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Abstract. In this study, the Multi-Objective Programming (MOP) method was used to
solve Network DEA (NDEA) models with negative data, which consisted of semi-negative
and semi-positive input and output. At �rst, two stage and, then, k-stage production
models were formulated with consideration of negative data. In the multi-objective
programming, two separate objective functions, including the divisional e�ciencies and
the overall e�ciency of the organization, were modeled. In comparison to conventional
DEA with negative data, the advantage of the proposed NDEA models is consideration
of intermediate processes and products, in order to calculate overall e�ciency of the
organization. However, in conventional DEA, sub-stages of the organizations are neglected.
To measure the e�ciencies of an organization regarding interactive internal process, two
case studies were investigated by application of the NDEA-MOP method with negative
data. Case study 1 was focused on units with two stages having semi-negative and semi-
positive indices. In case study 2, units with three stages were evaluated. These units
had semi-negative and semi-positive indices, too. The overall e�ciency of each unit was
calculated using the proposed models. Fuzzy approach as a solution procedure was applied.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Nowadays, performance assessment of industrial and
economical units plays an important role in achieving
managerial success and continuous progress. Data En-
velopment Analysis (DEA) is a nonparametric method
used to analyze and evaluate the performance of De-
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cision Making Units (DMUs), which converts multiple
inputs into multiple outputs and takes the qualitative
and quantitative measures into account. In recent
years, extensive application of DEA has been observed
in several contexts such as health care, education,
manufacturing, retailing, banking, etc. In the con-
ventional DEA model, two types of models, namely,
the aggregation and separation approaches, are applied
to measure e�ciencies. In the aggregation model,
divisions are aggregated into a single company, the
DMU is evaluated as a black box, and the internal
linking activities are neglected. Therefore, it is not
possible to evaluate the performance of an individual
division. In the separation model, each division in
a DMU is considered as a separate unit and the
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linking activities between divisions are completely ig-
nored. Thus, e�ciencies of the organization's linking
processes via both the mentioned methods cannot be
evaluated [1]. The Network DEA (NDEA) model was
proposed by Lewis and Sexton [2] to overcome the
weakness of the traditional DEA model. This model
had a multi-stage structure, which accounted for both
divisional e�ciencies and the overall e�ciency in a
uni�ed framework. Also, it considered internal interac-
tion within DMUs, where the intermediate measures
among the stages play crucial roles in evaluation of
the e�ciency. In recent years, the attention of a large
number of researchers has been drawn to e�ciency
assessment in multi-stage production processes, where
each DMU transforms some external inputs to �nal
outputs by the intermediate products. Details of some
researches in this �eld can be found in [3-6]. The �rst
DEA model, namely, CCR, was proposed by Charnes
et al. [7] with assumption of constant-returns-to-scale.
The evolutionary form of this model, named BCC
[8], was proposed by extending to variable-returns-to-
scales. In BCC, n DMUs are considered (j = 1; : : : ; n)
for assessment. Each DMU consumes m inputs (i =
1; : : : ;m) and produces s outputs (r = 1; : : : ; s),
denoted by (xij ; x2j ; : : : ; xmj) and (y1j ; y2j ; : : : ; ysj),
respectively. The e�ciency of DMUk can be calculated
by the CCR and BCC models as Eqs. (1) and (2):

CCR:

Max Ek =

sP
r=1

uryrk
mP
i=1

vixik
;

s.t.

sP
r=1

ur
mP
i=1

vixij
� 1; j = 1; 2; : : : ; n;

ur; vi � "; r = 1; 2; : : : ; s; i = 1; 2; : : : ;m: (1)

BCC:

Max Ek =

sP
r=1

uryrk � u0

mP
i=1

vixik
;

s.t.

sP
r=1

uryrj � u0

mP
i=1

vixij
� 1; j = 1; 2; : : : ; n

ur; vi � "; r = 1; 2; : : : ; s; i = 1; 2; : : : ;m;

u0 Unrestricted in sign: (2)

