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Abstract. In this study, an optimal integrated vendor-buyer inventory model with
defective items is proposed. Most researches on defective items assumed that an inspection
process was carried out by the buyer. We consider that the vendor conducts the inspection
process and disposes defective items in multiple batches. We prove that the function of
annual cost is convex, and obtain closed-form expressions. A solution procedure is used to
derive the optimal order quantity, the number of shipments, and the number of defective
item disposals. Numerical examples are provided to illustrate our model. Setting the
fraction of defective items to zero, the numerical examples indicate that the proposed
model can result in the solutions to the existing models without considering defective
items. Moreover, a sensitivity analysis is used to reveal the effects of cost parameters on
the optimal solution. We show that when the disposal cost is relatively low, a multiple
disposals strategy may perform better than a single disposal strategy.

(© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

The problem of vendor-buyer integration is considered
as the foundational research topic in supply chain man-
agement. The objective is to minimize the total system
cost or maximize the entire system profit. One of the
first integrated inventory models consisting of single
vendor and single buyer was proposed by Goyal [1].
Banerjee [2] modified Goyal’s [1] model considering a
finite production rate for the vendor who followed a
lot-for-lot shipment policy. Goyal [3] relaxed the lot-
for-lot policy and proposed an integer multiple of equal-
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size vendor production quantity shipments. Lu [4] then
generalized Goyal’s [3] model by relaxing the assump-
tion that the supplier could supply the retailer after
completing a production batch. Goyal [5] developed
a policy with which the shipment sizes increased by
a fixed factor, which was equal to the production
rate divided by the demand rate. Hill [6] proposed a
generalized policy for shipment batches increasing by a
geometric growth factor. Several researchers (e.g., [7-
9]). proposed different batching and shipping policies
for the integrated inventory models.

Since then, many extensions have been made
to the basic integrated production inventory models.
Huang [10] investigated the effect of quality on lot
sizes for a single-vendor single-buyer inventory sys-
tem. Nieuwenhuyse and Vandaele [11] proved that
lot splitting policies would benefit both the supplier
and the buyer. Ertogral et al. [12] developed an
integrated vendor-buyer model under equal-size ship-
ment and added transportation cost to the model.
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Lin [13] proposed an integrated single-vendor single-
buyer inventory model with backorder price discount
and variable lead time. Sajadieh et al. [14] discussed
an integrated model where the demand was dependent
on the amount of goods displayed on the shelf. Sari et
al. [15] considered an integrated vendor-buyer problem
where the supplier offered temporary price discounts
to the buyer during a sale period. Readers are referred
to Glock [16] for a comprehensive review of integrated
systems. Rad et al. [17] suggested a joint economic
lot sizing model of a single-vendor single-buyer supply
chain for items with imperfect quality and shortages
under price-sensitive demand. Lee and Fu [18] ana-
lyzed an integrated production and delivery quantity
model in a make-to-order producer-buyer supply chain.
Sarakhsi et al. [19] studied a joint economic lot-sizing
problem for a single-vendor single-buyer system where
the demand was dependent on selling price. Some
recent works on integrated vendor-buyer models have
been done by many researchers, such as Lin [20], Yi &
Sarker [21], Wee & Widyadana [22], Ouyang et al. [23],
Giri & Sharma [24], and Chung et al. [25].

Rosenblatt and Lee [26] was one of the first
models to consider imperfect production inventory
models. Salameh and Jaber [27] presented a classic
economic order quantity model in which the order lot
contained a random proportion of imperfect quality
items. Many extensions and modifications regarding
quality issues have been researched recently. Wee
et al. [28] and Eroglu and Ozdemir [29] extended
Salameh and Jaber’s [27] inventory model to consider
shortages with complete backorders. Subsequently,
Chang and Ho [30] revisited the inventory model
of Wee et al. [28] and derived closed-form optimal
solutions by applying Renewal Reward Theory. Hsu
and Yu [31] studied a one-time-only discount policy
for an economic order quantity model that considered
imperfect quality items. Maddah et al. [32] presented
an approach to avoid shortages during the screening
period. Khan et al. [33] provided a detailed and
complete review for economic order quantity models
with imperfect quality items. Chang et al. [34] and
Yassine et al. [35] developed an economic production
quantity model for imperfect quality items. Rezaei
and Davoodi [36,37] provided inventory models that
considered supplier selection and imperfect quality.
Moussawi-Haidar et al. [38] and Rezaei [39] investigated
economic order quantity models where imperfect items
were screened with sampling inspection plans. Hsu
and Hsu [40] provided economic production quantity
models to determine the optimal lot size and backorder
quantity under imperfect productions. Taleizadeh
et al. [41] proposed an extension to economic order
quantity model with partial backordering and repara-
ble products. Some other recent inventory models
that considered imperfect quality items are Wahab et

al. [42], Sarkar [43], Hsu & Hsu [44], Chang [45], Jaber
et al. [46], Rezaei & Salimi [47], and Taleizadeh et
al. [48].

