.773
48 6.019 6.280 6.005 5.667 5.876 6.053 6.026 5.778 5.809 5.569 5.867 5.784
49 5.762 6.456 6.382 6.218 6.202 6.154 6.166 5.864 5.744 5.615 5.733 5.762
50 5.908 6.235 6.173 5.928 5.864 6.218 6.161 5.744 5.658 5.675 5.678 5.740
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Table A.2. ARL values for EWMA median charts with n = 5, �xy = 0:90, �yz = 0:75, and �zx = 0:50.

� � M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

0.00

1.00 200.24 200.00 200.15 200.41 200.13 200.67 199.98 200.18 200.20 200.11 200.18
0.75 200.11 199.71 200.00 200.00 200.00 200.64 199.83 200.18 200.70 199.96 199.62
0.50 200.14 199.98 200.00 200.12 200.10 199.87 199.73 200.18 199.96 200.18 200.02
0.25 200.28 199.53 200.44 200.28 200.38 199.97 200.02 199.97 200.37 200.00 200.26

0.10

1.00 176.06 119.24 121.81 175.09 120.37 197.97 171.41 153.16 155.70 153.23 159.61
0.75 162.62 105.02 107.93 151.19 106.81 176.86 158.79 129.82 131.08 129.99 134.40
0.50 144.86 87.76 88.51 115.56 87.70 145.91 133.67 94.24 94.68 94.20 96.15
0.25 116.48 65.13 64.68 72.33 64.87 96.86 104.63 55.42 55.40 55.48 55.53

0.15

1.00 151.82 91.80 94.18 138.75 93.12 169.80 147.23 112.92 114.55 112.83 116.85
0.75 132.01 72.37 73.67 104.97 73.05 134.96 125.40 81.79 82.68 81.58 83.92
0.50 105.42 53.95 53.34 66.90 53.64 96.08 93.44 51.78 52.10 51.66 53.13
0.25 71.11 34.63 34.02 34.97 34.42 54.80 62.38 24.61 24.30 24.61 24.01

0.20

1.00 124.18 67.51 66.83 97.71 67.11 134.10 119.21 78.48 80.09 78.46 82.32
0.75 99.36 52.23 52.41 64.85 52.16 93.37 93.78 52.48 52.59 52.50 53.32
0.50 74.82 35.34 34.55 40.06 35.01 60.74 64.87 28.23 28.17 28.18 28.22
0.25 46.81 19.57 18.90 18.22 19.19 31.85 38.50 11.97 11.68 12.00 11.37

0.25

1.00 100.62 49.57 49.61 69.48 49.85 101.32 92.70 54.29 55.65 54.23 57.16
0.75 76.58 36.43 35.55 42.67 36.29 67.00 66.66 31.96 32.24 31.93 33.56
0.50 51.56 23.43 22.60 24.49 22.93 39.75 44.94 16.13 16.07 16.15 16.34
0.25 30.91 11.74 11.10 10.14 11.44 19.26 24.82 5.91 5.62 5.94 5.31

0.50

1.00 34.70 13.41 12.89 14.09 13.17 26.38 27.21 9.44 9.21 9.41 9.47
0.75 20.39 8.01 7.51 6.96 7.87 13.52 16.05 4.71 4.67 4.70 4.83
0.50 11.88 4.29 3.88 3.51 4.13 7.02 9.01 2.12 2.07 2.12 2.02
0.25 4.58 1.16 1.13 1.06 1.15 1.94 2.92 1.00 1.00 1.00 1.00

0.75

1.00 13.18 4.92 4.55 4.22 4.79 8.25 10.04 2.67 2.67 2.66 2.67
0.75 7.26 2.76 2.57 2.24 2.70 4.27 5.44 1.51 1.50 1.52 1.49
0.50 3.89 1.37 1.31 1.18 1.35 2.00 2.69 1.03 1.03 1.03 1.03
0.25 1.14 1.00 1.00 1.00 1.00 1.00 1.02 1.00 1.00 1.00 1.00

1.0

1.00 5.86 2.37 2.14 1.89 2.26 3.45 4.48 1.37 1.38 1.36 1.36
0.75 3.44 1.40 1.37 1.22 1.40 1.90 2.45 1.05 1.05 1.05 1.06
0.50 1.66 1.02 1.01 1.00 1.01 1.13 1.29 1.00 1.00 1.00 1.00
0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.25