In Eqs. (1) and (2), Ek is the objective function,
which is maximized for every DMUk, individually;
ur and vi are weights of the outputs and inputs,
respectively; xik and yrk are the i-th input and r-th
output of DMUk; " is a small positive value, which
indicates positive weights; and u0 is the intercept of
the production function in the BCC model. Previous
researches have documented di�erent methods for solv-
ing network DEA. Cheng et al. [9] derived a common
set of weights by Multi-Objective Programming (MOP)
model based on a compensatory Data Envelopment
Analysis (DEA) model, in order to rank all DMUs. In
order to solve it, the MOP model was transformed into
a Single-Objective Programming (SOP) using a fuzzy
programming method. Thereafter, the SOP model
was solved by the proposed approximation algorithm.
Kao et al. [10] proposed the Multi-Objective Program-
ming (MOP) method in order to solve Network DEA
(NDEA). Two types of NDEA{MOP models, namely,
BCC{MOP and CCR{MOP, were assessed. Divisional
and the overall e�ciencies of the organization were
measured without neglecting the e�ciencies of its
subunits. Matin and Azizi [11] measured performance
of production systems by a new uni�ed generalized
Network DEA model when interrelationships between
individual sub-processes were considered. General
Network DEA model was evaluated by some illustrative
numerical examples. Wang et al. [12] constructed
two-stage DEA model and then used a fuzzy multi-
objective for evaluating the performance of US Bank
Holding Companies (BHCs). This paper analyzed
the relationship between BHCs performance and their
Intellectual Capital (IC). Despotis and Koronakos [13]
assessed e�ciency of a two-stage network using a novel
DEA approach. In the proposed method, unique
and unbiased e�ciency scores for the individual stages
were calculated. Afterwards, a posteriori aggregation
method was applied in order to compose stages to
obtain the e�ciency of the overall system. Halkos et
al. [14] reviewed the classi�cation of two-stage DEA
models, as well as their mathematical formulations, and
main applications. Simple cases, such as the two-stage
models, and general models, such as the network DEA
models, were analyzed. These models were categorized
into four models, namely, independent, connected,
relational, and game theoretic two-stage DEA. Lee and
Li [15] studied fuzzy multiple-objective programming
and compromise programming with Pareto optimum.
In recent times, evolutionary algorithms have become
a widely used methodology in MOP. The main aim
of this study was to solve network DEA by applying
the Multi-Objective Programming (MOP) method. At
�rst, a two-stage production system was assumed in
order to convert some input products in the �rst stage
and use these outputs as inputs to the second stage for
producing �nal outputs. In this paper, at �rst, negative
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data is considered for the proposed NDEA model,
which consists of semi-negative and semi-positive input
and output. Thereafter, the k-stage production process
with consideration of negative data is formulated by
MOP. MOP is concerned with �nding the solutions in
which a set of objective functions are simultaneously
optimized, meaning that it is not possible to improve
any objective without degrading some others. Many
practical applications such as pattern classi�cation can
be posed as MOP problems.

According to the CCR and BCC models, ob-
jective functions including the overall and divisional
e�ciencies within a DMU are optimized. Two case
studies are evaluated to indicate the bene�ts of NDEA-
MOP. In order to calculate e�ciency of units in the
presence of semi-negative and semi-positive indices,
various models are presented. Also, di�erent views
are suggested in order to calculate the performance of
two- and multi-stage units. The di�erence between this
article and other articles is that the present study deals
with two- and multi-stage units having semi-negative
and semi-positive indices. In other words, this paper
focuses on units which are combinations of these two
states. The remainder of this paper is structured as
follows: in Section 2, the method of Izadikhah and
Farzipoor Saen [16] is discussed. In Section 3, two-
stage DEA model is discussed. In Section 4, a model for
calculation of overall e�ciency of units with two stages
in the presence of semi-positive and semi-negative data
is proposed. In Section 5, units are extended to k-
stages and a method is stated for calculating the overall
e�ciency of units. Fuzzy approach [17] as a solution
procedure is proposed in two sections. In Section 6, two
case studies are implemented to examine the network
DEA models with multi-objective programming. In
Section 7, results and discussion are given and the
conclusion section is provided at the end of the paper.

2. Non-radial e�ciency of two-stage network
DEA with negative data

Consider n units under assessment of DMUj (j =
1; : : : ; n) with two-stage network structure as shown in
Figure 1. Stage 1 consumes Xj as input and produces
Zj as output, and Stage 2 consumes Zj as input
and produces Yj as output. Izadikhah and Farzipoor
Saen [16], using the idea of Chen and Zhu [18], pre-
sented non-radial model to calculate e�ciency of each
stage and the overall e�ciency of a unit in the presence

Figure 1. Two-stage network model.

of negative data. This model for the evaluation of
DMUp unit is as follows:

Stage 1:

Max w1

�
1
m

mX
i=1

�i
��p

+
1
D

DX
d=1

'd
�'p

�
+ w2

�
1
D

DX
d=1

�d
��p

+
1
s

sX
r=1

Br
�Bp

�
; (3)

s.t.
nX
j=1

�jxij � xip � �ijxipj; i = 1; : : : ;m;

nX
j=1

�jzdj � ~zdp � 'dj~zdpj; d = 1; : : : ; D;

nX
j=1

�j = 1; �j � 0; j = 1; : : : ; n:

Stage 2:

nX
j=1

�jddj � ~zdp � �dj~zdpj; d = 1; : : : ; D;

nX
j=1

�jyrj � yrp +Brjyrpj; r = 1; : : : ; s;

nX
j=1

�j = 1; �j � 0; j = 1; : : : ; n;

where:

��p = Maxi
�
xip � xiL
jxipj ; xip 6= 0; i = 1; : : : ;m

�
;

��p = Maxd
�
zdp � zdL0
jzdpj ; zdp 6= 0; d = 1; : : : ; D

�
;

�'p = Maxd
�
zdL � zdp
jzdpj ; zdp 6= 0; d = 1; : : : ; D

�
;
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�
yrL0 � yrp
jyrpj ; yrp 6= 0; r = 1; : : : ; s

�
;

and:

xiL = Minj
�
xij
�

; i = 1; : : : ;m;

zdL0 = Minj
�
zdj
�

; d = 1; : : : ; D;
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zdL = Maxj
�
zdj
�

; d = 1; : : : ; D;

yrL0 = Maxj
�
yrj
�

; r = 1; : : : ; s:

In the presented model, w1 + w2 = 1 and overall
e�ciency of DMUp are calculated as follows:

�� = 1�
�
w1

2

�
1
m

mX
i=1

��i
��p

+
1
D

DX
d=1

'�d
�'p

�
+
w2

2

�
1
D

DX
d=1

��d
��p

+
1
s

sX
r=1

B�r
�BP

��
;

�� = 1� [w1(1� ��1) + w2(1� ��2)];

where ��1 and ��2 are e�ciencies of Stages 1 and 2,
respectively.