This paper extends Salameh and Jaber [27] model
to an integrated production inventory model with
defective items. We assume that the integrated policy
for the proposed model is accepted by the vendor
and the buyer. To maintain a long-term cooperation,
the vendor would deliver 100% good products to the
buyer. In addition, as shown in Rezaei and Salimi [47],
conducting the inspection process by the buyer may
not be a cost-efficient strategy. We investigate that
the products are screened by the vendor while some
literature such as Huang [10] and Wu et al. [49]
assumed that the buyer conducted inspection process
whenever receiving products. We relax the assumption
of defective items removed from stock after screening
to allow the defective items be scrapped by multiple
disposals during the production period.

The paper is organized into five sections. Sec-
tion 1 provided an introduction. The notation and
assumptions for this study are stated in Section 2. The
model description, formulation, and solution procedure
are presented in Section 3. Section 4 provides the
numerical examples to illustrate the solution procedure
for determining the optimum. Conclusions and sugges-
tions for future research are given in Section 5.

2. Notation and assumptions

We summarize the notation used in this study as

follows:

T Order cycle time

P Annual constant production rate

D Annual constant demand rate

Q Lot size of good quality items per
shipment (decision variable)

n Number of good quality items
shipments per order cycle (decision
variable)

nyr Number of defective item disposals
over a production period (decision
variable)

8 Random fraction of defective items,
a random variable with a known
probability density function; 0 < § <1

Sv Fixed production setup cost per
production batch

Sp Fixed ordering cost per order

hy Stock-holding cost for the vendor per
unit per year

hp Stock-holding cost for the buyer per

unit per year
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U Fixed cost of each disposal for defective
items
g Fixed cost of each shipment for good

quality items
TCuy(n,Q) Annual total relevant inventory cost
for the vendor

TCgr(n,Q) annual total relevant inventory cost for
the buyer
TC(N,Q) Annual total relevant inventory cost

for both parties
We make the following assumptions for this study:

Consider single vendor and single buyer;
The demand rate is known and finite;

The production rate is known and finite;

Ll

All products are 100% inspected by the vendor.
We assume that the inspection is included in pro-
duction process. The vendor conducts multiple
disposals of the defective items without salvage
value;

5. The good items are delivered to the buyer while the
defective ones are disposed from the vendor’s stock.
Thus, to meet the demand, it is constrained by: (1—
B)P > D,ie. P> % (Taking the expectation, it
yields P > E(ﬁ)D)7

6. The cost for facilitating multiple deliveries is the
responsibility of the buyer;

7. We assume that the buyer’s holding cost is greater
than the vendor’s holding cost, i.e. hg > hy;

8. Shortages are not allowed.

3. Model formulation

We consider a single-vendor single-buyer integrated
model where the buyer’s order quantity is manufac-
tured and delivered in multiple equal-batch shipments.
From the buyer’s order quantity, the vendor plans their
production batch and conducts the inspection process.
During the production run, the defective items are
scrapped by multiple disposals from the stock. The
disposal cost for the defective items is paid by the
vendor. The good quality products are spited into
small lot sizes that are delivered to the buyer over an
inventory cycle. The buyer incurs the shipment cost in
the multiple deliveries.

Figure 1 depicts the behavior of inventory levels
for the vendor and the buyer. Since the fraction of
defective items is 8 (or the fraction of good quality
items is 1 — 3), the vendor would produce % units
to meet the demand of n@ units during an order
cycle. The vendor delivers good items to the buyer
who receives n shipments with each lot size (). Since

the demand rate is D, the shipment interval is %

Vendor’s inventory level

A

Q/(1—p3)

y
Time
nQ/(1—-p)/P

T; T =nQ/D
&
>
S
5
HEANAANANANANNNN
§| > Time
2 Q/D

Figure 1. Vendor’s and buyer’s inventory levels with
n =& and ny = 3.

and the order cycle is %. During the production
period, the ’f?g defective item units are scrapped with

multiple disposals (or removals). Since the number of
the disposals per cycle is ny,, the defective items unit
in each disposal is %

The total relevant inventory cost for an integrated
inventory system includes the inventory costs from the
vendor and the buyer. The vendor’s cost comprises
setup cost, holding cost, and disposal costs. The
buyer’s cost consists of ordering cost, holding cost,
and shipment costs. Our purpose is to minimize the
annual total relevant inventory cost for both parties,
which contains the annual vendor’s and buyer’s costs.
Subsequently, we derive different inventory costs for the
vendor and the buyer.

