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Abstract. This paper studies a bi-level decentralized supply chain consisting of one
manufacturer and one distributor. Along with global advertising, the manufacturer
participates in part of local advertising expenditure incurred by the distributor. Bi-level
programming is applied to model the relationship between the manufacturer and distributer
under two power scenarios of Stackelberg game framework. In the �rst scenario, we consider
the manufacturer as the leader and in the latter, we allow the distributer to act as the
dominant member of the supply chain. In order to tackle bi-level programming models, a
meta-heuristic genetic algorithm with hierarchical structure is developed for each scenario
and optimal policies for the members in terms of pricing, advertising, inventory, and demand
allocation are determined. Finally, several computational experiments are conducted on the
data obtained from an automotive spare parts supply chain to demonstrate the validity of
the developed models and compare the bene�ts of members as well as of the entire system.

© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Generally, there are two approaches towards decision-
making in a supply chain: centralized and decentral-
ized. In a centralized supply chain, a single decision-
maker or principal �rm with access to adequate in-
formation within the supply chain along with enough
power to make decisions delineates the policies for all
members of the chain. In such a case, di�erent mem-
bers cooperate with each other based on the declared
policies. Mathematical programming models have been
used to address such problems in the literature [1].

A supply chain is often composed of independent
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organizations and economic entities. In spite of the
advantages associated with integrated decision-making,
�rms often do not tend to follow the decisions made for
all members and try to optimize their own objectives
rather than those of the entire system [2]. Therefore, a
decentralized supply chain is seen to be a more practical
and realistic model for many real-world problems.

In the literature, Hierarchical Decision Making
(HDM) has been used to model decentralized supply
chain management problems. In such a system, the
upper-level member (leader) makes a decision at �rst
and then the lower-level member (follower) determines
their optimal policies based on the decision made by
the leader. Assuming a complete set of information
to be available about the decision-making approach
of the follower, the leader will be able to anticipate
the response of the follower based on which they can
adjust their decisions. Hierarchical decision-making



892 O. Amirtaheri et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 891{910

process is closely related to the economic problem of
Stackelberg in the �eld of Game Theory, introduced by
Von Stackelberg [3].

Hierarchical programming is a mathematical
framework of Stackelberg games within which multiple
optimization problems in di�erent levels are simultane-
ously taken into account. A special case of the problem
with two levels is called bi-level problem or bi-level
programming problem [4]. A bi-level programming
problem is a mathematical program with an optimiza-
tion problem in the constraints.

Each decision-maker (the leader and the follower)
attempts to determine the decision variables under
their control to optimize their own objective function
regardless of the one of the other; however, the de-
cisions made by each member inuence the available
choices and payo�s of the other decision-maker. Thus,
the leader will be able to a�ect the follower without
having a full control over them, while being simultane-
ously a�ected by the follower's behavior.

The current research aims at using bi-level pro-
gramming for modeling of the relationship between
a manufacturer and a distributor under decentralized
management with their objective being the maximiza-
tion of the pro�t via meeting the demands generated
in di�erent markets. The markets are di�erent in
terms of size, geographic location, price elasticity of
demand, and response to advertisement. We assume
each market's demand is a function of selling price,
local advertising expenditure, and global advertising
expenditure.

In order to boost the markets' demands, the
distributor undertakes a given cost to conduct local
advertising within each market. Being undertaken to
motivate the customer to make a purchase in short-
time, such expenditures may be spent in the form of
catalogues or promotional gifts, free product sample,
price discounts, incentive plans, etc. in a given market.
With direct but short-time e�ect, these advertising
e�orts increase the demand across the corresponding
markets [5].

On the other hand, the manufacturer may, in
turn, set a budget for global advertising within the
target markets. Normally broadcasted at national level
with their scopes beyond any speci�c market, global
advertisements work toward forming a long-resisting
recognized image of the manufacturer's brand and logo
inside the customers' minds. Participation in general
and specialized exhibitions as well as TV and Radio ad-
vertisements is an example of this type of advertising.
Although global advertising may promote a product's
fame and popularity, it may not necessarily increase
real demands raised by a consumer [6,7]. As such, the
manufacturer tends to directly a�ect market demand
via implementing cooperative advertising approach [5].

Cooperative advertising is seen to be among

those topics intensely investigated in the literature
during the recent years [8]. This concept represents a
�nancial agreement between the manufacturer and the
distributor (retailer) to share advertising costs based
on which the manufacturer undertakes part of local
advertising expenditure (participation rate) incurred
by the distributor [4].

Following the research directions suggested by [8],
this paper aims at simultaneously determining the
pricing, advertising, inventory, and allocation policies
in a production-distribution supply chain using bi-
level programming while considering cooperative ad-
vertising. Manufacturer's decisions include wholesale
price, production (replenishment) interval, global ad-
vertising expenditure, and the participation rate in
local advertising expenditures. On the other side, the
distributor, as the second member of the chain, makes
decisions on selling price, local advertising expenditure,
and allocation of warehouses' capacities to markets'
demands.

Since bi-level programming model, even in its
simplest form (i.e., with linear objective functions and
constraints), is NP-hard [9], a hierarchical genetic al-
gorithm is developed to tackle each model. In addition
to the GAs, an exhaustive grid search is applied for
validation purposes.

The rest of the paper is organized as follows. In
the next section, we review the related literature. In
Section 3, a bi-level programming model is developed
for each of the two power scenarios of a Stackelberg
game. In the �rst model, the manufacturer is assumed
to be the leader with the distributor being the fol-
lower (manufacturer-Stackelberg) while the opposite
case (distributor-Stackelberg) is investigated in the
second model. In Section 4, a hierarchical genetic
algorithm is developed to tackle each of the bi-level
programming models. In Section 5, computational
experiments are carried out using the collected data
from an automotive spare parts supply chain and the
validity of the proposed GAs is shown by adopting an
exhaustive grid search algorithm. Furthermore, the
gained pro�t by each member as well as that of the
entire system is compared under each power scenario.
Finally, conclusions are drawn and future research
directions are introduced in Section 6.

2. Literature review

Numerous researches have studied the interaction be-
tween a manufacturer (supplier/seller) and a retailer
(distributer/buyer) as two members of supply chain
within a Stackelberg game framework. We consider the
general settings of the supply chains and models, which
are used in the related articles, and compare them in
Table 1.

Authors often have their focus on one or several
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Table 1. Comparison of the general settings of the current paper and related studies.