Note that, in Model (3), ~z is an unknown decision
variable, which is calculated by solving the model. In
this paper, a method is presented, which considers
general state of a two-stage model (i.e., Stage 2 has
external input) and k-stage model for non-negative
indices.

3. Two-stage DEA model

Consider n DMUs under assessment. Figure 1 shows
the network structure of each DMU, where Xj ex-
presses input to the �rst stage and Zj represents output
of the �rst stage, which is considered as input to the
second stage, and Yj is taken into account as output
of the second stage, where Xj = (x1j ; x2j ; : : : ; xmj),
Yj = (y1j ; y2j ; : : : ; ysj), and Zj = (z1j ; z2j ; : : : ; ztj) are
positive.

4. Two-stage NDEA-CCR model in the
presence of semi-positive and semi-negative
data

It is assumed that I is input series, which is positive
in all DMUs and �I is input series, which is positive
in some DMUs and negative in other DMUs, so that
m = jIj + j�Ij and I \ �I = �. Furthermore, T is ztj
series, which is positive in all decision making units
and �T is ztj series, which is positive in some units and
negative in others as t = jT j + j �T j and T \ �T = �.
In addition, R is output series, which is positive in all
DMUs, and �R is output series, which is positive in some
DMUs and negative in others such that s = jRj + j �Rj
and R \ �R = �. The e�ciency of each DMU can be
calculated as follows:

E(1)
j =

P
t2T

�tztj +
P
t2 �T

��tz
(1)
tj � P

t2 �T
�̂tz

(2)
tjP

i2I
vixij +

P
i2�I

�vix
(1)
ij �P

i2�I
v̂ix

(2)
ij

; (4)

E(2)
j =

P
r2R

uryrj +
P
r2 �R

�ury
(1)
rj � P

r2 �R
ûry

(2)
rjP

t2T
�tztj +

P
t2 �T

��tz
(1)
tj � P

t2 �T
�̂tz

(2)
tj

; (5)

where �t; ��t; �̂t; vi; �vi; v̂i; ur; �ur, and ûr are weights
of inputs and outputs and are all non-negative. In
addition, for every t 2 �T , we have ztj = z(1)

tj � z(2)
tj

where z(1)
tj � 0, z(2)

tj � 0. Furthermore:

z(1)
tj =

(
ztj ztj � 0
0 ztj < 0

; z(2)
tj =

(
0 ztj � 0
�ztj ztj < 0:

(6)

For every r 2 �R, we have yrj = y(1)
rj �y(2)

rj where y(1)
rj �

0; y(2)
rj � 0 and:

y(1)
rj =

(
yrj yrj � 0
0 yrj < 0

; y(2)
rj =

(
0 yrj � 0
�yrj yrj < 0

(7)

In addition, for i 2 �I, we have xij = x(1)
ij � x(2)

ij where
x(1)
ij � 0,x(2)

ij � 0:

x(1)
rj =

(
yrj xij � 0
0 xij < 0

; x(2)
ij =

(
0 xij � 0
�xij xij < 0

(8)

The following model is used to calculate e�ciency of
DMUo:

MaxE1
o ;

MaxE2
o ; (9)

s.t. E(k)
j � 1; k = 1; 2 ; j = 1; : : : ; n:

All variables are non-negative. There are di�erent
methods to solve the two-objective Model (9). In this
study, fuzzy method [10] is applied. General algorithm
of this method is presented in Section 5. By putting
k = 2 in the presented algorithm, Model (9) can be
solved.

5. k-stage NDEA-CCR model in the presence
of semi-positive and semi-negative data

Consider n Decision Making Units (DMUs) under
assessment, each having a network structure, as shown
in Figure 2. Each DMU consists of k stages. Let mk
and rk be the numbers of inputs and outputs of the k-th
stage. Assuming that rk = r̂k + �rk and mk = m̂k [ �mk,
where r̂k represents the number of outputs, all DMUs
are positive in the k-th stage and �rk indicates the
number of outputs as some DMUs are positive while
others are negative in the k-th stage. If the k and h
stages are linked to each other, they are denoted by
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Figure 2. k-stage network model.

(k, h). The intermediate product, z(k;h)
j , which is an

output of the k-th stage, plays input role for the h-
th stage and its number is equal to Lk. Similarly, it
can be written as Lk = L̂k + �Lk, where L̂k shows the
number of intermediate products, which is positive for
the k-th stage in all DMUs, and �Lk is the number of
intermediate products, which is positive for the k-th
stage in some DMUs and negative in others.

The multi-objective NDEA-CCR model in the
presence of negative data is de�ned as follows:

Max E1
o ;

...