3.1. Vendor’s inventory holding cost:

Figure 2 shows that the vendor’s holding inventory
(time-weighted inventory) per order cycle can be de-
rived by subtracting the shaded area from the bold
area. The bold area includes the areas above interval
T, and above interval T,. Referring to Figure 2, we
have:

_
Tl_m7 (1)
Q. wQ (@ Q
5= - w255 (5~ w=hp)
1 1
-1 (5~ 7575 @)

The bold area is derived as:
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nQ2 2D nD nD 1 1
Eq.(E))h _ 2D [(" -1+ P1-3) ~ P(1—B) T nu P 1-pZ (1—5))} b
T vV = nQ \%4
D
Q 2D nD nD 1 1
== |(n—-1+ — + — hy. 6
2 "V Pa—p P TwnP \a-p7 (-B)]" ©
Box 1
_ Eq. (3), we yield the vendor’s holding inventory per
s {nQB/( = B)/nas order cycle as:
@ )
£ | Accumulated inventory 712Q2 (TLM (1—6)4—6) ( 1 1 )
g or the vendor - +n(n—1 2f - -
: for the vend \ 2(1 - B)*nu P =09 p (1-p)P
-1 Q? 2 2D
nQ 2D 2D P(1-7)

Accumulated inventory
for the buyer

Q/(1-8)

J

Time

Ty = nQ/(1 - B)/ P T
T =nQ/D

Figure 2. Vendor’s accumulated inventory and buyer’s
accumulated inventory with n = 8 and nas = 3.

17 nMH(i_1)T1P—(¢—1)nTA14Pﬁ]

277/M i—1 a3
T T
+ {ilP —(i—1) 1Pﬁ} } +nQT,
v v

_ Q@ (1-8)+5)
2(1 - B)Yny P

+n(n—1)Q2<11)—(1_1ﬁ)P>. (3)

Subsequently, the shaded area is calculated from:
Q ReNE=y
H{Q+20+3Q+ +(n-1)Q} =7 ;m?

:”(”2—1)1)@ . (4)

Subtracting shades area, Eq. (4), from bold area,

__nD +nD 1 1 }
P(1-p8) nauP \(1-p)?* (1-0) (5)

Thus, we can obtain the vendor’s inventory holding cost
per year as shown in Box I.

3.2. Vendor’s setup cost

Since the vendor has one production per cycle time and
the setup cost per production is sy, the vendor’s setup
cost per year is:

Sy _ D
nQ/D = nQ°" ()

3.3. Vendor’s disposal cost

The number of disposals of the defective items is nyy,
the cost per disposal is u, and the cycle time is nQ/D.
Therefore, the disposal cost per year is:

nyu nuD

WQ/D WU (8)

Summing costs in Eqs. (6) to (8), we derive the annual
total relevant inventory cost for the vendor:

TCy (Q,n,npr) zg[(n— 1)+ P(iD—ﬁ)

3 nD +nD 1 3 1 ]h
PA-5) auP\(1-p2 -9/

D, nuD
nQSV TLQU

(9)
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3.4. Buyer’s inventory holding cost

Since the buyer’s demand rate is constant and buyer’s
maximal stock level is @, the buyer’s average inventory
is @/2. Hence, the buyer’s inventory holding cost per
year is:

%hB. (10)

3.5. Buyer’s ordering cost
Because the buyer places an order per cycle and the

cycle time is n@Q/D, the buyer’s ordering cost per year
is:

D

3.6. Buyer’s shipment cost
Since the buyer receives n shipments during a cycle
time, the buyer’s shipment cost per year is:
D
=g
Q
Summing the costs in Egs. (10) to (12), the annual
total relevant inventory cost for the buyer is:

TCr (Q,’I”L)Z %hB-l—%SB-F%g. (13)

Therefore, the annual total relevant cost for the vendor
and the buyer is the sum of Egs. (9) and (13):

rc (QvnanM) = TOM (QanvnM) + TCR (Qvn)

0 2D nD
:2[<”‘”+P<1—m TPU-B)

(12)

+ nD ! — ! ]h +£s
nuP\(1-p7 -8/1"" " 0"

nyD Q D D
—h — —g. 14
w0 u—|—2 B—|—anB+Qg (14)
Since (3 is a random variable with a known probability
density function, the expectation of TC(Q,n,myy) is
derived as:

_|_

_Q 2D nD
E(TC(Q,n,ny)) = 5 (n—1)+ 7 o~ 5 Ea
nD D nyD Q
Ey,— E))|hy + — “h
+nMP(b )]v-l—anv-F 0 ut S he

R
nQ Q"
S.t.
Q>0,n>0 and ny >0, (15)

where E, = E(1/(1 — 3)) and E, = E(1/(1 — 3)?).

Setting the number of defective item disposals
(ny) equal to one, our model is reduced to the
model with one disposal strategy for defective items.
Furthermore, setting the fraction of defective items (/3)
and the disposal cost (u) equal to zero, the model of
Eq. (15) is same as the model discussed in [50].

If Q, n, and nj; are assumed to be continuous
variables, the cost function of Eq. (15) is a convex
function (see Appendix A for the proof). Since n and
nys are discrete variables, we develop the following
approach to derive optimum. At a given set of n and
nyr, we first derive the optimal solution to Q. For the
given n and ny, taking the first and second derivatives
of E(TC(Q,n,np)) with respect to @, we have:

5B IC@nnsn) = 5 (1 + (=1 by
Dhy (nEb — (n + (n - 2) nM)Ea))
+
TLMP
D (sp + sy + nyu + ng)
- - , (16)
82
a—QzE (TC(Qn,np))
_ 2D (sp + sy +nyu +ng) >0 (17)

nQ3

From Eq. (17), it is clear that E(TC(Q,n,ny)) is a
convex function for n > 0 and ny; > 0. Setting Eq. (16)
equal to zero, we obtain the () value that minimizes cost
function as shown in Box II.