Paper
Decision
variables

Price
e�ect

Advertising
e�ect

Advertising

P
ro

d
u
ct

M
ar

ke
t

No. of
constraints

Solution
approach

P A I T L G Co

[10,39] * ���:a� :A�� * * * 1 1 | BI
[13] * ���:a� :A�� * * * 1 1 2 BI
[15] * * (p=p0)�e ���:a� :A�� * * * 1 1 | BI
[20] * * (���:p)1=v n1:

p
A+n2:

p
a * * * 1 1 | BI

[27,28] * * * k:p�� a� * * 1 1 | BI
[21] * * k:p�� a� * * 1 1 | BI
[22,23,40] * * ���:p n1:

p
A+n2:

p
a * * * 1 1 | BI

[11] * (���:a� :A��):pg * * * 1 1 | BI
[19] * * (���:p)1=v n1:

p
A+n2:

p
a * * * 1 1 | BI

[16] * * p�e ���:a �� :A�� * * * 1 1 | BI
[41] * * 1��1:p��2:p0 n1:

p
A+n2:

p
a * * * 2 1 | BI

[12] * ���1:a���2A�� * * * 1 1 | BI
[17] * * ���:p ���:a� :A�� * * * 1 1 | BI
[18] * * ���:p n1:

p
A+n2:

p
a * * * 1 1 | BI

[14] * n1:
p
A+n2:

p
a * * * 1 1 | BI

[25] * * ���:p M 1 > 3N BLP
[26] * * * k:p�� a� * M 1 2 BLP
[24] * * k:p�� 1 1 2 BI
[40] * * ���1:p+�2:p0 n1:

p
A+n2:

p
a�n3:

p
a0 * * * 1 1 | BI

Proposed
model

* * * * (1��:p)1=v n1
k:
p
A+n2

k:
p
a * * * 1 M > I:J+2J+K BLP

�; �; �1; �2; ; �; �; e; k; v; n1; n2 > 0
a: Local advertising expenditure; a0: Local advertising expenditure of second retailer;
A: Global advertising expenditure; p: Retail price; p0: Retail price of second retailer;
p0: Manufacturer Suggested Retail Price (MSRP); g: Reputation of the manufacturer; L: Local advertising;
G: Global advertising; Co: Co-operative advertising; M : Multi-product/market;
N : Number of products; I: Number of transportation cost levels; J : Number of warehouses;
K: Number of markets (k = 1; 2; � � � ;K); BI: Backward Induction; BLP: Bi-Level Programming.

aspects of the decisions to be made by supply chain
members. From the second column of Table 1, we
can see that the pricing and advertising policies have
been used in most of the researches as a prominent
mechanism for supply chain coordination.

Some authors refer to the di�erent e�ects of
local and global advertising on demand and study
the cooperative advertising programs in supply chain
coordination [10-14].

Furthermore, there are several studies that inves-
tigate the simultaneous determination of advertising
and pricing. Yue et al. [15] study the issue of
cooperative advertisement in a production-distribution
supply chain in which the demand is sensitive to the
price and the manufacturer o�ers price discounts to the
distributor. Szmerekovsky and Zhang [16] investigate
the issue of pricing and determination of advertising
policy in a bi-level supply chain where the demand de-

pends on the retail price and advertising expenditure.
Xie et al. [17,18] further extend this study and compare
cooperative scenario with the two previously mentioned
scenarios in which no cooperation is assumed between
the manufacturer and the retailer. SeyedEsfahani et
al. [19] investigate cooperative advertisement in a bi-
level supply chain considering a more comprehensive
demand function under four power scenarios: equal
power, manufacturer-Stackelberg, retailer-Stackelberg,
and cooperation among the members; the results are
then compared. Aust and Buscher [20], Haifang et
al. [21], Karray [22], and Kunter [23] are among the
other papers that study the simultaneous e�ects of
advertising and pricing policies.

Similarly, many researches have considered how to
integrate pricing policies into inventory management
decisions. Yugang et al. [24] study the decisions
associated with pricing and ordering interval in a
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supply chain consisting of a distributor and a number
of retailers. Mokhlesian and Zegordi [25] applied bi-
level programming to coordinate pricing and inventory
decisions in a two-stage supply chain consisting of
one manufacturer and multiple retailers. A hybrid of
genetic algorithm and local search method has been
proposed to tackle the non-linear bi-level programming
model.

Early works have mainly focused on integrating
di�erent decision aspects and developing more com-
prehensive models. Naeimi Sadigh et al. [26] deter-
mine pricing, inventory, and advertising policies in a
multiple-product supply chain. In their work, manu-
facturer and retailer spend expenses for advertising.
The problem is solved in manufacturer-Stackelberg
and retailer-Stackelberg forms and the results are
compared. Esmaeili et al. [27] propose several game
models of seller-buyer relationship to optimize pricing
and lot sizing decisions as well as participation in
local advertising expenditures. Esmaeili and Zeep-
hongsekul [28] develop several models for seller-buyer
supply chain management problem with an asymmetric
information structure. Their models incorporate the
pricing, advertising, and lot sizing decisions.

As the simultaneous analysis of more than one as-
pect provides insight into the interdependencies of the
decision variables, we incorporate the allocation policy
into other three decision aspects (pricing, advertising,
and inventory) by placing a distributer on the second
echelon that possesses several warehouses with di�erent
capacities and geographical locations. Therefore, the
decision about the allocation of warehouses' capacities
to markets' demands, in a way that total transporta-
tion cost is minimized, can also be made along with
pricing, advertising, and inventory decisions.

Among the most important distinctive features of
the articles is the underlying demand function, which
relates consumer demand to pricing and advertising
decisions. The second and third columns of Table 1
indicate the e�ects of price and advertising expen-
ditures on demand, respectively. The total demand
function is made by multiplication of the two e�ects. In
an attempt to extend the previous demand functions,
Seyed Esfahani et al. [19] propose a comprehensive non-
linear structure for price demand function, (���:p)1=v,
where the new parameter v controls the demand curve's
shape in order to obtain a linear, convex, or concave
function and make a better adjustment to the actual
market properties. Inspired by their work, we use a
similar form for price demand function, (1 � �:p)1=v,
in this paper. As for the advertising e�ect, we apply
the square root form of advertising demand function
proposed by [14,18-20,22,23] and adapt it to a supply
chain with K di�erent markets (n1

k:
p
A + n2

k:
p
a; k =

1; 2; � � � ;K).
Among the articles that have studied the e�ects of

local and global advertising expenditures on demand,
there are some researches that consider cooperative
advertising program. In this paper, we follow a
similar approach and assume that manufacturer and
distributer undertake global and local advertising ex-
penditures, respectively, and manufacturer participates
in a portion of total expenditure incurred by distributer
for local advertising in di�erent markets.

