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KEYWORDS Abstract. In this study, the Multi-Objective Programming (MOP) method was used to
solve Network DEA (NDEA) models with negative data, which consisted of semi-negative
and semi-positive input and output. At first, two stage and, then, k-stage production
models were formulated with consideration of negative data. In the multi-objective
programming, two separate objective functions, including the divisional efficiencies and
the overall efficiency of the organization, were modeled. In comparison to conventional
DEA with negative data, the advantage of the proposed NDEA models is consideration
of intermediate processes and products, in order to calculate overall efficiency of the
organization. However, in conventional DEA, sub-stages of the organizations are neglected.
To measure the efficiencies of an organization regarding interactive internal process, two
case studies were investigated by application of the NDEA-MOP method with negative
data. Case study 1 was focused on units with two stages having semi-negative and semi-
positive indices. In case study 2, units with three stages were evaluated. These units
had semi-negative and semi-positive indices, too. The overall efficiency of each unit was
calculated using the proposed models. Fuzzy approach as a solution procedure was applied.

(© 2018 Sharif University of Technology. All rights reserved.
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1. Introduction cision Making Units (DMUs), which converts multiple
inputs into multiple outputs and takes the qualitative
and quantitative measures into account. In recent
years, extensive application of DEA has been observed
in several contexts such as health care, education,
manufacturing, retailing, banking, etc. In the con-
ventional DEA model, two types of models, namely,
the aggregation and separation approaches, are applied

Nowadays, performance assessment of industrial and
economical units plays an important role in achieving
managerial success and continuous progress. Data En-
velopment Analysis (DEA) is a nonparametric method
used to analyze and evaluate the performance of De-
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division. In the separation model, each division in
doi: 10.24200/sci.2017.4413 a DMU is considered as a separate unit and the
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linking activities between divisions are completely ig-
nored. Thus, efficiencies of the organization’s linking
processes via, both the mentioned methods cannot be
evaluated [1]. The Network DEA (NDEA) model was
proposed by Lewis and Sexton [2] to overcome the
weakness of the traditional DEA model. This model
had a multi-stage structure, which accounted for both
divisional efficiencies and the overall efficiency in a
unified framework. Also, it considered internal interac-
tion within DMUs, where the intermediate measures
among the stages play crucial roles in evaluation of
the efficiency. In recent years, the attention of a large
number of researchers has been drawn to efficiency
assessment in multi-stage production processes, where
each DMU transforms some external inputs to final
outputs by the intermediate products. Details of some
researches in this field can be found in [3-6]. The first
DEA model, namely, CCR, was proposed by Charnes
et al. [7] with assumption of constant-returns-to-scale.
The evolutionary form of this model, named BCC
[8], was proposed by extending to variable-returns-to-
scales. In BCC, n DMUs are considered (j =1,...,n)
for assessment. Each DMU consumes m inputs (i =
1,...,m) and produces s outputs (r = 1,...,s),
denoted by (Iij,xzj, . 7$mj) and (yljvijv . 73,/5]‘)7
respectively. The efficiency of DMUk can be calculated
by the CCR and BCC models as Eqgs. (1) and (2):

CCR:
UrYrk
Max Fj="L
D ViTik
i=1
3w,
st = <1, j=1,2,...,n,
2. Vili
i=1
U, 0; >, T=12,....8 =12 ...,m. (1)
BCC:
Z UrYrk — U0
Max Ej = Tzlm—,
> ViTik
i=1
S
Z UrYr; — UO
s.t. Tilm—gl, j=1,2,...,n
. Vit
i=1
Upy Vi 2 €, r=12,...,8; 1=1,2,...,m,
ug Unrestricted in sign. (2)