1.00 3.20 1.46 1.42 1.23 1.43 1.95 2.40 1.08 1.08 1.07 1.08
0.75 1.83 1.07 1.06 1.02 1.07 1.24 1.47 1.00 1.00 1.00 1.00
0.50 1.13 1.00 1.00 1.00 1.00 1.01 1.02 1.00 1.00 1.00 1.00
0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.50

1.00 2.05 1.16 1.13 1.06 1.16 1.35 1.61 1.01 1.01 1.01 1.01
0.75 1.32 1.01 1.00 1.00 1.01 1.04 1.13 1.00 1.00 1.00 1.00
0.50 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2.00

1.00 1.22 1.01 1.01 1.00 1.01 1.03 1.10 1.00 1.00 1.00 1.00
0.75 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table A.3. ARL values for EWMA median charts with n = 10, �xy = 0:75, �yz = 0:10, and �zx = 0:10.

� � M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

0.00

1.00 200.26 200.21 199.62 199.99 199.48 199.88 200.22 200.06 199.93 199.93 200.42
0.75 200.09 200.12 200.14 199.91 199.97 200.15 200.26 200.18 200.37 199.97 200.06
0.50 200.40 200.12 200.46 200.33 200.14 199.73 199.97 200.08 200.18 200.06 200.07
0.25 200.22 199.84 199.84 199.96 199.88 200.16 199.78 199.72 199.97 199.76 200.07

0.10

1.00 146.04 110.75 110.44 132.07 110.18 153.41 136.28 136.99 137.09 137.07 137.66
0.75 129.64 96.56 95.87 107.64 96.38 129.59 113.01 113.77 113.50 113.34 113.29
0.50 105.89 80.55 80.62 81.22 80.56 98.75 83.56 83.37 83.66 83.29 84.31
0.25 75.67 59.38 58.84 52.94 59.35 63.29 52.96 53.70 53.50 53.63 53.31

0.15

1.00 113.29 78.98 79.55 92.74 79.28 111.77 96.94 97.00 96.95 96.98 96.99
0.75 88.63 64.44 63.27 67.60 63.71 81.67 70.50 70.40 70.27 69.98 70.33
0.50 63.61 48.97 48.25 45.87 48.78 54.95 46.79 46.48 46.41 46.41 46.50
0.25 38.53 31.34 30.38 25.48 31.05 31.13 24.78 24.95 24.83 24.97 24.77

0.20

1.00 83.96 57.72 56.68 63.99 56.83 78.97 65.03 65.20 65.13 65.16 65.53
0.75 60.42 42.51 41.59 41.60 42.03 52.22 42.04 41.89 41.94 41.94 42.06
0.50 4 0.25 29.82 28.94 25.82 29.61 31.77 26.13 25.98 26.12 25.99 26.05
0.25 22.13 17.24 16.41 12.84 16.95 16.05 12.76 12.78 12.67 12.78 12.58

0.25

1.00 58.85 43.45 42.79 41.91 43.38 53.34 44.15 43.82 43.81 43.78 44.24
0.75 40.55 29.84 28.63 25.70 29.41 33.11 27.11 27.11 27.16 27.06 27.35
0.50 24.90 18.99 18.39 15.47 18.75 19.58 15.57 15.55 15.55 15.56 15.49
0.25 12.88 9.87 9.31 6.69 9.71 8.43 6.46 6.45 6.34 6.46 6.25

0.50

1.00 14.00 10.39 9.81 8.12 10.16 10.29 8.19 8.11 8.13 8.12 8.22
0.75 7.90 6.32 5.89 4.44 6.24 5.71 4.41 4.38 4.38 4.40 4.34
0.50 4.32 3.36 3.23 2.19 3.32 2.78 2.23 2.24 2.20 2.25 2.20
0.25 1.22 1.06 1.05 1.01 1.06 1.03 1.01 1.01 1.01 1.01 1.01

0.75

1.00 4.80 3.73 3.59 2.63 3.70 3.30 2.65 2.64 2.65 2.64 2.60
0.75 2.70 2.20 2.13 1.61 2.15 1.89 1.55 1.55 1.55 1.56 1.54
0.50 1.39 1.22 1.18 1.05 1.19 1.10 1.04 1.04 1.04 1.04 1.04
0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.0

1.00 2.23 1.93 1.81 1.43 1.87 1.63 1.43 1.42 1.42 1.42 1.42
0.75 1.39 1.24 1.20 1.07 1.22 1.13 1.06 1.06 1.06 1.06 1.06
0.50 1.02 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.25

1.00 1.40 1.29 1.25 1.10 1.29 1.16 1.09 1.08 1.08 1.08 1.09
0.75 1.07 1.04 1.03 1.00 1.03 1.01 1.00 1.00 1.00 1.00 1.00
0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.50

1.00 1.13 1.09 1.07 1.02 1.08 1.03 1.01 1.01 1.01 1.01 1.01
0.75 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table A.4. ARL values for EWMA median charts with n = 15, �xy = 0:50, �yz = 0:50, and �zx = 0:10.