Max Eko =
EK;Yo

EK;Xo
;

k = 1; : : : ;K;

Ekj � 1; k = 1; : : : ;K; j = 1; : : : ; n; (10)

where:

Ek;Yj =
r̂kX
r=1

ukr y
k
rj +

�rkX
r=1

�ukr y
(1)k
rj �

�rkX
r=1

ûkr y
(2)k
rj

+
X
8(k;h)

t(k;h)X
p=1

�kh z
(k;h)
pj +

X
8(k;h)

�t(k;h)X
p=1

��kh z
(2)(k;h)
pj

� X
8(k;h)

�t(k;h)X
p=1

�̂kh z
(2)(k;h)
pj ;

(11)

Ek;Xj =
m̂kX
i=1

vki x
k
ij +

�mkX
i=1

�vki x
(1)k
ij �

�mkX
i=1

v̂ki x
(2)k
ij

+
X
8(g;k)

t(g;k)X
q=1

wtg z
(g;k)
qj +

X
8(g;k)

�t(g;k)X
q=1

�wkg z
(1)(g;k)
qj

� X
8(g;k)

�t(g;k)X
q=1

ŵkgz
(2)(g;k)
qj ;

(12)

where ykrj = y(1)k
rj � y(2)k

rj ; 8r 2 f1; : : : ; �rkg; y(1)k
rj � 0;

y(2)k
rj � 0, where:

y(1)k
rj =

(
ykrj ykrj � 0
0 ykrj < 0

; y(2)k
rj =

(
0 ykrj � 0
�ykrj ykrj < 0(13)

And xkij = x(1)k
ij � x(2)k

ij ; 8i 2 f1; : : : ; �mkg; x(1)k
ij � 0;

x(2)k
ij � 0, where:

x(1)k
ij =

(
xkij xkij � 0
0 xkij < 0

; x(2)k
ij =

(
0 xkij � 0
�xkij xkij < 0(14)

And z(g;k)
qj = z(1)(g;k)

qj � z(2)(g;k)
qj ; 8q 2 f1; : : : ; �tg;

z(1)(g;k)
qj � 0; z(2)(g;k)

qj � 0, where:

z(1)(g;k)
qj =

(
z(g;k)
qj z(g;k)

qj � 0
0 z(g;k)

qj < 0
;

z(2)(g;k)
qj =

(
0 z(g;k)

qj � 0
�z(g;k)

qj z(g;k)
qj < 0

(15)

To solve the above model (Model (10)) through fuzzy
method [10], the following operation is performed:

- Step 1. The ideal answer for each of the objective
functions is obtained.

Ek�o = maxEko ;

s.t. Ekj � 1; j = 1; : : : ; n: (16)

All weights are non-negative.
The optimal answer of Model (16) is calculated

for k = 1; : : : ;K and its optimal value is named Ek�o ;
- Step 2. The anti-ideal answer for each of the

objective functions is obtained:

Ek�o = minEko ;

s.t: Ekj � 1; j = 1; : : : ; n: (17)

All weights are non-negative.
The optimal answer of Model (17) is calculated

for k = 1; : : : ;K and its optimal value is named Ek�o ;
- Step 3. The membership function for each of the

objective functions for ideal and anti-ideal answers
is de�ned as follows:

�(Eko ) =
Eko � Ek�o
Ek�o � Ek�o : (18)

Note that since E(k)�
o is ideal e�ciency of DMUo,

0 � E(k)�
o � 1. E(k)�

o , the distance to the border
of ine�ciency, is anti-ideal e�ciency of DMUo.
Therefore, E(k)�

o � 1; since E(k)�
o � E(k)

o � E(k)�
o , it

can be easily proved for E(k)�
o �E(k)�

o 6= 0 and always
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0 � �E(k)
o � 1. For the case of E(k)�

o �E(k)�
o = 0, a

unit is added to the denominator of �E(k)
o in order to

overcome its problem in becoming zero denominator;
- Step 4. The following model is solved:

max�=minf�(Eko )g;
s.t. � � �(Eko ); k= 1; :::;K; (19)

�(Eko ) =
Eko � Ek�o
Ek�o � Ek�o ; k = 1; :::;K;

for all original constraints;

- Step 5. Eo =
kP
k=1

wkEko is considered to be overall

e�ciency of DMUo unit, where wk is weight of the

k-th stage.
kP
k=1

wk = 1. Note that since for each k,

0 � E(k)
o � 1, e�ciency is always between (0, 1]. if

Eo = 1, then we say that DMUo is e�cient; and for
each i 6= j, if Ej � Ei, then the i-th unit is more
e�cient than the j-th unit.

6. Case studies

In this section, two numerical examples are investi-
gated. In the �rst case, an example with two stages is
evaluated. This data includes semi-positive and semi-
negative indices. In the second case, an example with k
stages is studied that makes a CCR-MOP model. The
fuzzy method stated in Section 3 is used for �nding the
optimum answer.

6.1. Case 1: Example of two-stage
NDEA-CCR with semi-positive and
semi-negative data

In this section, units consisting of two stages are
considered. According to Figure 3, Xj is the input
of Stage 1 and its outputs are Zj and �Zj , which are
positive outputs and semi-positive and semi-negative

outputs, respectively. These outputs serve as inputs to
Stage 2. Also, �xj is external input to Stage 2. The
outputs of Stage 2 are Yj and �Yj , which are positive
outputs and semi-positive and semi-negative outputs,
respectively. This data is presented in Table 1.