Putting Eq. (18) into Eq. (15), the total cost func-
tion will be obtained by Eq. (19) as shown in Box III.

To minimize E(T'C(n,ny)) in Eq. (19), the alge-
braic calculation is simplified when we take the square
of Eq. (19), since minimizing E%(T'C(n,nyr)) is same as
minimizing E(TC(n,n)). We have Eq. (20) as shown
in Box IV. Taking the first derivatives with respect to

2ny PD (sp + sv + nyu + ng)

@ (nnur) = \/nMn,PhB +hy[n?D(Ey — E.)+ny(n(n—1)P—n(n-2)DE,)]

Box II
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E(TC (n,num))=

{\/i\/nMnPhB +hy (02D (Ey—E,)+ny (n(n—1)P—n(n—2)DE,)) x \/nMPD (sB —l—sv—l—nMu—f—ng)}

nynP

(19)
Box III
E2 (TC (NJZM)) =
{ 2[nyPhp +hy (nD(Ey — E)+ny ((n—1)P —(n—2)DE,))] X [D(sp + sy +nyu+ ng) } (20)
nynP '
Box IV

n and njr, we get:

0
5. B2 (TC (n,ny)) = 2Dghy
_2D%ghy ((np +1) By — Bp)
nMP

2D (QDEahV + P(hB - hV))(SB + sy +npu)

n2P (21’)
9 _
%E (TC (nynn)) =
2Du (P (hg+ (n—1)hy) — (n—2) DE,hy)
nP
_2D2 (Ey — E,) (sg + sy +ng) hV. (22)

2
ny, P

Let n# and nf/[ be the solutions to O%EQ(TC("’
ny)) = 0 and 52— E*(TC(n,ny)) = 0, respectively;
we have:

n# =

nﬁ (2DE,hy + P (hp — hv))(sB + sy + n?&u)

ghv (D (B, — E,) +nt, (P — DEa)) (23)

#
Ny

. (24)

n#Dhy (Ey — E,) (sp + sy +n#g)
w(Php + hy ((n# -1HP - (n# —2)DE,))

We can employ numerical search methods to solve

Eqs. (23) and (24). Alternatively, applying mathemart-
ical software such as Mathematica or Maple, we derive
the following closed-form expressions of nﬁ and n*.
Substituting n# in Eq. (24) into Eq. (23) yields:

n# = \/D(EZ];_E‘;;]E;;;SV) > 0. (25)
#

It can be seen that n}, decreases as u increases.
Subsequently, substituting nf/[ in Eq. (25) into Eq. (23)
gives:

4 _ |(2DE.hy + P (hp — hy))(sg + sv)
e (P~ DE.) ghy

> 0.
(26)

In Appendix B, we prove the convexity of E?(TC
(n,ma)). Tt implies that E(TC(n,ny)) is also a
convex function because E?(TC(n,np)) is derived
from E(TC(n,np)). We demonstrate that n}t[ and
n# are, respectively, equal to n%, in Eq. (A.7) and n},
in Eq. (A.10) since E(TC(n,ny)) is the cost function
with the optimal @ shown in Eq. (18). Due to the
assumptions of hg > hy and P — DE, > 0, Egs. (25)
and (26) show that n# and n?@ are positive numbers
minimizing E?(TC(n,ny)) and E(TC(n,nyr)).

Since the optimal n and nj,; should be integers,
although n# and n}'\%{ are positive and not always
integer numbers, optimal n and nj; values should be
the integers around n* and nf/[ Let n# ™ (n%) and

n#" (nf;), respectively, denote the minimal integers
less than and greater than n#(n%,). Note that if

n#(n?@) is less than one, we let n#*~ = n#t = 1
(¥ = nf@"’ = 1) because zero is not feasible.

Let (n*,n%;) be the optimal integer solution
to E(TC(n,ny)). If E(TC(n,ny)) in Eq. (19) is
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minimized, we have: duction batch follows a uniform distribution with the
following probability density function:
* %)) = M R
E(TC (n",n}y)) = MIH{E (TC (n N )) , £ - 25, 0<B<004,
B 0, otherwise
E (Tc (n#*,nﬁ)) E (Tc (n#tnﬁ*)) :
The parameter values are as follows:
5 (TC’ (n#Jr,nf/fL)) }7 (27) e Production rate: P = 48,000 (unit/year)
e Demand rate: D = 12,000 (unit/year)
where: e Vendor’s setup cost: Sy = 500 (8/setup)
e Vendor’s holding cost: hy = 10 ($/unit/year)
(n*,ny) € {(n#_,nﬁ_) , (n#_,nféﬂ_) e Vendor’s disposal cost: u = 50 ($/disposal)
e Buyer’s order cost: Sp = 25 ($/order)
(n#+,n?¢[>, (n#+,nﬁ+) } e Buyer’s holding cost: hp = 12 ($/unit/year)
e Buyer’s shipment cost: g = 25 ($/shipment)
Substituting (n*,n%,) for (n,na) in Eq. (18), the Compute the expectation values:
optimal shipment quantity is derived by Eq. (28) as
shown in Box V. 1
The following solution procedure is provided to Bo=FE (1 - ﬁ) = 1.0206,
derive the optimal solution.
1
1. Compute n?’@ and n# from Egs. (25) and (26), E,=FE (2) = 1.0417.
respectively. The values of n#~, n#+, n#~ and 1-5)
+ . .
"7&/1 are obtained. If n?’é](n#) is less than one, then In Figure 3, we first illustrate that Eq. (19) is
ni = ”#f =1 (”#_ =n#t = 1); a convex function. The optimal solutions are derived
2. Derive the optimal solution to (n,n;): through the following procedures.