Concerning the number of products and markets,
one may observe that most authors consider a single
product to be sold in a single market. In this
paper, we develop a supply chain model in which K
di�erent markets, in terms of size, price elasticity of
demand, and response to global and local advertising
expenditures, are considered.

The next criteria refer to the constraints of the
models' formulation. A predominant number of related
researches do not incorporate any constraint to their
models, while a few articles consider two or more.
The structure of the model proposed in this paper
includes several warehouses and markets as well as
decision variables for allocating markets' demands to
warehouses' capacities. Thus, numerous constraints are
considered to appropriately de�ne the model.

Lastly, we consider the solution approach which
is used in order to determine the channel members'
optimal decisions. As explained in Section 1, decen-
tralized supply chain problems are closely related to the
Stackelberg game problem in game theory. Stackelberg
game describes a sequential process, where one player
acts as a leader and �rst sets their decision. Then,
in the second step, the follower tries to �nd their
best decision within the framework set by the leader.
This equilibrium is calculated via Backward Induction
(BI) method: The follower's response function, which
is determined by setting the �rst order derivative(s)
to zero and solving the resulting equations for the
follower's decision variables, has to be inserted into
the leader's pro�t function before calculating the �rst
order derivatives [8]. The underlying logic of BI is
based on determining the �rst derivative(s) of pro�t
function for both leader and follower problems. Thus,
any constraint has to be analyzed separately and then
incorporated into the main calculations.

This reveals that BI, as an exact method, will
lose its e�ciency as the numbers of decision variables
and constraints increase and ultimately fail due to
considerable complexity of calculus, i.e. incorporating
more decision variables generate more partial deriva-
tives (equations) and handling more constraints needs
complex analysis, which may not reach a solution.

As stated in Section 1, BLPP is a mathematical
framework of Stackelberg game in which an optimiza-
tion problem (follower) is embedded in another opti-
mization problem (leader). This structure provides an
appropriate form to include several decision variables
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and constraints. To tackle the complexity of BLPP,
approximate solution methods including meta-heuristic
algorithms are developed by the researchers.

From the last column of Table 1, we can recognize
that BI is applied for the Stackelberg problems with no,
or very few, constraints and limited number of decision
variables while BLPP is applied in more complicated
problems such as [25,26]. This is the main reason for
applying BLPP in the current research.

To summarize, in this paper, we extend the
previous studies by incorporating numerous deci-
sion variables and constraints into a decentralized
manufacturer-distributer supply chain and developing
two bi-level programming models to simultaneously
determine the optimal policies of the channel members
in terms of pricing, inventory, advertising, and demand
allocation.

3. Problem description

Consider a bi-level supply chain including one man-
ufacturer and one distributor. The manufacturer
wholesales the product to his exclusive distributor at a
wholesale unit price (w); applying a retail pro�t ratio
(r), the distributor sells the goods from its warehouses
to di�erent markets. The distributer possess J ware-
houses with given capacities (bj ; j = 1; 2; � � � ; J) and
di�erent geographic locations at various distances from
the markets. On the other hand, it is assumed that
there are K di�erent markets in terms of size, price
elasticity of demand, and the response to global and
local advertising e�orts. Figure 1 depicts the structure
of the proposed manufacturer-distributor supply chain.

According to the assumptions made by [15,17],
the demand function of each market can be considered
as follows:
Dk(p; ak; A)=zk:gk(p):hk(ak; A);

k=1; � � � ;K; (1)

p = w:(1 + r); (2)

Figure 1. Manufacturer-distributor supply chain .

where zk denotes the size of the kth market, and
functions gk(p) and hk(ak; A) reect the e�ects of
selling price (p), local advertising cost in the kth market
(ak), and global advertising cost (A) on the market's
demand.

Unlike a common assumption in many stud-
ies where the demand is a linear function of the
price [29,18], in this research, inspired by the concept
of price elasticity of demand as in the study conducted
by [19], a nonlinear function is considered to determine
the relationship between the demand of each market
and the selling price:

gk(p) = (1� �k:p)1=vk ; k = 1; � � � ;K; (3)

where �k is a positive constant and vk is the shape
factor of the demand curve in the kth market. Values
of vk < 1, vk = 1, and vk > 1 yield convex, linear, and
concave demand function, respectively. The speci�c
demand curve for each market can be incorporated
into the model (in terms of its convex, concave, or
linear nature) by adjusting the parameter vk so as
to simultaneously study various consumer behaviors
encompassed by a single general demand function. It
is obvious that the condition p � mink=1;��� ;Kf1=�kg
should be veri�ed to avoid negative demand.

The function proposed by [18] is used to model
advertising e�ect:

hk(ak; A) = n1
k

p
A+ n2

k
p
ak; k = 1; � � � ;K; (4)

where n1
k and n2

k are positive constants that reect the
e�ect of global and local advertising on the demand of
kth market, respectively. This approach is followed by
other researchers as well [14,19].

The function hk is strictly increasing and concave
in A and ak(@hk@A > 0; @hk@ak > 0; @

2hk
@A2 < 0 and @2hk

@a2
k
<

0; k = 1; 2; � � � ;K). This means that as local or
global advertising expenditures increase, the resulting
earnings follow a continuously decreasing trend. In the
literature, such a concept is referred to as advertising
saturation e�ect [30]. Based on the above explanations,
the demand function would be the following:

Dk = zk(1� �kw(1 + r))1=vk [n1
k

p
A+ n2

k
p
ak];

k = 1; 2; � � � ;K: (5)

It is assumed that total demand (D0 =
PK
k=1Dk) is

completely covered by the distributor and the man-
ufacturer. For this purpose, total induced demands
by pricing and advertising policies shall exceed neither
total capacity of the distributor warehouses nor the
production capacity of the manufacturer (G). There-
fore, we have:

D0 =
KX
k=1

Dk � min

8<: JX
j=1

bj ; G

9=; : (6)
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In this research, inventory holding cost incurred by the
manufacturer and each warehouses of the distributor
are separately addressed. It is assumed that the
manufacturer produces total demand of markets (D0)
within lots of Q0 units and delivers each lot to the
warehouses based on their demand shares. Denoting
the production (replenishment) interval as T and the
demand of jth warehouse as dj , the manufacturer
deliversQ0 = D0:T units of product to the distributor's
warehouses in each interval. The demand share of
each warehouse from the production lot is calculated
as Qj = dj=D0; (j = 1; � � � ; J). Assuming two
warehouses, the inventory levels of the manufacturer as
well as distributor warehouses are shown in Figure 2.