In Egs. (1) and (2), E} is the objective function,
which is maximized for every DMUy, individually;
u, and v; are weights of the outputs and inputs,
respectively; x;, and y,; are the ¢-th input and r-th
output of DMUy; ¢ is a small positive value, which
indicates positive weights; and ug is the intercept of
the production function in the BCC model. Previous
researches have documented different methods for solv-
ing network DEA. Cheng et al. [9] derived a common
set of weights by Multi-Objective Programming (MOP)
model based on a compensatory Data Envelopment
Analysis (DEA) model, in order to rank all DMUs. In
order to solve it, the MOP model was transformed into
a Single-Objective Programming (SOP) using a fuzzy
programming method. Thereafter, the SOP model
was solved by the proposed approximation algorithm.
Kao et al. [10] proposed the Multi-Objective Program-
ming (MOP) method in order to solve Network DEA
(NDEA). Two types of NDEA-MOP models, namely,
BCC-MOP and CCR-MOP, were assessed. Divisional
and the overall efficiencies of the organization were
measured without neglecting the efficiencies of its
subunits. Matin and Azizi [11] measured performance
of production systems by a new unified generalized
Network DEA model when interrelationships between
individual sub-processes were considered. General
Network DEA model was evaluated by some illustrative
numerical examples. Wang et al. [12] constructed
two-stage DEA model and then used a fuzzy multi-
objective for evaluating the performance of US Bank
Holding Companies (BHCs). This paper analyzed
the relationship between BHCs performance and their
Intellectual Capital (IC). Despotis and Koronakos [13]
assessed efficiency of a two-stage network using a novel
DEA approach. In the proposed method, unique
and unbiased efficiency scores for the individual stages
were calculated. Afterwards, a posteriori aggregation
method was applied in order to compose stages to
obtain the efficiency of the overall system. Halkos et
al. [14] reviewed the classification of two-stage DEA
models, as well as their mathematical formulations, and
main applications. Simple cases, such as the two-stage
models, and general models, such as the network DEA
models, were analyzed. These models were categorized
into four models, namely, independent, connected,
relational, and game theoretic two-stage DEA. Lee and
Li [15] studied fuzzy multiple-objective programming
and compromise programming with Pareto optimum.
In recent times, evolutionary algorithms have become
a widely used methodology in MOP. The main aim
of this study was to solve network DEA by applying
the Multi-Objective Programming (MOP) method. At
first, a two-stage production system was assumed in
order to convert some input products in the first stage
and use these outputs as inputs to the second stage for
producing final outputs. In this paper, at first, negative
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data is considered for the proposed NDEA model, of negative data. This model for the evaluation of
which consists of semi-negative and semi-positive input DMU,, unit is as follows:

and output. Thereafter, the k-stage production process

with consideration of negative data is formulated by Stage 1:

MOP. MOP is concerned with finding the solutions in
. . . . . m D
which a set of objective functions are simultaneously 1 0; 1 V4
.. . .. . . Max wy | — — 4+ — Z —
optimized, meaning that it is not possible to improve m 4~ 0 D @
any objective without degrading some others. Many
practical applications such as pattern classification can D R
be posed as MOP problems. + wz( 1 Z Qd | 1 Br)7 (3)
According to the CCR and BCC models, ob- $
jective functions including the overall and divisional

efficiencies within a DMU are optimized. Two case 8.8

studies are evaluated to indicate the benefits of NDEA- n

MOP. In order to calculate efficiency of units in the Z Aji; < Tip — BilTapl; i=1,...,m,
presence of semi-negative and semi-positive indices, j=1

various models are presented. Also, different views .

are suggested in order to calculate the performance of - I .

two- and multi-stage units. The difference between this Z Az < Zap = Pal Zapl; d=1,...,D,
article and other articles is that the present study deals =t

with two- and multi-stage units having semi-negative n

and semi-positive indices. In other words, this paper Z A =1, Aj; > 0; 7=1...,n
focuses on units which are combinations of these two =1

states. The remainder of this paper is structured as

follows: in Section 2, the method of Izadikhah and Stage 2:

Farzipoor Saen [16] is discussed. In Section 3, two-

stage DEA model is discussed. In Section 4, a model for Z pidaj < Zap — alZapl; d=1,...,D,
calculation of overall efficiency of units with two stages =1

in the presence of semi-positive and semi-negative data

is proposed. In Section 5, units are extended to k-

stages and a method is stated for calculating the overall Z 1iYri 2 Yrp + Belyrpl; r=1....s
efficiency of units. Fuzzy approach [17] as a solution =t

procedure is proposed in two sections. In Section 6, two

case studies are implemented to examine the network Z 1 =1, [ > 0; j=1,...,n,
DEA models with multi-objective programming. In

Section 7, results and discussion are given and the

conclusion section is provided at the end of the paper. where:

Maxl{ |17 Tip # 0, i:l,...,m},
Tip

2. Non-radial efficiency of two-stage network
DEA with negative data

Consider n units under assessment of DMU; (j = Maxd{ |de| = zap 70, d= 17~~~7D}7
1,...,n) with two-stage network structure as shown in
Figure 1. Stage 1 consumes X; as input and produces
Z; as output, and Stage 2 consumes Z; as input - Maxd{ |de| Fiozgp #£0, d=1,... ,D},
and produces Y; as output. Izadikhah and Farzipoor
Saen [16], using the idea of Chen and Zhu [18], pre-
sented non-radial model to calculate efficiency of each Max,,{ | Tp| By A0 r=1, 5}7
stage and the overall efficiency of a unit in the presence
and:
DMU;
p ZL’iL:Min]‘{ZL’ij}; izl,...,m,

X; Stage 1 |—2t Stage 2 > Y

Zd1r = Minj{zdj}; d=1,...,D,

Figure 1. Two-stage network model.
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ZdLZMan{Zdj}; dZL...,D,

YrLr :Maxj{yrj}; r=1,...,s.

In the presented model, w; + ws = 1 and overall
efficiency of DMU, are calculated as follows:

o* —1—(““{ ;9

0" =1 [wn(1 - 0}) + ws(1— 63)],

where 07 and 65 are efficiencies of Stages 1 and 2,
respectively.

Note that, in Model (3), Z is an unknown decision
variable, which is calculated by solving the model. In
this paper, a method is presented, which considers
general state of a two-stage model (i.e., Stage 2 has
external input) and k-stage model for non-negative
indices.

3. Two-stage DEA model

Consider n DMUs under assessment. Figure 1 shows
the network structure of each DMU, where X; ex-
presses input to the first stage and Z,; represents output
of the first stage, which is considered as input to the
second stage, and Y; is taken into account as output
of the second stage, where X; = (x15,%25,.-.,Tmj),
Yi= (Y15, Y25, Ysj), and Z; = (215, 225, ..., 215) are
positive.

4. Two-stage NDEA-CCR model in the
presence of semi-positive and semi-negative
data

It is assumed that I is input series, which is positive
in all DMUs and [ is input series, which is positive
in some DMUs and negative in other DMUs, so that
m = |I| +|I| and INT = ¢. Furthermore, T is z;
series, which is positive in all decision making units
and T is z;; series, which is positive in some units and
negative in others as t = |T'| + [T| and T NT = ¢.
In addition, R is output series, which is positive in all
DMUs, and R is output series, which is positive in some
DMUs and negative in others such that s = |R| + | R
and RN R = ¢. The efficiency of each DMU can be
calculated as follows:

D Mz + ) MtZ Z fut 2(2)

(1) _ €T tel
Z’UIZEU"'ZU«ZC va
el i€l el

Z UrYr; + Z ury Z ury(Q)

E](Q) reR réR rER (5)
>z + > Mtzt] > Mtzt]
teTl teT teT

where i, iy, fi¢, Vi, Ui, U5, Uy, Uy, and 4, are weights
of inputs and outputs and are all non-negative. In

addition, for every ¢t € T, we have 2t = zt(]l) — th)

where zt(jl) >0, zg) > 0. Furthermore:

Lo 200 e 0w 20 g
t O 2ty <0 ’ ts —Ztj  Atj < 0.

(1 _, (2

rj yTj

(1)

For every r € R, we have y,; =y where y, 7 >

0, y(g) > 0 and:

Yrj Yrj 20 0 Yri >0
) =0 sy o 7= ()
0 Yrj <0 —Yrj Yrj <0

2 2

x;;’ — ;3 where

In addition, for i € I, we have z;; =
xijl) > O,IE?) > 0:

1y _ JYrj
=]

The following model is used to calculate efficiency of
DMU,:

zi; >0 (2):{0 z; >0 (8)

i Xy
Tij < 0 —Ti; T < 0

Max F.,
Max F2, (9)

s.t. E;k) <1;

All variables are non-negative. There are different
methods to solve the two-objective Model (9). In this
study, fuzzy method [10] is applied. General algorithm
of this method is presented in Section 5. By putting
k = 2 in the presented algorithm, Model (9) can be
solved.