(i) & { (ot ) (o7

(17t (o7t
which results in the lowest cost decided from
Eq. (27);
3. From Eq. (18) or (28), the optimal shipment quan-
tity is derived, i.e. Q* = Q(n*,n},).
4. Numerical example

To illustrate the proposed model, we provide the
following examples:

Figure 3. The graphic diagram for the integrated total

Example 1. The imperfect fraction in each pro- relevant cost in Example 1.
Q(n"ny) =/ —— My ) il __ . (28)
W Pl hy (172D (By — Bo) + mig (0" (n” — 1) P— 0" (n° —2) DE,)]

Box V
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From Egs. (25) and (26), we get:

n#: (2DEahv+P(hB—hv))(SB+8v) — 448

(P — DE,) ghy o
D(E,—E,) (s +sv)
#o_ b B v) _
= =0.2
" \/ (P— DE,)u 0-27,
. . - + — +
which give n# =4, n# =5, and nﬁ; = nf/[ =1.

Using Eq. (19), we calculate:
E(TC (n#= %)) = B (TC (n#=,n%7))
= E(TC (4,1)) = $12,259.2,
E(TC (n#*0f)) = B (TC (n#*,0%7))

= E(TC (5,1)) = $12,242.9.

Therefore, we have the optimal solution: (n*,n%,) =
(5,1), which results in the lowest total relevant cost of
E(TC(n*,n%,)) = $12,242.9.

From Eq. (28), the optimal shipment size is Q* =
Q(n*,n},) = 274.44.

As mentioned in Section 2, by assuming the
fraction of defective items: 3 = 0, the disposal cost:
uw = 0, and the number of defective item disposals:
ny = 1, the cost function of Eq. (15) reduces to the
one without considering defective items. For the case
of no defective items, we show how our model derives
the optimum as follows.

Give the fraction of defective items: 5 = 0 (i.e.,
E, = E, = 1) and the disposal cost: v = 0 for this
example. We derive:

b \/(2DEahv+P (ho=hv)) (sp+5v) _, 40

B (P_DEa)ghV

. #
We subsequently set: n7, 1.

n# =4, n#*" =5 0t

E(TC (n#" %)) = B (TC (n#,n%7))
= E(TC (4,1)) = $11,779.2,

E(TC (n#* %)) = B (TC (n#*,0%7))

= E(TC (5,1)) = $11,783.0.

Then, we obtain:

+
nf/[ = 1. We calculate:

Therefore, we derive the optimal number of shipments:
n* = 4, which results in the lowest total relevant
cost $11,779.2. The optimal shipment size is Q* =
Q(4,1) = 318.36 and the optimal order size is 4 x
318.36 = 1,273.44, which are the same as the results
discussed in [50].

We subsequently discuss a policy for which the
buyer optimizes the shipment lot size that is pro-
vided for the vendor. Using the optimal shipment
size, the vendor then determines the optimal num-
bers of shipment and disposal. For distinction, the
above-mentioned policy is called “non-integrated”. In
Eq. (15), we see that the vendor’s and buyer’s costs
are:

Q 2D nD nD
5 (n ].)+ 2 E, 2 Ea-l-nMP (Eb Ea) hy
D nMD
— —_— 29
0Vt o Y (29)
and:
Q D D
2h3+nQ53+Qg, (30)
respectively.

From Eq. (30), we derive the optimal shipment
lot size:

2D (sg +ng) . (31)
nhB
Substituting @ by Eq. (31) into Eq. (29), we obtain the
optimal (n,n,s), which minimizes the vendor’s cost.
The optimal solutions to the integrated and the non-
integrated policies are shown in Table 1. It is shown
that the two policies have the same optimal (n,n,;).
With a lower optimal shipment size for the buyer,
the non-integrated policy leads to a lower buyer’s cost
than the integrated policy does. This comparison
reveals that the integrated policy results in a lower total
inventory cost for both parties.
The effects of cost parameter values on the opti-
mal policy for Example 1 are provided in Tables 2-7.
Table 2 shows that the optimal number of shipments
per order cycle slightly increases as the vendor’s setup
cost increases. When the vendor’s setup cost signifi-
cantly increases, the production lot size per cycle (i.e.,
n@) will increase in this example. Table 3 indicates
that optimal number of shipments is not sensitive to

Table 1. The results for Example 1 with integrated and non-integrated policies.