When it comes to product distribution, one of
the signi�cant expenditures is the transportation cost.
Considering the fact that real-world supplying centers
are normally far from the demanding ones, it is very
important to calculate and incorporate such costs into
the pro�t function for the distributor. Two types of
product handling costs are considered in this research:

- Type 1: Transportation cost from the manufacturer
stock to any of the distributor's warehouses;

- Type 2: Transportation cost from the distributor's
warehouse to any of the markets.

In addition, it is assumed that, based on the agreement
achieved between the manufacturer and the distributor,
the delivery place of the products is manufacturer's
stock. Therefore, both types of transportation cost will
be incurred by the distributor.

Figure 2. Inventory levels of the manufacturer and
distributor warehouses.

In each replenishment cycle, the manufacturer
delivers Qj product units to the distributor's jth
warehouse. Therefore, Type 1 transportation cost can
be assumed to be a function of lot size (Qj) (see
Figure 3).

Indicator variable, yji , can be de�ned to model
Type 1 transportation cost as follows:

yji =

(
1; if qi�1 � Qj < qi
0; Otherwise

Assuming that all distributor's warehouses follow the
same pattern as Type 1 transportation cost, the fol-
lowing constraints must always be ful�lled to achieve a
feasible solution:

qi�1:yji �Qj<qi:yji +M:(1�yji );
i = 1; � � � ; I; j = 1; � � � ; J; q0 = 0; (7)

IX
i=1

yji = 1; j = 1; � � � ; J; (8)

where M denotes an extremely large positive constant.
As the transportation is repeated in every replenish-
ment cycle, the total Type 1 transportation cost for
the distributor's jth warehouse can be calculated as
follows:

L1
j =

1
T
:
IX
i=1

siyji ; j = 1; � � � ; J: (9)

On the other hand, the distributor is incurred by cjk
units of Type 2 transportation cost as they transfer
one unit of product from jth warehouse to the kth
market. Such a cost can be seen as function of the
distance of the warehouse from the desired market.
Assuming a total of xjk products to be carried from the
distributor's jth warehouse to the kth market within
the planning interval, total Type 2 transportation
cost for the distributor's jth warehouse (L2

j ) can be
expressed as follows:

L2
j =

KX
k=1

cjk:xjk; j = 1; � � � ; J: (10)

Figure 3. Levels of Type 1 transportation cost.
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The problem of minimization of Type 2 transportation
cost is equal to an assignment problem in which supply
centers are the distributor's warehouses and demand
ones are the markets:

min
JX
j=1

KX
k=1

cjkxjk;

S.t.

KX
k=1

xjk � bj ; j = 1; � � � ; J;

JX
j=1

xjk = Dk; k = 1; � � � ;K; xjk � 0:

In the above optimization problem, the �rst
constraint ensures that total product shipped from
the distributor's jth warehouse to di�erent markets
will not exceed the warehouse capacity. In addition,
total product units delivered from the distributor's
warehouses to the kth market should be equal to the
demand raised by that market; this is guaranteed by
the second constraint.

Table 2 reports the list of decision variables in
the described manufacturer-distributer supply chain
problem. We assume that the manufacturer decides on
wholesale price, global advertising cost, participation
rate in local advertising cost, and production (replen-
ishment) interval for all warehouses. On the other side,
distributer controls retail pro�t ratio, local advertising
cost in each market, number of products to be delivered
from each of the warehouses to each market, and the

Table 2. List of decision variables.

Variables controlled by manufacturer
w Wholesale price
A Global advertising cost
T Production (replenishment) interval
� Participation rate in local advertising cost
Variables controlled by distributer
r Retail pro�t ratio

ak
Local advertising cost in the kth market
(k = 1; 2; � � � ;K)

xjk
Number of product units to be shipped
from the distributor's jth warehouse to the
kth market (j = 1; 2; � � � ; J , k = 1; 2; � � � ;K)

yji

Indicator variable indicating whether
to select the ith transportation cost
level by the distributor's jth warehouse
(i = 1; 2; � � � ; I, j = 1; 2; � � � ; J)

level of Type 1 transportation cost for each warehouse.
In the following, two bi-level programming models are
proposed based on two power scenarios.

3.1. Manufacturer-Stackelberg model
In this model, the manufacturer is the leader while
the distributor acts as follower. Considering the
pro�t maximization to be the objective function of
both upper-level (manufacturer) and lower-level (dis-
tributer) optimization problems, the bi-level program-
ming model will be as follows:

max
w;A;T;�

�M =(w � f):D0 � 1=T:uM

�D0T=2:�M :f �A� �:
KX
k=1

ak;

S.t.

(r; ak; xjk; yji ) 2 arg max�D = r:w:D0

�1=T:
JX
j=1

ujD � w:T=2
JX
j=1

KX
k=1

xjk:�jD

�(1� �):
KX
k=1

ak � 1=T:
JX
j=1

IX
i=1

si:yji

�
JX
j=1

KX
k=1

cjk:xjk;

D0 =
KX
k=1

Dk � min

0@ JX
j=1

bj ; G

1A ;

KX
k=1

xjk � bj ; j = 1; 2; � � � ; J;

JX
j=1

xjk = Dk; k = 1; 2; � � � ;K;

qi�1:yji �
KX
k=1

xjk:T < qi:yji +M:(1� yji );

i = 1; 2; � � � ; I; j = 1; 2; � � � ; J; q0 = 0;

IX
i=1

yji = 1; j = 1; 2; � � � ; J;

r; ak; xjk�0; j=1; 2; � � � ; J; k=1; 2; � � � ;K;
yji = 0 or 1; i = 1; 2; � � � ; I; j = 1; 2; � � � ; J;
A � 0; 0 � � � 1; " � T � 1; w � f:
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The manufacturer's pro�t is obtained by subtracting
setup cost, inventory holding cost, and costs of global
advertising as well as participation in local advertising
activities from his revenues. Further, the distributor's
pro�t will be equal to their revenues minus the sum of
ordering cost, inventory holding cost, local advertising
cost, and transportation costs of Types 1 and 2.

From the structure of the model, it is obvious that
level 2 (distributor) optimization problem is seen to
be one of the constraints in the level 1 (manufacturer)
optimization problem.

3.2. Distributor-Stackelberg model
Transmitting the power from the manufacturer to the
distributor, we arrive at the distributor-Stackelberg
model with switched roles where the distributor leads
the chain with the manufacturer as the follower:

max
r;ak;xjk;yji

�D = r:w:D0 � 1=T:
JX
j=1

ujD

� w:T=2
JX
j=1

KX
k=1

xjk:�jD � (1� �):
KX
k=1

ak

� 1=T:
JX
j=1

IX
i=1

si:yji �
JX
j=1

KX
k=1

cjk:xjk;

S.t.