According to Table 1, Stage 1 includes three pos-
itive inputs and Stage 2 has two positive outputs, y1j ,
y2j , and two semi-positive and semi-negative outputs,
�y1j , �y2j . Output of Stage 1 (input to Stage 2) includes
two positive outputs, z1j , z2j , and two semi-positive
and semi-negative outputs, �z1j , �z2j .

Model (8) is used to calculate e�ciency of DMUo
(o 2 f1; : : : ; 10g). In this model, E1

j , and E2
j are

calculated as follows:

E1
j =

�zj + ��1�z(1)
1j � �̂1�z(2)

1j + ��2�z(1)
2j � �̂2�z(2)

2j

�1x1j + �2x2j
;

E2
j =

u1y1j + u2y2j + �u1�y(1)
1j � û1�y(2)

1j + �u2�y(1)
2j � û2�y(2)

2j

�zj + ��1�z(1)
1j � �̂1�z(2)

1j + ��2�z(1)
2j � �̂2�z(2)

2j + ���xj
;

(20)

where Model (8) for evaluation of DMU1 is as follows:

Max E1
o ;

Max E2
o ;

s.t. E(k)
j � 1; k = 1; 2; j = 1; : : : ; 10: (21)

Figure 3. Two-stage network model with external input.

Table 1. The sample data of Case 1.

Stage 1 Link Stage 2
DMUj x1j x2j �xj zj �z1j �z2j y1j y2j �y1j �y2j

1 0.838 0.277 0.962 0.894 0.362 �0:410 0.879 0.337 0.177 �0:423
2 1.233 0.132 0.443 0.678 0.188 �0:932 0.538 0.180 0.915 �0:240
3 0.321 0.045 0.482 0.836 �0:207 0.595 0.911 0.198 �0:488 0.413
4 1.483 0.111 0.467 0.869 �0:516 0.518 0.570 0.491 0.437 0.547
5 1.592 0.208 1.073 0.693 �0:407 0.689 1.086 0.372 �0:549 �0:994
6 0.790 0.139 0.545 0.966 0.269 �0:918 0.722 0.253 0.401 0.398
7 0.451 0.075 0.366 0.647 0.257 0.888 0.509 0.241 �0:533 0.371
8 0.408 0.074 0.229 0.756 �0:103 �0:474 0.619 0.097 0.522 �0:825
9 1.864 0.061 0.691 1.191 0.402 0.443 1.023 0.380 �0:456 0.467
10 1.222 0.149 0.327 0.792 �0:187 �0:674 0.769 0.178 �0:309 0.702



404 K. Kianfar et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 398{409

Table 2. Ideal and anti-ideal e�ciencies of units of Case 1.

DMUj E(1)�
j E(2)�

j E(1)�
j E(2)�

j E(2)�
j � E(1)�

j E(2)�
j � E(2)�

j

1 0.75807 1 1.31914 1 �0:56107 "
2 0.43852 1 2.28041 1 �1:84189 "
3 1 0.99998 1 1 "� �2E-05
4 0.41578 0.9999 2.40515 1 �1:98937 �1E�04
5 0.25053 1 3.99161 1 �3:74108 "
6 0.73791 1 1.35519 1 �0:61728 "
7 1 0.51801 1 1.08145 �0:56344
8 0.71148 0.99972 1.40553 1 �0:69405 �0:00028
9 1 0.99994 1 1 " �6E-05
10 0.28545 1 3.50318 1 �3:21773 "

* " is small amount and positive.

In order to solve the two objective models above, the
algorithm presented in Section 5 is used:

- Step 1. solve these two models:

E(1)�
1 = MaxE(1)

1 ;

s.t. E(k)
j � 1; k = 1; 2; j = 1; : : : ; 10; (22)

E(2)�
1 = MaxE(2)

1 ;

s.t. E(k)
j � 1; k = 1; 2; j = 1; : : : ; 10: (23)

All variables are assumed non-negative in both
models. Assume that E(1)�

1 and E(2)�
1 are ideal

e�ciencies of Stages 1 and 2 related to DMUo. The
results of Models (22) and (23) are shown in Table 2
(note the �rst row of Table 2);

- Step 2. Solve the following models:

E(1)�
1 = MinE(1)

1 ;

s.t. E(1)
j � 1; k = 1; 2; j = 1; : : : ; 10; (24)

E(2)�
1 = MinE(2)

1 ;

s.t. E(1)
j � 1; k = 1; 2; j = 1; : : : ; 10: (25)

All variables in both models are assumed non-
negative. Assume that E(1)�

1 and E(2)�
1 are anti-

ideal e�ciencies of Stages 1 and 2 related to DMUo,
of which the results are given in the �rst row of
Table 2.