("*’"?\/1) Q" E(TCM(QananM)) E(TCR(Q)) E(TC(n*,n*M))
Integrated (5, 1) 274.44 $9,284.5 $2,958.4 $12,242.9
Non-integrated (5, 1) 244.95 $9,382.8 $2,939.4 $12,322.2
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Table 2. The optimal solutions for Example 1 with different Sy values.

P = 48,000, D = 12,000, hy = 10, w = 50, Sg = 25, hg = 12, g = 25

Vendor’s setup cost (Sv) 300 400 500 600 700
(n" i) @y @y Gy G0 G
Q" 277.13 304.91 274.44 293.39 311.19
B(TC(n*,n’y)) 10283.9 $11,314.8 $12,242.9 $13,088.2 $13,882.2

Table 3. The optimal solutions for Example 1 with different Sg values.

P = 48,000, D = 12,000, hy = 10, w = 50, Sg = 25, hg = 12, g = 25

Buyer’s order cost (Sg) 15 20 25 30 35
(n" 3e) Gn 0 G0 G 6
Q" 272.48 273.46 274.44 275.42 276.40
E(TC(n*, %)) $12,155.2  $12,199.1 $12,242.9 $12,286.6 $12,330.1

Table 4. The optimal solutions for Kxample 1 with different hy values.

P = 48,000, D = 12,000, v = 50, Sy = 500, S =25 hg =12,g =25

Vendor’s holding cost (hyv) 8 9 10 11 12
(n i3e) 61 0 G0 4D @
Q" 256.47 285.06 274.44 319.72 310.05
B(TC(n*, %)) $11,307.4  $11,786.9 $12,242.9 $12,667.2 $13,062.4

Table 5. The optimal solutions for Example 1 with different hp values.

P = 48,000, D = 12,000, u = 50, hy = 10, w = 50, Sy = 500 S = 25, g = 25

Buyer’s holding cost (hp) 10 11 12 13 14
(n o ri3e) @y Wy Gy Gy 6
Q" 339.64 334.91 274.44 271.42 268.49
E(TC(n*,n%y)) $11,924.3  $12,092.9 $12,242.9 $12,379.4 $12,514.4

Table 6. The optimal solutions for Example 1 with different u values.

P = 48,000, D = 12,000, hy = 10, Sy = 500 Sp = 25, hg = 12, g = 25

Vendor’s disposal cost (u) 0.1 1 50 100 200
(n*,nyy) (5, 6) (5,2) (5, 1) (5, 1) (5, 1)
Q" 265.24 265.26 274.44 284.08 302.42
E(TC(n*,n}y)) $11,773.9  $11,798.2  $12,242.9 $12,672.6 $13,491.0

Table 7. The optimal solutions for Example 1 with different g values.

P = 48,000, D = 12,000, hy = 10, v = 50, Syy = 500 Sp = 25, hg = 12

Buyer’s shipment cost (g) 5 15 25 35 45
(n", m30) wn  ©H Gy @y @40
Q" 135.15 225.93 274.44 340.01 349.39
B(TC(n*,nly)) $11,098.4 $11,773.5 $12,242.9 $12,617.3 $12,965.4

the buyer’s ordering cost. It is obvious that the optimal
number of shipments will increase when the buyer’s
ordering cost (the vendor’s setup cost) increases. In
Table 4, one can see that a larger vendor’s holding
cost results in a smaller optimal number of shipments.

Table 5 reveals that the buyer would like a larger
number of shipments when the buyer’s holding cost
is larger. From Table 6, it can be seen that when
the disposal cost is low, the vendor will benefit from
increasing the number of disposals. Table 7 concludes
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that the optimal number of shipments decreases as the
buyer’s shipment cost increases.

Example 2. The imperfect fraction in each produc-
tion batch is same as that in Example 1. The parameter
values are as follows:

e Production rate: P = 3,200 (unit/year)

e Demand rate: D = 1,000 (unit/year)

e Vendor’s setup cost: Sy = 400 ($/setup)

e Vendor’s holding cost: hy = 4 (§/unit/year)

e Vendor’s disposal cost: u = 14 ($/disposal)

e Buyer’s order cost: Sp =0 ($/order)

e Buyer’s holding cost: hg = 5 ($/unit/year)

e Buyer’s shipment cost: g = 25 ($/shipment)

We have E, = 1.0206 and E, = 1.0417, like those
in Example 1.

From Egs. (25) and (26), we obtain: n# = 4.57
and n¥, = 1.97, which give n# =4, n#*" =5, nt =
1, and nﬁ“ =2.

From Eq. (19), we calculate:

E (Tc (n#—,nﬁ*)) — E(TC (4,1)) = $1,909.4,

B(re(

(TC’ (n#+,n ))
(

(c n# #+)) E(TC (5,2)) = $1,906.3.

¢ (n*n )) = E(TC(4,2)) = $1,907.8,

= B(TC (5,1)) = $1,908.1,

Therefore, we derive the optimal solution: (n*,n},) =
(5,2), which results in the lowest total relevant cost
of E(TC(n*,n%,)) = $1,906.3. From Eq. (28), the
optimal shipment size is derived as: Q* = Q(n*,ny,) =
110.58.