(w;A; T; �) 2 arg max �M = (w � f):D0 � 1=T:uM

�D0T=2:�M :f �A� �:
KX
k=1

ak;

D0 =
KX
k=1

Dk � min

0@ JX
j=1

bj ; G

1A ;

KX
k=1

xjk � bj ;

j = 1; 2; � � � ; J;
JX
j=1

xjk = Dk; k = 1; 2; � � � ;K;

qi�1:yji �
KX
k=1

xjk:T < qi:yji +M:(1� yji );

i = 1; 2; � � � ; I; j = 1; 2; � � � ; J; q0 = 0;

IX
i=1

yji = 1; j = 1; 2; � � � ; J;

A � 0; 0 � � � 1; " � T � 1; w � f;

r; ak; xjk�0; j=1; 2; � � � ; J; k=1; 2; � � � ;K;
yji = 0 or 1; i = 1; 2; � � � ; I; j = 1; 2; � � � ; J:

The optimal solution to a bi-level programming prob-
lem is referred to as Stackelberg Equilibrium. Consid-
ering the presence of non-linear functions as objective
and constraints in both the proposed models and the
complexity of solving a bi-level programming problem
that, even in its simplest form (linear objective function
and constraint), has been proved to be NP-hard,
two genetic algorithms with hierarchical structure are
developed to provide near optimal solutions for the
bi-level programming models in the next section. It
is worth noting that although algorithms based on a
local search structure [31-35] can be considered to deal
with the research problem, algorithms accompanied
by a population-based structure present better perfor-
mance. The reason lies in the fact that a basic local
search algorithm providing a single solution in each
iteration might not be able to generate good quality
solutions for such a complex problem in a reasonable
time.

4. Genetic algorithms

Genetic Algorithm (GA) is one the most robust natural
evolution-based stochastic search techniques designed
by the principles of genetic processes in biologic or-
ganisms. Among the features of this meta-heuristic
algorithm is that it does not require any particular
condition, such as di�erentiability or convexity of
the objective function, or problem constraints to be
applicable [36].

Emphasizing such a distinctive feature, the
present research develops two hierarchical GAs for
solving bi-level programming model. Each hierarchical
GA is composed of two GAs in two di�erent levels,
one for solving the upper-level problem and the other
for solving the lower-level one; these are related to
each other. In each iteration of the upper-level GA,
a full run of the lower-level GA is undertaken and the
obtained solution is fed into the upper-level algorithm.

4.1. Representation
Figure 4 demonstrates how the decision variables of
manufacturer and distributer are represented as chro-
mosomes in the proposed GAs. The distributor's
problem involves 4 sets of decision variables out of
which xjk and yji sets can be computed based on the
�rst pair of sets, i.e. r and ak.

Figure 4. Chromosome representation.
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4.2. Initialization
Our approach to deal with the existing constraints is to
analyze and identify the relations among the decision
variables so as to set allowed ranges for each decision
variable in order to prevent infeasible solutions from
being generated. Eqs. (11) and (12) are considered
as the main constraints in the proposed optimization
models:

w:(1 + r) � min
k=1;��� ;K

�
1
�k

�
; (11)

KX
k=1

zk(1� �k:p)1=vk
h
n1
k

p
A+ n2

k
p
ak
i

� min

8<: JX
j=1

bj ; G

9=; : (12)

4.2.1. Manufacturer-Stackelberg model
Assuming the minimum expected retail pro�t ratio of
MAMD (Minimum Attractive Margin of distributer)
for the distributor, the allowed ranges for variables w
and A are calculated based on Eqs. (11) and (12) as
follows:

f � w �
min

k=1;��� ;K
n

1
�k

o
1 + MAMD

; (13)

0 � A �
0@ min

nPJ
j=1 bj ; G

oPK
k=1 zk(1� �k:pmax)1=vk :n1

k

1A2

;

pmax = min
k=1;��� ;K

�
1
�k

�
: (14)

Furthermore, similar to the presented models, we have
" � T � 1 and 0 � � � 1. Once the values of w
and A are determined in each iteration of the level 1
algorithm, an upper limit for r can be calculated from
the equation below:

rU =
min

k=1;��� ;K
n

1
�k

o
w

� 1: (15)

In order to compute the lower limit for r, we de�ne the
function f(r) as follows:

f(r) = min

8<: JX
j=1

bj ; G

9=;
�

KX
k=1

zk (1� �k:w(1 + r))1=vk n1
k:
p
A: (16)

Considering the upper limit de�ned in the previous
step, one may prove that the derivative of f(r) is always
a positive value except for r = rU :

f 0(r)=
KX
k=1

�k:w
vk

:zk:n1
k

p
A(1��k:w(1+r))1=vk�1�0:

(17)

Knowing that f(r) is a strictly increasing function, the
Newton-Raphson method can be used to determine the
lower limit for r.

Accordingly, taking r0 = rU and running the
algorithm until the termination criteria are reached, an
approximate root of f(r) can be calculated. Denoting
the root by ~r, the lower limit for the decision variable
r is determined as follows:

rL = max f~r;MAMDg : (18)

In contrast to the manufacturer's variables (level 1), the
distributor variables (level 2) including r and ak are not
independent in terms of value. That is, the value taken
by each of them a�ects the upper and lower limits for
the other variable. Therefore, once freely set, they may
result in violation of Constraint (12).

Thus, the value of decision variable r is randomly
generated within the allowed range of r 2 [rL; rU ].
In the next step, one of the markets is randomly
selected for which the upper limit ak is calculated
via Constraint (12). Then, a random value of ak is
generated within the calculated range and the process
continues until the values of all ak, k = 1; � � � ;K, are
assigned.