5. k-stage NDEA-CCR model in the presence
of semi-positive and semi-negative data

Consider n Decision Making Units (DMUs) under
assessment, each having a network structure, as shown
in Figure 2. Each DMU consists of k stages. Let my
and r; be the numbers of inputs and outputs of the k-th
stage. Assuming that ry = 7 + 7 and my = My Umy,
where 7 represents the number of outputs, all DMUs
are positive in the k-th stage and 7, indicates the
number of outputs as some DMUs are positive while
others are negative in the k-th stage. If the k& and h
stages are linked to each other, they are denoted by



402 K. Kianfar et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 398-409

1 2 k—1
Y; Y; Y]
4 3 DMU; 4
2 k—1
) 7} Z; Z
X} 1 H 2 }__, R I I }——»Yf
y 4
2 k-1 ke
X; X; X;

Figure 2. k-stage network model.

(k, h). The intermediate product, z](-k’h)7 which is an

output of the k-th stage, plays input role for the A-
th stage and its number is equal to Lj. Similarly, it
can be written as L, = Lk + L, where Lk shows the
number of intermediate products, which is positive for
the k-th stage in all DMUs, and Ly is the number of
intermediate products, which is positive for the k-th
stage in some DMUs and negative in others.

The multi-objective NDEA-CCR model in the
presence of negative data is defined as follows:

Max F.,
EK,
k o
Max FE ZEX
k=1,....K,
EF<1 k=1,...,K; j=1,...,n, (10)
where
by i OF & (2)k
6 Y k,k —k ¢ ~k
EPY =) wryn ) Wy =) iy,
r=1 r=1 r=1
t(k,h) t(k,h)
& _(k,h) ok 5(2)(kh)
+ Hh 2y D Hh “pj
V(k,h) p=1 V(k,h) p=1
T(k,h)
nko(2)(k,h)
- K Zp; ’
V(k,h) p=1 (11)
M my (1)k M )k
kX _ k .k =k ok
=1 1=1 =1
t(g,k) t(g,k)
+Z Z w Z(g7k)+ Z Z (gJ»)
V(g.k) ¢=1 Y(g,k) a=1
t(g,k)

_ Z Z Alg (2) (97/»)
qj

V(g,k) g=1 (12)

where yvr] = yg)k — yg-)k; Vr e {1,...,7}; y(l) > 0;
yg)k > 0, where:
yOrZom 20 e JO 020
Tl <0t T -y wn <0
And z}; = ZL'E;)]C (z)k s Vi€ {1, ,m s x; (k> 0;
:pg?)k > 0, where:

k k k
CO L. {%‘j 320 eI {0 zij 20
; koK
—o vy <Oy

(1)(9,) »(2)(g:k), Vg € {1,...,t}

QJ

And zé?’k) =

Db 5 g (2><g,w > 0, where:
Lak) L (90)
Lk _ S5 2y 20
Zqj 0 (g’k) <0’
L0k _ ] 0 2" 20 (1)
Zqj g’k) (g’k) <0

To solve the above model (Model (10)) through fuzzy
method [10], the following operation is performed:

- Step 1. The ideal answer for each of the objective
functions is obtained.

E =max E,,

st. EF <1, j=1,...,n (16)

All weights are non-negative.
The optimal answer of Model (16) is calculated
for k =1,..., K and its optimal value is named E**;

- Step 2. The anti-ideal answer for each of the
objective functions is obtained:

k— _ i ok
E’™ =min £,

st. EF>1, j=1,...,n. (17)

All weights are non-negative.
The optimal answer of Model (17) is calculated
for k =1,..., K and its optimal value is named E*~;

- Step 3. The membership function for each of the

objective functions for ideal and anti-ideal answers
is defined as follows:

. EF — Ek=
WEy) = —o—2

ot (18)

Note that since ES™* is ideal efficiency of DMU,,
0< Egk)* < 1. E((,k)_, the distance to the border
of inefficiency, is anti-ideal efficiency of DMU,.
Therefore, ES™ > 1; since BV < BV < BIM~ it

can be easily proved for E(k)x E(k # 0 and always
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0< ,uE(()k) < 1. For the case of Egk)* — Eﬁk)_ =0, a
unit is added to the denominator of uE(()k) in order to
overcome its problem in becoming zero denominator;

- Step 4. The following model is solved:

max A=min{u(E)},

st. A< u(EY, k=1,..K, (19)
Ek — Eb-

kN 2] o
N(Eo) - Eé* _ E(]f,

for all original constraints;

k
- Step 5. F, Z wy E* is considered to be overall

efficiency of DMU unit, where wy, is weight of the

k-th stage. Z wy, = 1. Note that since for each k,

0<EM < 1 efﬁaency is always between (0, 1]. if
E, =1, then we say that DMU, is efficient; and for
each @ # j, if E; > E;, then the ¢-th unit is more
efficient than the j-th unit.