We subsequently consider this example without
defective items. Setting the fraction of defective items:
6 =0 (e, E, = E, =1) and the disposal cost: u =0,
we derive:

ot = (2DEahv+P(hB—hv))(SB+Sv):451
(P—DE,) ghv o
Set n#, = 1. Therefore, we have: n# =4, n#' =
3, nM nf/f = 1. Then, we calculate:

B(re (w0li)) = £ (re (n#- ni))

= E(TC (4,1)) = $1,903.94,

B (10 (n#* 7)) = B (TC (w0 )
E(TC (5,1)) = $1,903.29.

The optimal number of shipments, which results in the
lowest total relevant cost $1,903.29, is n* = 5. The
optimal shipment size is Q* = Q(5,1) = 110.34 and
the optimal order size is 5 x 110.34 = 551.70. Our
result is same as the result using the equal-size batch
policy in Hill [7].

5. Conclusions

This study presents an integrated vendor-buyer in-
ventory model with defective items. While some
literature assumed products screened by the buyer
and defective items removed after inspection process,
our proposed model considered the vendor responsible
to conduct quality inspection. A random fraction
of defective items was produced by the vendor who
implemented a 100% inspection to screen the defective
units, which were scrapped by multiple disposals during
the screening period. The multiple disposals strategy
provides the vendor with a flexible treatment to scrap
defective items. To minimize the integrated cost,
the mathematical model was formulated to derive the
closed-form optimal solutions to the order quantity, the
number of shipments, and the number of defective item
disposals. We proved that the function of annual cost
was convex. The examples illustrated the solution pro-
cedure and compared our results with related models
in the literature. The sensitivity analysis was provided
to show how the cost parameters affected the optimal
solution. If the disposal cost is relatively low, it may be
better to scrap defective items by the multiple disposals
strategy.

Future research directions are open to consider
unequal-size shipment policies and to incorporate
quantity discount or return policy. Moreover, our study
can be extended to models in which the screening rate
is different from the production rate, and the defective
items are reworked during the same production cycle.
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Appendix A

When @, n, and njys are continuous variables, we prove
that Eq. (15) is a convex function.

Taking the first partial derivatives of E(T'C(Q,

n,ny)) with respect to @, n, and njys, we have:

9

5% (1€ Q. nm) = ;(hB +(n—1)hy

th (nEb — (TL + (TL — 2) TLM)Ea)
+ ’I”LMP )

_D(SB—l—SV—i-nMu—l-ng)

G , (A1)
0
%E(TC(QJZ,NM)) = g(hv
_ Dhy ((ny + 1) Eq — Eb))
TZMP
_ D(sp+sv+nuu) (A.2)

n2Q
0 _Du_
=00

nQD (Ey—E,) hy
> )
2ny, P (A.3)
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205, PD (sp + sv +nl,ou+nkg)

Qe =1 : : B . ~ (A4)
© nignt, o Php + hy 05D (Ey — Ey) + 10 (ng (nf — 1) P —n (ng — 2) DE,)]
“7Qs\ hv [D (B, — Eu)+n}yc (P-DE,)]
* % yk hV (Eb - Ea)
nye =neQc T oPu (A.6)
Box Al
Setting QF, nf, and n%, . as the solutions with which D(sp +sv +nyu) (A.12)
the first partial derivatives in Eqs. (A.1)-(A.3) are equal n2Q? ’
to zero, respectively, we obtain Eqs. (A.4) to (A.6) as
shown in Box A.L Substituting n}, in Eq. (A.5) into o nD (Ey — E,) hy
’ E(T = — -
Eq. (A.6), we get: 9Qon (TC(Qn,nar) 2n2,P
y D(E,— E,) (s +sv) Du
o = \/ (P—DE.)u . (A7) BYork (A.13)
Putting Eq. (A.7) into Eq. (A.5), we have: 92
E(T
nt = 1 2PD (sp + sv) (A.8)
“TQu\ hw(P-DE)’ ‘ (D (By = Eo = ny Eo) + 1y P) hy
Replacing nf, and nj,- in Eq. (A.4) with Egs. (A.7)
d (A.8) gives: D
and (A.8) gives n (sB +jv2+ nMU)7 (A.14)
n*Q
, 2PDg
Q. = \/ . (A.9)
2DE hy + P (hp — h 2 2D
Fre s B (TC @) = 222 L Tt
Substituting @ in Eq. (A.9) into Eq. (A.8), n{ (A.15)
becomes:
52 QD (Ey, — E,)h
 [@DE.hy + P (hg — hy)) (55 + sv) o B (TC(Qun,ny)) = ==
e = P—DE,)gh ‘ e i
o el (A.16)
We subsequently take the second partial derivatives for n2Q
E(TC(Q.n,nu)):
82 nD (Eb — K ) hV
o2 E(TC(Q,n,n =— —
TQ?E (TC(Q,n,na)) I 0Q (TC(Q,n,ma)) 202, P
Du
2D (sp + sy + nyu + ng) - = A17
= ok > 0, (A.11) n0? (A.17)
52 8 QD (E, — E,) hy
E(TC = —
(D(Eb—Ea—nMEa)-l-TLMP)hV B Du (A 18)
o QnMP an’ )
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2 D(E, — E,
%E(TC(QW,W)) _ ne@D( : 5 v o,
" " (A.19)