4.2.2. Distributor-Stackelberg model
Based on Eq. (11) and assuming the minimum expected
wholesale pro�t ratio of MAMM (Minimum Attractive
Margin of anufacturer) for the manufacturer, we have:

0 � r �
min

k=1;��� ;K
n

1
�k

o
f:(1 + MAMM)

� 1: (19)

Knowing the value of r, the values of ak variables can
be obtained similar to the algorithm presented in the
previous section. In the above-mentioned algorithm,
the value of p is set to its lower limit in order to
guarantee the satisfaction of Constraint (12) in the
lower-level GA:

p = pL = wL:(1 + r); wL = f:(1 + MAMM):

According to the previous discussions, the allowed
ranges of decision variables of the manufacturer are
determined by Eqs. (20) to (22), as shown in Box I,
to ensure that Constraints (11) and (12) are satis�ed.
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f:(1 + MAMM) � w �
min

k=1;��� ;K
n

1
�k

o
1 + r

; (20)

0 � A �

0BBBB@
min

(
JP
j=1

bj ; G

)
� KP
k=1

zk(1� �k:w:(1 + r))1=vkn2
k:
pak

KP
k=1

zk(1� �k:w:(1 + r))1=vkn1
k

1CCCCA
2

; (21)

� 2 [0; 1] and T 2 ["; 1]: (22)

Box I

4.3. Fitness evaluation
Since the �tness function has positive aspect and its
value is desired to be increased, the objective functions
for level 1 and level 2 problems, i.e. the pro�t gained
by the members, are taken as �tness functions for the
GAs. In order to evaluate the generated solutions for
the level 1 problem, the values of decision variables in
the level 2 problem must be determined in advance.
For this purpose, the upper-level GA, during the step
of �tness evaluation, heads into the lower-level GA and
the optimal (near optimal) values of decision variables
in level 2 are obtained by using the values of decision
variables from level 1 and performing a full run of the
lower-level GA.

Knowing that each solution of the distributor
problem contains a set of values of r and ak, the
value of xjk is determined by solving the assignment
problem (i.e., the transportation problem described in
the previous section).

Being a part of the objective function and con-
straints of the Stackelberg models, this linear optimiza-
tion problem is solved by MATLAB linear optimization
tools at each round of �tness evaluation in the lower-
level GA. Once the values of xjk are determined, the
optimal values of yji are calculated using Eqs. (7)
and (8).

4.4. Selection operator
In the developed GAs for both Stackelberg models, the
Roulette Wheel method with selection pressure is used
to select parent chromosomes for cross over operation,
while random selection approach is followed to select
parent chromosome for mutation.

The concept of selection pressure refers to the de-
gree of desirability provided by a better solution (with
higher �tness). The higher the value of this parameter,
the higher will be the desirability of solutions with
high �tness and the lower will be the desirability of
the solutions with low �tness values [37].

Since the convergence of a GA is highly dependent

on the selection pressure parameter, it is important
to set a proper value for this parameter. If it is
underestimated, it will take a longer time for the
algorithm to converge, i.e. unnecessarily excessive time
will be wasted to reach the solution. However, if it is
set at a very high value, the algorithm will come to a
premature convergence and gets trapped within local
optima [37]. Denoting the selection pressure parameter
�(� � 0), the probability of the ith solution in the
population to be selected can be determined via the
following relationship:

Pr(i) =
Fit(i)�PnPop

i=1 Fit(i)�
; i = 1; � � � ; nPop;

where nPop is the population size and Fit(i) is the
�tness value for the ith solution. It is obvious that:

Pr(i) =

8>>>>>><>>>>>>:
1

nPop if � = 0
1 if � =1 and the ith solution

is the best solution
0 if � =1 and the ith solution

is not the best solution

4.5. Crossover operator
In each iteration of the GAs, Nc solutions, out of the
previous population, are selected via Roulette Wheel
method for crossover operation. Denoting crossover
probability by Pc, which is among parameters of a GA,
the value of Nc can be calculated via the following
equation:

Nc = 2�
�
Pc:nPop

2

�
:

Arithmetic crossover operator is used to generate o�-
spring, which is a linear combination of the parent
chromosomes. Figure 5 depicts parent chromosomes
X and Y , each composed of n components (genes).
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Figure 5. Two sample chromosomes.

O�spring chromosomes are generated via the
following relationships [38]:

xnew
i = �:xi + (1� �):yi; i = 1; � � � ; n;
ynew
i = (1� �):xi + �:yi; i = 1; � � � ; n;

where � is a positive constant randomly selected in each
step of operator implementation. It is clear that if 0 �
� � 1, each gene in an o�spring chromosome would
have a value within the range of values of corresponding
genes in its parent's chromosomes.

In this research, in order to diversify reproduced
solutions, the value of � is randomly generated in the
range of [�; 1+]( � 0). Selecting a higher value for
 allows for producing higher or lower values than the
values for the parent chromosomes, so as to enhance
diversi�cation across the reproduced solutions. The
above mentioned crossover operator is used in lower
and upper level GAs within both Stackelberg models.

4.6. Mutation operator
Within each iteration of the proposed GAs, Nm solu-
tions are selected via random selection approach from
the previous population to apply mutation. Denoting
mutation probability by Pm as one of the GA parame-
ters, Nm can be determined via the following equation:

Nm = dPm:nPope:
The mutation operator applies to nm = n: m out of n
components (genes) in the selected parent chromosome.
In this relation,  m denotes mutation e�ectiveness rate
(0 �  m � 1), which is considered to be a parameter
of GA.

The value of ith component within the selected
parent chromosome (xi) changes during the mutation
process and a new random value is assigned to it. The
new value of the ith component within the selected
parent chromosome (xnew

i ) is obtained from a normal
probability distribution with xi and �2 being its mean
and variance, respectively (xnew

i � N(xi; �2)).
Standard deviation (�), as mutation step length,

is determined as being proportional to the search space
width:

� = �� (xi � xi);
where � is a constant positive coe�cient ranging from
0 to 1 (0 < � < 1), while xi and xi are the lower and
upper limits of the ith component within the parent

chromosome, respectively. The longer the mutation
step length (�), the higher diversi�cation and lower
intensi�cation will be realized, and vice versa. We
considered � = 0:1 in the proposed GAs for solving
Stackelberg models.

4.7. Correction of infeasible solutions
Except for ak, all decision variables are limited within
the previously calculated ranges. In order to rectify the
values of ak variables, one of the markets is randomly
selected and its ak is multiplied by the �xed value of
0.99. This process continues until Eq. (12) is satis�ed.
For calculating the value of the mentioned equation in
distributer-Stackelberg model, it is assumed that A = 0
and W = WL = f:(1 + MAMM).

4.8. Reproduction and termination criterion
For all developed GAs, new generations are formed
based on the elitism approach (merging old solutions
with new ones and selecting nPop better solutions).

Furthermore, the termination criterion for all
algorithms is set to be reaching a given number of
iterations (maxIt). This limit is considered as one of
the parameters of the GAs as well.

The steps of the developed hierarchical GAs for
manufacturer-Stackelberg and distributer-Stackelberg
models are demonstrated in Figures 6 and 7, respec-
tively.