6. Case studies

In this section, two numerical examples are investi-
gated. In the first case, an example with two stages is
evaluated. This data includes semi-positive and semi-
negative indices. In the second case, an example with &
stages is studied that makes a CCR-MOP model. The
fuzzy method stated in Section 3 is used for finding the
optimum answer.

6.1. Case 1: Example of two-stage
NDEA-CCR with semzi-positive and
semi-negative data

In this section, units consisting of two stages are

considered. According to Figure 3, X; is the input

of Stage 1 and its outputs are Z; and Z;, which are
positive outputs and semi-positive and semi-negative

outputs, respectively. These outputs serve as inputs to
Stage 2. Also, z; is external input to Stage 2. The
outputs of Stage 2 are Y; and Yj, which are positive
outputs and semi-positive and semi-negative outputs,
respectively. This data is presented in Table 1.

According to Table 1, Stage 1 includes three pos-
itive inputs and Stage 2 has two positive outputs, y;,
Y25, and two semi-positive and semi-negative outputs,
T1j, J2j. Output of Stage 1 (input to Stage 2) includes
two positive outputs, z1;, 225, and two semi-positive
and semi-negative outputs, Zi;, Z2;.

Model (8) is used to calculate efficiency of DMU,
(0 € {1,...,10}). In this model, E}, and E? are
calculated as follows:

D 2D 4 e iy

V1215 + V2lo;

El _ :U“Zj +Mlz

b

2 _
E? =

U1Y15 + U2Y25 + Ulygj) - Ulygj) + uwéf - Uz?lg])

Kz + M1Z( ) Mlzgj) + M2Z§]) - Mzzgj) + T, (20)

where Model (8) for evaluation of DMUj is as follows:

Max E?,

Max E2,
st. BY <1 k=12 j=1,...,10 (21)
DMU,
Zj =y
X Stage 1 Stage 2 ;),/J
Z; nY;

Tj

Figure 3. Two-stage network model with external input.

Table 1. The sample data of Case 1.

Stage 1 Link Stage 2
DMU; @®i; = a2 z; % Z1j Z25 Yi; Y2 Y1j Y2;
1 0.838  0.277  0.962 0.894 0.362 —0.410 0.879  0.337 0.177 —0.423
2 1.233  0.132  0.443 0.678 0.188 —0.932 0.538  0.180 0.915 —0.240
3 0.321 0.045 0.482 0.836 —0.207 0.595 0.911  0.198 —0.488 0.413
4 1.483 0.111 0.467 0.869 —0.516 0.518 0.570  0.491 0.437 0.547
5 1.592 0.208 1.073 0.693 —0.407 0.689 1.086 0.372 —0.549 —0.994
6 0.790 0.139 0.545 0.966 0.269 —0.918 0.722  0.253 0.401 0.398
7 0.451 0.075 0.366 0.647 0.257 0.888 0.509 0.241 —0.533 0.371
8 0.408 0.074 0.229 0.756 —0.103 —0.474 0.619 0.097 0.522 —0.825
9 1.864 0.061 0.691 1.191 0.402 0.443 1.023 0.380 —0.456 0.467
10 1.222  0.149 0.327 0.792 —0.187 —0.674 0.769 0.178 —0.309 0.702
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Table 2. Ideal and anti-ideal efficiencies of units of Case 1.

DMU]‘ EJ(-I)* EJ(~2)* E;l)_ EJ(~2)_ EJ(~2)* o E;l)— E_7(‘2)* _ E_7(‘2)*
1 0.75807 1 1.31914 1 —0.56107 €
2 0.43852 1 2.28041 1 —1.84189 €
3 1 0.99998 1 1 e* —2E-05
4 0.41578  0.9999  2.40515 1 —1.98937 —1E-04
5 0.25053 1 3.99161 1 —3.74108 €
6 0.73791 1 1.35519 1 —0.61728 €
7 1 0.51801 1 1.08145 —0.56344
8 0.71148 0.99972  1.40553 1 —0.69405 —0.00028
9 1 0.99994 1 1 € —6E-05
10 0.28545 1 3.50318 1 —3.21773 €

* ¢ is small amount and positive.