If Qf, ng, and nj,o are the optimal solutions of
E(TC(Q,n,ny)), the following conditions are satis-
fied:

|Hi| = h11 >0, [Hz| = hirhos — highay >0,
hit hiz his

|H3| =1 hay hay haz | > 0, (AQO)
hsy  hsa  hss

where h;; (i,7 = 1,2,3) are the second par-
tial derivatives, i.e. hy;y = %E(TC’(Q,n,nM)),
his = 8%/0QonE (TC(Q,n,ny)) and hyz = 92/
0Qony E (TC (Q,n,ny)). From Eq. (A.11), it is
obvious that |Hi| = hy; > 0.

To further simplify expressions, let:

a1 =2DEhy + P(hp —hy) > 0, (A.21)
as = s+ sy >0, (A.22)
a3 =P—-DE, >0, (A.23)
ay=E, — E, > 0. (A.24)

Because P > E(1/(1 — 8))D = E,D (see the as-
sumptions in Section 2) and E, = E(1/(1 — 8)?) >
E(1/(1 — 8)) = E,, it implies a3 > 0 and ag > 0. To
prove |H2| = h11h22—h12h21 > (0on QB, n}, and n&c,
we rewrite the related equations by using a; shown in
Eqgs. (A.21)-(A.24). We have:

, 2PD
Q== (4.25)
% a1a
5= A2
e \ asghv’ (4.26)
. {Daga
nyo = a:’LLQ’ (A27)
82
hiy = @E (TC (QJLNM))
2D (as +npyu+ng)
= 0 A28
0 >0, (A.28)
82
h12 = mE (TC (Q,TL,TLM))
(D (a4 —nymEL) +nyP)hy
- 21’LMP
4 Dla= ) (A.29)

82
h21 = 8n8QE(TO (Q,H,TZM))
. (D (a4 — nMEa) + nMP) hy
D (as + npyu)
+ TQz7 (A.30)
9? 2D (a2 +
by = O E(TC (Q.nmyy)) = 2202+ nart)
on @ (A3

We apply Egs. (A.28)-(A.31) to calculate |Hy| =
hi1haa — hizhar.

Then, substituting Eqs. (A.25)-(A.27) for Q, n,
and ny in |Hs|, we take |Hs| > 0. Applying
mathematical software for simplification of equations,
we can obtain |Hs| > 0.

Appendix B

Taking the second partial derivatives of E*(TC(n,
nr)) with respect to n and njs, we have:
82

%E2 (TC (n,nu))

4D (2DE,hy+P (hg—hv)) (sg+sv+nyu)

nip (B.1)
0?2
6n?\4E (TC (n,np))
2 _
_ 4D hy (Eb Eg) (SB + sy + ng)7 (B2)
ny P
2 2D%ghy (Ey — Ea)
E*(TC =— -
ondnas (TC (n,mar)) ( n?, P
2Du (2DE hy + P (hg — hy))
. (B.
+ n?P (B:3)
Letting:
i o
5? ’
_<ananME(TC (MM))) ,
we get:
|H| =

4D (2DE,hy + P (hg — hy)) (s + sy + nyu)
n3 P
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? 4Day (a2 + nyu)
WE (TC (n,nM)) = n3P 5 (B5)
? . 2D%ghyvas  2Duay
E*>(TC (n,ny)) = — : - B.6
ndny (TC (n,nar)) ( n?,P n2pP (B.6)
9% . 4D%hy ay (az + ng)
E*(TC (n,ny)) = , B.7
4D? (4nMntha1a4 (az + npyu) (az +ng) — (n'fwual + 712Dghva4)2)
|H| = T oip . (B.8)
nyn

Box B.I
. 16Dgh,%,u2a§ (Da4x/ala2a3,ghv + asy/ D:’;? (gal + \/alazagghv)) 0 b1l
| | 'n:n.#gnM:'n#/[ - a1a§a4P2 > 0. ( . )

Box B.I1

y 4D?*hy (Ey — E,) (s + sy + ng)
n3,P

_ <2D29hv (Ey — E,)
n, P

| 2Du(2DEshy + P (hs — hv)))% (B.4)

n?P
Substituting a; in Egs. (A.21)-(A.24) into the above
equations, we have Eqs. (B.5) to (B.8) as shown in Box
B.I

Subsequently, we can rewrite nﬁ in Eq. (25) and
n# in Eq. (26) as:

Dasa
#o= ) —2t B.9
"M uag (B.9)

# ayaz
n" =,/ —.

V ghvas
Substituting Egs. (B.9) and (B.10) for ny; and n in
Eq. (B.8), we obtain Eq. (B.11) as shown in Box B.IL

Therefore, n¥, in Eq. (25) and n# in Eq. (26) are the
optimal solutions that minimize E?(TC(n,np)).

(B.10)
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