In the following, we use design of experiment
approach to set the parameters of the four developed
GAs. Table 3 reports the levels considered for the
parameters.

Table 4 contains the results of implementing a
full factorial design including 73 test combinations
(treatments), each being comprised of 2 runs, along
with selected values for parameters. As the lower-
level GAs need the values of decision variables of the
upper-level GAs, for each test, the mentioned values
are randomly generated in such a way that reasonable
relations among the variables are respected.

5. Computational experiments

First, we present a numerical example. Then, 15
problem samples are de�ned and the obtained results
are compared.

In order to analyze the results, three test problems
are designed in terms of the number of warehouses (J)
and the number of markets (K) and for each one, �ve

Table 3. Levels of parameters.

Parameter: nPop maxIt � pc  pm  m
Level 1: 30 50 1 0.5 0.5 0.45 0.4
Level 2: 40 80 1.5 0.6 1 0.55 0.5
Level 3: 50 100 2 0.7 1.5 0.6 0.6
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Figure 6. Hierarchical GA for manufacturer-Stackelberg model.
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Figure 7. Hierarchical GA for distributer-Stackelberg model.
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Table 4. Results of GAs parameters settings.

Parameter
Manufacturer-Stackelberg

model
Distributor-Stackelberg

model
Level 1 Level 2 Level 1 Level 2

nPop 40 50 30 30
maxIt 80 80 80 80
� 1.5 1 1.5 1.5
Pc 0.7 0.7 0.6 0.7
 1 1.5 1.5 1.5
Pm 0.55 0.6 0.55 0.55
 m 0.6 0.6 0.6 0.6

Table 5. Speci�ed ranges of parameters for the problem samples.

Manufacturer Distributor Markets
Parameter Value Parameter Value Parameter Value

f U(50; 150)� 103 bj U(1; 4)� 105 zk U(10000; 50000)
�M 0.02 �jD 0.02 �k U(0:002; 0:005)
�M U(20; 50)� 105 �jD U(300; 700)� 103 vk U(0:5; 1:5)
G U(300; 500)� 103 cjk U(0; 5)� 103 n1

k U(0; 1:5)
MAMM 5% MAMD 5% n2

k U(0; 1:5)
qi [0; 15000; 25000]
si [1; 1:8; 2:4]� 103

problem samples with random parameters are consid-
ered. Table 5 reports the speci�ed ranges within which
to generate parameter values in a random fashion. The
ranges are determined based on the comments received
from experts in the �eld of automotive spare parts
production and distribution in Iran. As the type of
considered spare part, in terms of its value, weight,
consumption rate, and application in the car, a�ects
the value of problem parameters, the liner and piston
kit of the car engine is considered in this research.

As a numerical example, the �rst problem sample
from test problem 1 with its data being indicated
in Table 6 is solved by using developed hierarchical
algorithms; the convergence diagrams corresponding

to each of four genetic algorithms are presented in
Figures 8 and 9.

The values of decision variables of both the
manufacturer and the distributor are presented in
Table 7. Regarding the pricing policy, although the
same selling price of 222,000 is o�ered to the markets
in both Stackelberg models, the wholesale price for
the manufacturer and the retail pro�t ratio for the
distributor are higher when they are the chain leader.
The other point is that in the manufacturer-Stackelberg
model, the ratio of retail pro�t for the distributor
is 5% which is equal to its minimum allowable value
(MAMD).

From the advertising perspective, the manufac-

Figure 8. Convergence of the upper-level (a) and lower-level (b) GAs in the manufacturer-Stackelberg model.
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Figure 9. Convergence of the upper-level (a) and lower-level (b) GAs in the distributer-Stackelberg model.

Table 6. Parameter values for the problem sample 1 in the �rst test problem.

Manufacturer Distributor Markets
Parameter Value Parameter Value Parameter Value

f 135,000 [b1; b2] [300; 200]� 103 [z1; z2; z3] [80; 40; 65]� 103

�M 0.02 [�1
D; �2

D] 0.02 [�1; �2; �3] [3:5; 4:5; 4]� 10�3

�M 3,000,000 [�1
D; �2

D] [350; 400]� 103 [v1; v2; v3] [1, 0.8, 1.3]
G 400,000 [c11; c21] [2000,2000] [n1

1; n1
2; n1

3] [0.4, 0.5, 0.45]
MAMM 5% [c12; c22] [1000,4000] [n2

1; n2
2; n2

3] [0.3, 0.2, 0.1]
[c13; c23] [3000,1000]
MAMD 5%

[q1; q2; q3] [0, 15000, 25000]
[s1; s2; s3] [1000, 1800, 2400]

Table 7. Solution results for the problem sample 1 in the �rst test problem.

Level Decision variable
The value of decision variable

Manufacturer-Stackelberg
model

Distributor-Stackelberg
model

Manufacturer

w 211.640 141.660
A 3.644 zero
T 0.078 0.057
� zero 71.2%
�M 30,575,487 2,558,645

Distributor

r 5% 56.71%
a1; a2; a3 1154, 0, 26401 1120, 14836, 33775
x11; x21 194, 789, 0 179, 695, 0
x12; x22 0, 0 173, 0
x13; x23 5210, 200000 22180, 200000
y1

1 ; y1
2 ; y1

3 0, 1, 0 1, 0, 0
y2

1 ; y2
2 ; y2

3 0, 1, 0 1, 0, 0
�D 3, 474, 010 31, 579, 805

System
p 222.212 222

D1; D2; D3 194789, 0, 205210 179695, 173, 222180
�M+D 34, 049, 497 34, 138, 450
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turer's rate of participation in local advertising cost (�)
is zero and 71.2% in the manufacturer- and distributer-
Stackelberg models, respectively. This means that
when the manufacturer is the leader, they do not
exhibit any interest in participating in local advertising
cost as they attempt to maximize their pro�t via
increasing the wholesale price. Regarding the inventory
management, the production (replenishment) interval
is seen to be longer in the manufacturer-Stackelberg
model. Since, based on the model assumptions,
the manufacturer controls this variable; they tend to
lengthen the interval, to increase the production lot
size and to decrease the frequency of replenishment.
Therefore, the value of this variable is observed to be
higher in the manufacturer-Stackelberg model.

From the demand allocation perspective, in each
of Stackelberg models, the optimized allocation of
markets' demands to the distributor's warehouses is de-
termined along with Type 1 transportation cost levels.

According to the results of the numerical example,
the pro�ts of the entire system in both Stackelberg
models are approximately equal. However, members
will gain considerably higher share of the pro�t when
they are the chain leader.