� � M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

0.00

1.00 199.93 199.71 200.43 199.86 199.85 200.02 200.21 199.95 200.29 200.11 199.95
0.75 200.33 200.00 200.00 199.94 200.43 200.44 200.10 200.32 200.39 200.39 200.29
0.50 200.99 200.19 200.00 200.34 200.43 199.84 200.10 199.93 200.10 199.93 200.21
0.25 200.28 200.17 200.26 200.38 200.17 200.19 200.18 199.94 199.73 199.90 199.56

0.10

1.00 146.45 114.83 116.31 125.12 115.11 140.46 136.42 138.83 139.44 138.80 138.99
0.75 122.51 102.10 102.19 106.34 101.81 114.00 114.38 114.60 114.00 114.52 113.87
0.50 93.38 88.45 87.02 85.96 87.97 85.07 84.85 85.20 85.10 85.22 85.47
0.25 59.51 69.17 68.50 57.52 68.76 56.90 55.58 54.93 54.82 54.89 54.84

0.15

1.00 100.52 86.25 86.30 88.08 86.12 96.98 93.28 93.26 93.83 93.36 93.31
0.75 74.49 70.41 69.75 66.86 70.31 69.89 69.53 69.20 68.98 69.21 68.72
0.50 51.96 54.97 53.68 48.21 54.89 46.27 46.06 46.08 45.89 46.06 45.82
0.25 29.88 37.53 36.47 27.90 37.07 26.16 26.80 26.72 26.70 26.74 26.60

0.20

1.00 67.82 64.11 63.52 61.78 63.79 64.77 63.32 63.84 64.07 63.88 63.58
0.75 47.22 49.40 48.59 43.17 49.19 44.04 42.69 42.17 42.27 42.18 42.27
0.50 30.48 35.85 34.75 27.51 35.71 25.60 26.53 26.42 26.32 26.41 26.45
0.25 15.29 21.71 20.87 15.00 21.36 13.54 13.13 13.31 13.30 13.31 13.19

0.25

1.00 47.74 47.23 46.82 42.21 46.88 43.27 43.98 43.42 43.42 43.47 43.39
0.75 30.40 34.51 33.48 27.59 34.26 27.18 26.88 26.66 26.54 26.66 26.59
0.50 18.30 23.36 22.24 17.59 22.97 15.62 15.50 15.47 15.52 15.47 15.45
0.25 8.31 13.00 12.36 7.96 12.76 6.81 6.78 6.68 6.67 6.69 6.61

0.50

1.00 9.47 12.98 12.55 9.03 12.80 8.12 8.29 8.18 8.30 8.20 8.15
0.75 5.30 7.99 7.50 5.12 7.82 4.50 4.72 4.68 4.63 4.68 4.58
0.50 2.77 4.55 4.29 2.69 4.47 2.30 2.29 2.26 2.25 2.26 2.25
0.25 1.03 1.30 1.21 1.02 1.26 1.01 1.01 1.01 1.01 1.01 1.00

0.75

1.00 3.08 4.86 4.58 3.05 4.76 2.69 2.72 2.65 2.66 2.66 2.65
0.75 1.84 2.87 2.75 1.86 2.84 1.61 1.62 1.62 1.62 1.62 1.62
0.50 1.11 1.48 1.41 1.08 1.45 1.05 1.04 1.04 1.04 1.04 1.04
0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.0

1.00 1.60 2.39 2.28 1.59 2.33 1.45 1.44 1.43 1.44 1.42 1.43
0.75 1.12 1.48 1.44 1.13 1.45 1.08 1.07 1.07 1.07 1.07 1.08
0.50 1.00 1.02 1.02 1.00 1.03 1.00 1.00 1.00 1.00 1.00 1.00
0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.25

1.00 1.15 1.53 1.46 1.16 1.50 1.10 1.10 1.10 1.10 1.10 1.10
0.75 1.01 1.10 1.08 1.01 1.09 1.00 1.00 1.00 1.00 1.00 1.00
0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.50

1.00 1.03 1.18 1.15 1.03 1.17 1.02 1.01 1.02 1.02 1.02 1.02
0.75 1.00 1.01 1.01 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00
0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2.00

1.00 1.00 1.01 1.01 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00
0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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