In order to solve the two objective models above, the
algorithm presented in Section 5 is used:

- Step 1. solve these two models:

EM* = Max EWY,

M) 1. =19 45—
st. BNV <1 k=12 j=1...10, (22)
E®* = Max E?,

M) 1. =19 45—
st. B <1 k=12 j=1...10. (23)

All variables are assumed non-negative in both
models. Assume that EWV* and E?* are ideal
efficiencies of Stages 1 and 2 related to DMU,. The
results of Models (22) and (23) are shown in Table 2
(note the first row of Table 2);

- Step 2. Solve the following models:

EW™ = Min BV,

st. BV >1 k=12 j=1,....10, (24)
E®~ = Min E?,
st. BV >1 k=12 j=1,....10. (25

All variables in both models are assumed non-
negative. Assume that E%l)_ and E§2)_ are anti-
ideal efficiencies of Stages 1 and 2 related to DMU,,
of which the results are given in the first row of
Table 2.

- Step 3. The membership function for each of the
Steps 1 and 2 using ideal and anti-ideal efficiency

values is defined as follows:

M(Eﬁl)) =
M(Ef) ) =

where 0 < ;L(Efl)) <1,0< u(E?)) <1
Step 4. Solve the following model:

E%l) - EF)_
EF)X . Egl)_’

_ E%Q)_
Egg)* B Egz)—’

Max A,

N E® _ g-
E®* _ gt
nz1 + [Lliﬁ) — ji1 Zﬁ) + ﬂQZS) - ﬂﬂS)

EM=

b

V1T11 + V2221
UL Y1121 -Hil?ﬁ) — iy ﬂﬁ) +ﬂ2ﬂg}) —ﬁzﬂé?

por a2y — 2 Y — 2 oz

EP=

EM<1 k=12 j=1,..10 (27)

All variables are non-negative;

Step 5. Assume that EP and E]@) are results of
optimum answer of Model (27). These results are
given in Table 3. In order to calculate efficiency of
DMUy, correlation of By = 1/2 Efl) +1/2 Ef) is
used. Not that results are given in Table 3 with
consideration of w; = we = 1/2.
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Table 3. Overall efficiency of units of Case 1.

DMU; V1 |23 v w w1 W2 w1 wWa
1 4.59E3 0 6.14E4 0 8.05 E3 0 0 0
2 9.71E7 0 6.97 ET 0 1.70 E8 0 0 0
3 9.71E7 0 2.30 x E11 3.73 ET 7.66 ET 0 0 0
4 9.71E7 0 9.90 E9 3.73 E7 7.66 ET 0 0 0
5 1.04E7 0 1.80 E10 3.99 ET 820 E7 0 0 0
6 2.92E4 0 6.03 E6 1.12 E4 2.30 E4 0 0 0
7 2.07TE7 0 1.46 E8 7.94 E6 1.63 E7 0 0 0
8 1.27E5 0 1.17 E2 4.89 E4 1.00 E5 0 0 0
9 5.08E2 8.40 E3 1.08 E5 6.47 E2 1.71 E3 0 0 0
DMU; wy s @y i iy di EJ('I) EJ('Z) Overal efficiency
(wr = w2 =1/2)
1 6.63 E4 3.70 E3 2.80 E4 0 1.53 E4 6.00 E3 0.75807 1 0.879035
2 0 0 7.07 ET 0 1.90 E4 7.28 E6 0.43852 1 0.71926
3 0 0 1.30 E11 0 0 2.60 E10 1 0.99998 0.99999
4 0 0 1.10 E10 0 0 2.10 E10 0.41578  0.99998 0.70788
5 0 0 1.70 E10 0 0 0 0.25053 1 0.625265
6 2.71 E6 1.34 E6 2.46 E6 5.27 E3 0 2.79 E6 0.73791 1 0.868955
7 6.33 ET 1.25 E7 4.16 E7 5.27 E3 0 5.18 E7 1 0.56077 0.780385
8 3.13 E4 0 3.39 E4 3.66 E1 0 0 0.71148  0.99994 0.85571
9 6.94 E4 0 4.19 E4 1.15 E4 0 0 1 0.99999 0.999995
According to Table 3, overall efficiency of none £ wzjl'
of the units is unit. Thus, DMU;3 and DMUy have J vz’

higher efficiencies than other units.