We examine the above �ndings in other 14 prob-
lem samples. For each sample, the manufacturer-
Stackelberg and the distributor-Stackelberg models are
solved using the developed hierarchical GAs, and the
members' pro�ts as well as the system pro�ts are
compared; the results for all 15 problem samples are
summarized in Table 8.

Interestingly, the system pro�ts for manufacturer-
Stackelberg and distributer-Stackelberg models are al-
most equal in all problem samples. Stochastic nature of
GA, which provides near optimal solutions, can justify
the small and ignorable di�erence between the pro�ts.
In addition, the member, who is in leader position,
gains more share from the system pro�t. The diagrams
depicted in Figures 10-12 demonstrate the members'
pro�ts in test problems 1 to 3, respectively.

In order to validate the results of the proposed
GAs, we adopt an exhaustive grid search within the
domains of the decision variables to �nd near optimal
solutions for small-size problem instances (test problem
1 with J = 2 and K = 3).

Exhaustive grid search method creates a grid by
partitioning the ranges of decision variables into jointed
intervals and evaluates the �tness function for all
possible combinations. The intervals corresponding to
the best combination are more divided into subintervals
and the process is repeated until the length of the
last subinterval is less than a prede�ned tolerance.
Grid search is computationally expensive and does not
guarantee to �nd global optima; however, it can yield
a lower bound for the pro�t function of the leader.

Thus, for every problem sample of test problem 1,
we apply a grid search algorithm for each Stackelberg
model and compare the results with the output of the
corresponding GA (see Table 9). For optimization
of the follower's problem, we use nonlinear solver of
MATLAB optimization tool box in each iteration of
the grid search. As for the constraints, we use penalty

Table 8. A comparison between the pro�ts gained by the manufacturer and the distributor in two Stackelberg models.

Problem J K

S
am

p
le Manufacturer's bene�t Distributer's bene�t Total bene�t

M-Stackel.� D-Stackel.�� M-Stackel. D-Stackel. M-Stackel. D-Stackel.

Test 1 2 3 1 30,575,487 2,558,645 3,474,010 31,579,805 34,049,497 34,138,450
2 39,708,618 2,421,230 3,716,592 40,798,643 43,425,210 43,219,873
3 99,033,283 612,219 4,783,845 102,877,839 103,817,128 103,490,058
4 52,602,566 1,302,044 3,604,710 54,927,779 56,207,276 56,229,823
5 51,185,426 1,432,589 1,929,573 51,676,964 53,114,999 53,109,553

Test 2 3 5 1 30,421,220 1,534,660 2,406,874 31,237,772 32,828,094 32,772,432
2 37,832,976 1,404,526 2,387,680 39,330,579 40,220,656 40,735,105
3 12,300,976 1,135,689 1,051,341 12,815,147 13,352,317 13,950,836
4 16,588,114 1,375,383 2,028,718 17,230,058 18,616,832 18,605,441
5 29,566,234 797,181 1,760,325 30,466,863 31,326,559 31,264,044

Test 3 5 10 1 43,907,755 1,868,032 3,353,023 45,515,170 47,260,778 47,383,202
2 38,271,013 1,789,120 3,460,492 39,575,125 41,731,505 41,364,245
3 41,542,421 730,351 2,230,068 43,329,936 43,772,489 44,060,287
4 25,340,773 1,872,709 2,915,538 26,483,869 28,256,311 28,356,578
5 44,179,433 2,470,293 3,860,275 46,220,896 48,039,708 48,691,189

�M-Stackel.: Manufacturer-Stackelberg model; ��D-Stackel.: Distributor-Stackelberg model



O. Amirtaheri et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 891{910 907

Figure 10. Comparison between the manufacturer and the distributor pro�ts in test problem 1.

Figure 11. Comparison between the manufacturer and the distributor pro�ts in test problem 2.

Figure 12. Comparison between the manufacturer and the distributor pro�ts in test problem 3.

Table 9. Results of test problem 1.

Sample

Manufacturer-Stackelberg
model (manufacturer pro�t)

Distributer Stackelberg
model (distributer pro�t)

Grid search GA Grid search GA

1 28,036,371 30,575,487 28,322,194 31,579,805
2 34,420,481 39,708,618 34,738,581 40,798,643
3 78,691,503 99,033,283 80,628,406 102,877,839
4 43,088,694 52,602,566 44,159,610 54,927,779
5 41,399,725 51,185,426 40,737,283 51,676,964
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function as a famous constraint handling mechanism to
prevent generation of infeasible solutions.

Experimental results in Table 9 indicate that
the proposed hierarchical GAs exceed the grid search
algorithm in �nding near optimal solution for both
Stackelberg models. It also reveals that the developed
grid search algorithms give appropriate lower bounds
for the proposed solution procedures.

To summarize the above results, we can conclude
that in a decentralized supply chain with the members
not cooperating with each other, the member with
superior decision-making power will always gain more
pro�t from the total pro�t available within the entire
system while keeping the other member signi�cantly
deprived of the system bene�ts. It should be noted
that MAMM and MAMD parameters in the developed
models guarantee a minimum pro�t for both the
manufacturer and the distributor, so that decreasing
these values or eliminating them from the models may
render the follower as being unpro�table.

6. Conclusions

This paper studied a decentralized manufacturer-
distributer supply chain and modeled the hierarchical
relationship between the members in the form of two
power scenarios. Solving bi-level programming models,
the optimal (near optimal) policies for each member of
the chain in terms of pricing, advertising, inventory,
and demand allocation were determined.

Two meta-heuristic genetic algorithms with hi-
erarchical structure were developed to tackle bi-level
programming models; they were then validated by
adopting two exhaustive grid search algorithms based
on the collected data from automotive spare parts
supply chain.

Furthermore, performing a set of computational
experiments, a comparison was made over members'
pro�ts as well as those of the entire system in Stackel-
berg models.

According to the results obtained, the system
will gain approximately the same amount of pro�t
under both power scenarios; however, each member's
share depends on its position within the hierarchical
structure. Putting it in other words, when compared to
the follower, the chain leader always captures a major
share of the system pro�t.

Aligned with the previous studies, the above
results once more express the necessity of coordination
among and integration of the supply chain members.
As the coordination level increases across the members
and the hierarchical structure of the decision-making
process fades, system pro�t will increase compared
to that of a decentralized structure, so that one can
implement adequate mechanisms in terms of surplus
pro�t sharing to persuade members to cooperate and

get coordinated with each other. Accordingly, devel-
oping incentive mechanisms is among the topics to be
addressed in future researches.
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