- Step 3. The membership function for each of the
Steps 1 and 2 using ideal and anti-ideal e�ciency

values is de�ned as follows:

�
�
E(1)

1

�
=

E(1)
1 � E(1)�

1

E(1)�
1 � E(1)�

1

;

�
�
E(2)

1

�
=

E(2)
1 � E(2)�

1

E(2)�
1 � E(2)�

1

; (26)

where 0 � �(E(1)
1 ) � 1; 0 � �(E(2)

1 ) � 1.
- Step 4. Solve the following model:

Max �;

s.t. � � �
�
E(1)

1

�
;

� � �
�
E(2)

1

�
;

�
�
E(k)

1

�
=

E(k)
1 � E(k)�

1

E(k)�
1 � E(k)�

1

; k = 1; 2;

E(1)
1 =

�z1 + ��1�z(1)
11 � �̂1�z(2)

11 + ��2�z(1)
21 � �̂2�z(2)

21
�1x11 + �2x21

;

E(2)
1 =

u1y11+u2y21+�u1�y(1)
11 �û1�y(2)

11 +�u2�y(1)
21 �û2�y(2)

21

�z1+��1�z(1)
11 ��̂1�z(2)

11 +��2�z(1)
21 ��̂2�z(2)

21 +���xj
;

E(1)
j � 1; k = 1; 2; j = 1; : : : ; 10: (27)

All variables are non-negative;

- Step 5. Assume that E(1)
1 and E(2)

j are results of
optimum answer of Model (27). These results are
given in Table 3. In order to calculate e�ciency of
DMU1, correlation of E1 = 1=2 E(1)

1 + 1=2 E(2)
1 is

used. Not that results are given in Table 3 with
consideration of w1 = w2 = 1=2.



K. Kianfar et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 398{409 405

Table 3. Overall e�ciency of units of Case 1.

DMUj �1 �2 � w �w1 �w2 ŵ1 ŵ2

1 4.59E3 0 6.14E4 0 8.05 E3 0 0 0
2 9.71E7 0 6.97 E7 0 1.70 E8 0 0 0
3 9.71E7 0 2:30� E11 3.73 E7 7.66 E7 0 0 0
4 9.71E7 0 9.90 E9 3.73 E7 7.66 E7 0 0 0
5 1.04E7 0 1.80 E10 3.99 E7 8.20 E7 0 0 0
6 2.92E4 0 6.03 E6 1.12 E4 2.30 E4 0 0 0
7 2.07E7 0 1.46 E8 7.94 E6 1.63 E7 0 0 0
8 1.27E5 0 1.17 E2 4.89 E4 1.00 E5 0 0 0
9 5.08E2 8.40 E3 1.08 E5 6.47 E2 1.71 E3 0 0 0

DMUj u1 u2 �u1 �u2 û1 û2 E(1)
j E(2)

j
Overal e�ciency
(w1 = w2 = 1=2)

1 6.63 E4 3.70 E3 2.80 E4 0 1.53 E4 6.00 E3 0.75807 1 0.879035
2 0 0 7.07 E7 0 1.90 E4 7.28 E6 0.43852 1 0.71926
3 0 0 1.30 E11 0 0 2.60 E10 1 0.99998 0.99999
4 0 0 1.10 E10 0 0 2.10 E10 0.41578 0.99998 0.70788
5 0 0 1.70 E10 0 0 0 0.25053 1 0.625265
6 2.74 E6 1.34 E6 2.46 E6 5.27 E3 0 2.79 E6 0.73791 1 0.868955
7 6.33 E7 1.25 E7 4.16 E7 5.27 E3 0 5.18 E7 1 0.56077 0.780385
8 3.13 E4 0 3.39 E4 3.66 E1 0 0 0.71148 0.99994 0.85571
9 6.94 E4 0 4.19 E4 1.15 E4 0 0 1 0.99999 0.999995

According to Table 3, overall e�ciency of none
of the units is unit. Thus, DMU3 and DMU9 have
higher e�ciencies than other units.

6.2. Case 2: Extended electric power
companies

This case is related to extended electric power com-
panies with link 3 [19]. In Case 1 [19], inputs and
outputs are not positive, but this case is an extension
of case 1 with the exception that two semi-positive and
semi-negative outputs are added to Stages 2 and 3 (to
better understand, refer to Figure 4). Data of this case
is given in Table 4, where Xj , �Xj and X̂j are inputs
of Stages 1, 2, and 3, respectively. Y 2

j and �Y 2
j are

positive outputs and semi-positive and semi-negative
outputs of Stage 2, respectively. Y 3

j and �Y 3
j are positive

outputs and semi-positive and semi-negative outputs
of Stage 3, respectively. Furthermore, Z1

j and Z2
j are

links of Stage 1 to Stage 2 and Stage 2 to Stage 3,
respectively, in which Z1

j and Z2
j have non-negative

values:

Figure 4. Three-stage network model.

E(1)
j =

wz1
j

�xj
;

E(2)
j =

Az2
j + uy2

j +N �y2(1)
j �D�y2(2)

j

wz1
j +M �xj

;

E(3)
j =

Py3
j +Q�y(3)1

j � S�y(3)2
j

Az2
j +Bx̂j

:

At �rst, Models (16) and (17) are used for data of
Table 4. Ideal and ant-ideal answers are obtained
for each unit and the results are presented in Table
5. Results of Model (19) for Case 2 are presented in
Table 6.