6.2. Case 2: Extended electric power
companies

This case is related to extended electric power com-
panies with link 3 [19]. In Case 1 [19], inputs and
outputs are not positive, but this case is an extension
of case 1 with the exception that two semi-positive and
semi-negative outputs are added to Stages 2 and 3 (to
better understand, refer to Figure 4). Data of this case
is given in Table 4, where X;, X'j and Xj are inputs
of Stages 1, 2, and 3, respectively. Y7 and Y} are
positive outputs and semi-positive and semi-negative
outputs of Stage 2, respectively. ;> and Y} are positive
outputs and semi-positive and semi-negative outputs
of Stage 3, respectively. Furthermore, Z} and Z? are
links of Stage 1 to Stage 2 and Stage 2 to Stage 3,
respectively, in which Z} and Zf have non-negative
values:

DMU;

zi z2 3

. J J :
Xj—p | Stage 1 I_J Stage 2 |_>| Stage 3 |</VYJ
A T j

X, X,

Figure 4. Three-stage network model.

5@ _ A2 +uy + Ngj?(l) - ng?@)

J wzi + M7, ’
3 ~(3)1 —(3)2
E(g) _ Pyj + Qyj - Syj
J AZJQ- + Bz,

At first, Models (16) and (17) are used for data of
Table 4. Ideal and ant-ideal answers are obtained
for each unit and the results are presented in Table
5. Results of Model (19) for Case 2 are presented in
Table 6.

The fuzzy method of Kao and his co-authors is
used and the membership function value is calculated
for each unit of assessment. Also, the overall efficiency
of each DMUj is calculated via E; = Zizl Wy, E]k
with the assumption of wy = wy = wsz = 1/3, and
the results are presented in Table 7. In this case, the
weights of all the stages are assumed to be identical.
As shown in Table 7, DMUj is efficient and the other
DMUs are inefficient.

7. Conclusion

Measuring efficiency of units under assessment is one
of the valuable goals of data envelopment analysis.
Since all input and output indices cannot be positive,
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Table 4. The sample data of Case 2.

Stage 1 Stage 2 Stage 3 Link

DMU. Input 1 Input 2 Output 1 Output 2 Input 3 Output 3 Output 4 Link 1 Link 2
3

(X)) X))  (¥H (¥ X)) ¥H () (zh (22
1 0.838 0.277 0.879 0.903 0.962 0.337 0.936 0.894 0.362
2 1.233 0.132 0.533 0.097 0.443 0.180 —0.188 0.578 0.188
3 0.321 0.045 0.911 1.355 0.482 0.198 0.906 0.836 0.207
4 1.483 0.111 0.570 1.621 0.467 0.491 0.812 0.869 0.516
5 1.592 0.208 1.086 —1.932 1.073 0.372 —0.092 0.693 0.407
6 0.790 0.139 0.722 —0.737 0.545 0.253 0.064 0.966 0.269
7 0.451 0.075 0.509 0.284 0.366 0.241 0.650 0.647 0.257
8 0.408 0.074 0.619 1.094 0.229 0.097 —1.150 0.756 0.103
9 1.864 0.061 1.023 0.531 0.691 0.380 0.380 1.191 0.402
10 1.222 0.149 0.769 —0.026 0.337 0.178 —0.005 0.792 0.187

Table 5. Ideal and anti-ideal efficiencies of units of Case 2.

DMU; E§1)* E]('z)* E:Es)* E§1)— EJ(.2)_ EJ('s)_
1 0.40963 1 0.97325  2.45077 1 1.01044
2 0.21114  0.7878 1 1.26321 1.2844 1.17199
3 1 1 1 5.98289  12.53931 1.18488
4 0.225 1 1 1.34613  5.17403  3.03264
5 0.16714 1 0.95533 1 1.64535 1
6 0.46951 0.65585 0.98436 2.80905  1.63687 1.339
7 0.55084 0.91166 0.98362 3.29562  2.13869 1.8993
8 0.71148 0.85394 0.98416  4.25668  2.63603  1.22178
9 0.24534 1 0.99045 1.46783 5.2849 1.58622

—
o

0.24886  0.89274 0.99703 1.48889  1.62641  1.52352

Table 6. Results of Model (19) for Case 2.