The fuzzy method of Kao and his co-authors is
used and the membership function value is calculated
for each unit of assessment. Also, the overall e�ciency
of each DMUj is calculated via Ej =

P3
k=1 wk Ekj

with the assumption of w1 = w2 = w3 = 1=3, and
the results are presented in Table 7. In this case, the
weights of all the stages are assumed to be identical.
As shown in Table 7, DMU3 is e�cient and the other
DMUs are ine�cient.

7. Conclusion

Measuring e�ciency of units under assessment is one
of the valuable goals of data envelopment analysis.
Since all input and output indices cannot be positive,
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Table 4. The sample data of Case 2.

Stage 1 Stage 2 Stage 3 Link

DMUj
Input 1

(Xj)
Input 2

( �Xj)
Output 1

(Y 2
j )

Output 2
( �Y 2
j )

Input 3
( �Xj)

Output 3
(Y 3
j )

Output 4
( �Y 3
j )

Link 1
(Z1

j )
Link 2
(Z2

j )
1 0.838 0.277 0.879 0.903 0.962 0.337 0.936 0.894 0.362
2 1.233 0.132 0.533 0.097 0.443 0.180 �0:188 0.578 0.188
3 0.321 0.045 0.911 1.355 0.482 0.198 0.906 0.836 0.207
4 1.483 0.111 0.570 1.621 0.467 0.491 0.812 0.869 0.516
5 1.592 0.208 1.086 �1:932 1.073 0.372 �0:092 0.693 0.407
6 0.790 0.139 0.722 �0:737 0.545 0.253 0.064 0.966 0.269
7 0.451 0.075 0.509 0.284 0.366 0.241 0.650 0.647 0.257
8 0.408 0.074 0.619 1.094 0.229 0.097 �1:150 0.756 0.103
9 1.864 0.061 1.023 0.531 0.691 0.380 0.380 1.191 0.402
10 1.222 0.149 0.769 �0:026 0.337 0.178 �0:005 0.792 0.187

Table 5. Ideal and anti-ideal e�ciencies of units of Case 2.

DMUj E(1)�
j E(2)�

j E(3)�
j E(1)�

j E(2)�
j E(3)�

j

1 0.40963 1 0.97325 2.45077 1 1.01044
2 0.21114 0.7878 1 1.26321 1.2844 1.17199
3 1 1 1 5.98289 12.53931 1.18488
4 0.225 1 1 1.34613 5.17403 3.03264
5 0.16714 1 0.95533 1 1.64535 1
6 0.46951 0.65585 0.98436 2.80905 1.63687 1.339
7 0.55084 0.91166 0.98362 3.29562 2.13869 1.8993
8 0.71148 0.85394 0.98416 4.25668 2.63603 1.22178
9 0.24534 1 0.99045 1.46783 5.2849 1.58622
10 0.24886 0.89274 0.99703 1.48889 1.62641 1.52352

Table 6. Results of Model (19) for Case 2.

DMUj W V A U N D M P Q S B W

1 0.4582 1.19332 0.88437 0.31301 0 0 2.1313 1.01104 0.35708 0 0.70671 0.4582
2 0.31141 0.81103 1.79514 0.01349 0 0 5.97623 3.30896 0 0 1.49552 0.31141
3 1.19617 3.11526 0 0.3017 0.53517 0 0 0 1.10375 0 2.07469 1.19617
4 0.25892 0.67431 1.36079 0 0.18373 0 6.98201 2.03666 0 0 0.63776 0.25892
5 0.24119 0.62814 1.22564 0.03792 0 0 4.00412 1.73229 0 0 0.46707 0.24119
6 0.48604 1.26582 1.34837 0.26357 0 0 3.81644 2.5292 0 0 1.16934 0.48604
7 0.85138 2.21729 2.17825 0.49233 0 0 5.98878 2.43018 0.60643 0 1.20271 0.85138
8 0.94111 2.45098 0 0 0.71012 0 3.89897 4.15336 0 0 4.36681 0.94111
9 0.20599 0.53648 2.47192 0 0.01185 0 1.24E+01 2.60643 0 0.00216 0.0091 0.20599
10 0.31422 0.81833 0.77865 0.36044 0 0 5.04122 3.22966 0 0 2.53529 0.31422

extended models are proposed by which the e�ciency of
units can be calculated. Also, some methods have been
presented for measuring two- and multi-stage network
DEA structures, which are applied for positive data.
The di�erence between this article and other articles

that focus on calculating units with two and multi
stages is that a model is proposed in this paper, which
is able to calculate the e�ciency of network DEA in
the presence of semi-positive and semi-negative indices.
Two case studies for the presented work were presented.
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Table 7. Overall e�ciency of Case 2 results of Model 19.

DMUj E(1)
j E(2)

j E(3)
j Ej

1 0.40963 0.59528 0.67495 0.559953

2 0.21114 0.34474 0.59561 0.38383

3 1 1 1 1

4 0.225 1 1 0.741667

5 0.16714 0.54002 0.64441 0.450523

6 0.46951 0.55301 0.63989 0.554137

7 0.55084 0.8104 0.97985 0.780363

8 0.71148 0.77688 0.40288 0.630413

9 0.24534 1 0.99045 0.745263

10 0.24886 0.42278 0.57488 0.415507

In the �rst example, units with two stages having semi-
positive and semi-negative indices were considered; in
the second example, units with 3 stages were selected.
This ensured that some outputs of Stage 2 and 3
were semi-negative and semi-positive. Thereafter, the
proposed method was applied to calculate the overall
e�ciency of units under assessment. To calculate the
overall e�ciency of units with more than two stages,
solving MOP model was necessary. Fuzzy program-
ming method as a solution procedure was proposed.
The question that arises is whether it can be o�ered
as a method to calculate the overall e�ciency of multi-
stage NDEA, so that solving MOP problem would not
be needed.

Izadikhah and Farzipoor Saen [16] presented a
model in order to calculate e�ciency of two-stage
network in the presence of negative data. Their two-
stage network structure consisted of input, output, and
intermediate indices. The strength of the proposed
method was calculating e�ciency of kth-stage network
in the presence of negative data. Thus, those networks
had external input to the k-th stage in addition to
consumed input of Stage 1.

In future research, Multi-Objective Programming
(MOP) can be applied in the presence of interval data,
which is not crisp. Such problems can be solved
using fuzzy techniques. Furthermore, this research can
be expanded for solving MOP with consideration of
interval negative data.

Nomenclature

ej E�ciency of the j-th stage

e(1)
j ; e(2)

j E�ciency of the �rst and second stages
respectively

Ek;Xj E�ciency of the k-th stage in input
related to DMUj

Ek E�ciency of the k-th stage

EKo E�ciency of the k-th stage related to
DMUo

Ek�o The ideal e�ciency of the k-th stage
related to DMUo

Ek�o The anti-ideal e�ciency of the k-th
stage related to DMUo

EK;Xo E�ciency of the k-th stage in input
related to DMUo

EK;Yo E�ciency of the k-th stage in output
related to DMUo

I Input series, which is positive in all
DMUs

�I Input series, which is positive in some
DMUs and negative in other DMUs

Lk The number of intermediate products
�Lk The number of intermediate products,

which is positive for the k-th stage in
some DMUs and negative in others

L̂k The number of intermediate products,
which is positive for the k-th stage in
all DMUs

�rk The number of outputs when some
DMUs are positive and others are
negative in the k-th stage

r̂k The number of outputs when all DMUs
are positive in the k-th stage

R Output series, which is positive in all
DMUs

�R Output series, which is positive in
some DMUs and negative in others

T ztj series, which is positive in all DMUs
�T ztj series, which is positive in some

units and negative in others
uo Constant return to scale
ur; �ur; ûr Weights of outputs, which are

non-negative

ukr Output weight of the k-th stage

�ukr Output weight of the k-th stage for
semi-positive and semi-negative

vi; �vi; v̂i Weights of inputs which are non-
negative

�vki ; v̂
k
i ; v

k
i Input weights of the k-th stage

�wkg ; ŵ
k
g Intermediate weight of the k-th stage

for semi-positive and semi-negative
inputs

wtg Intermediate weight of the t-th stage,
which is positive

wk Weight of the k-th stage
xij Input to the j-th stage
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x(1)
ij ; x

(2)
ij Input to the j-th stage when �I belongs

to the negative and positive sets

xkij Input to the k-th stage related to
DMUj

x(1)k
ij ; x(2)k

ij Input to the j-th stage for semi-positive
and semi-negative

xik Input to the k-th stage
xio Input to the stage related to DMUo

x(1)
io ; x

(2)
io Input to the stage related to DMUo

when �I belongs to negative and
positive sets

Xj Input to Stage 1, which is positive
�Xj Input to Stage 1, which is semi-positive

and semi-negative
yrj Output of the j-th stage

y(1)
rj ; y

(2)
rj Output of the j-th stage when �R

belongs to negative and positive sets

y(1)k
rj ; y(1)k

rj Output of the k-th stage related
to DMUj for semi-positive and
semi-negative

ykrj Output of the k-th stage related to
DMUj

yrk Output of the k-th stage
yro Output of the stage related to DMUo

y(1)
ro ; y

(2)
ro Output of the stage related to DMUo

when DMUo belongs to negative and
positive sets

Yj Outputs of Stage 2, which is positive
�Yj Outputs of Stage 2, which is

semi-positive and semi-negative
Zj Output of Stage 1, which is positive
�Zj Output of Stage 1, which is semi-

positive and semi-negative

z(k;h)
pj Intermediate product related to the

k-th and h-th stages for DMUj

z(1)(k;h)
pj ; z(2)(k;h)

pj Intermediate variable of the k-th and
h-th stages related to DMUj

z(g;k)
qj Intermediate stage related to DMUj

from k and g loops, which is positive

z(1)(g;k)
qj ; z(2)(g;k)

qj Intermediate stage related to DMUj
from k and g loops, which is from
semi-positive and semi-negative data
sets

ztj Intermediate variable of the j-th stage

ztj(1); ztj(2) Intermediate variable of the j-th
stage when �T belongs to negative and
positive sets

�(Eko ) The membership function for each of
the objective functions for ideal and
anti-ideal answers related to DMUo

��kh Intermediate weight of the k-th stage

�kh Intermediate weight of the k-th stage
�t; ��t; �̂t Weights of intermediate stage, which

are non-negative
" Positive and small variable
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