DMU; w 14 A U N D M P Q S B w

1 0.4582  1.19332 0.88437 0.31301 0 0 2.1313 1.01104 0.35708 0 0.70671  0.4582

2 0.31141 0.81103 1.79514 0.01349 0 0 5.97623  3.30896 0 0 1.49552 0.31141

3 1.19617 3.11526 0 0.3017 0.53517 O 0 0 1.10375 0 2.07469 1.19617

4 0.25892 0.67431 1.36079 0 0.18373 0 6.98201  2.03666 0 0 0.63776 0.25892

5 0.24119 0.62814 1.22564 0.03792 0 0 4.00412  1.73229 0 0 0.46707 0.24119

6 0.48604 1.26582 1.34837 0.26357 0 0 3.81644 2.5292 0 0 1.16934 0.48604

7 0.85138 2.21729 2.17825 0.49233 0 0 5.98878  2.43018 0.60643 0 1.20271 0.85138

8 0.94111 2.45098 0 0 0.71012 O 3.89897  4.15336 0 0 4.36681 0.94111

9 0.20599 0.53648 2.47192 0 0.01185 0 1.24E+01 2.60643 0 0.00216 0.0091 0.20599

10 0.31422 0.81833 0.77865 0.36044 0 0 5.04122  3.22966 0 0 2.53529 0.31422
extended models are proposed by which the efficiency of that focus on calculating units with two and multi
units can be calculated. Also, some methods have heen stages is that a model is proposed in this paper, which
presented for measuring two- and multi-stage network is able to calculate the efficiency of network DEA in
DEA structures, which are applied for positive data. the presence of semi-positive and semi-negative indices.

The difference between this article and other articles Two case studies for the presented work were presented.
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Table 7. Overall efficiency of Case 2 results of Model 19.

pmMU; EV E® E® E;

1 0.40963 0.59528 0.67495 0.559953
2 0.21114 0.34474 0.59561  0.38383
3 1 1 1 1

4 0.225 1 1 0.741667
5 0.16714 0.54002 0.64441 0.450523
6 0.46951 0.55301 0.63989  0.554137
7 0.55084  0.8104  0.97985  0.780363
8 0.71148  0.77688 0.40288  0.630413
9 0.24534 1 0.99045  0.745263
10 0.24886 0.42278 0.57488  0.415507

In the first example, units with two stages having semi-
positive and semi-negative indices were considered; in
the second example, units with 3 stages were selected.
This ensured that some outputs of Stage 2 and 3
were semi-negative and semi-positive. Thereafter, the
proposed method was applied to calculate the overall
efficiency of units under assessment. To calculate the
overall efficiency of units with more than two stages,
solving MOP model was necessary. Fuzzy program-
ming method as a solution procedure was proposed.
The question that arises is whether it can be offered
as a method to calculate the overall efficiency of multi-
stage NDEA | so that solving MOP problem would not
be needed.

Izadikhah and Farzipoor Saen [16] presented a
model in order to calculate efficiency of two-stage
network in the presence of negative data. Their two-
stage network structure consisted of input, output, and
intermediate indices. The strength of the proposed
method was calculating efficiency of kth-stage network
in the presence of negative data. Thus, those networks
had external input to the k-th stage in addition to
consumed input of Stage 1.

In future research, Multi-Objective Programming
(MOP) can be applied in the presence of interval data,
which is not crisp. Such problems can be solved
using fuzzy techniques. Furthermore, this research can
be expanded for solving MOP with consideration of
interval negative data.

Nomenclature

e; Efficiency of the j-th stage

651) , e§-2) Efficiency of the first and second stages
respectively

E]I”X Efficiency of the k-th stage in input
related to DMU;

Ey Efficiency of the k-th stage

E}
Ek+
Ek-
EIX
E({LY
I

I

Uo

Wpy Uy U

=
RS E

Vi, Vg, U5

<

S

Efficiency of the k-th stage related to
DMU,

The ideal efficiency of the k-th stage
related to DMU,

The anti-ideal efficiency of the k-th
stage related to DMU,

Efficiency of the k-th stage in input
related to DMU,

Efficiency of the k-th stage in output
related to DMU,

Input series, which is positive in all
DMUs

Input series, which is positive in some
DMUs and negative in other DMUs
The number of intermediate products
The number of intermediate products,

which is positive for the k-th stage in
some DMUs and negative in others

The number of intermediate products,
which is positive for the k-th stage in
all DMUs

The number of outputs when some
DMUs are positive and others are
negative in the k-th stage

The number of outputs when all DMUs
are positive in the k-th stage

Output series, which is positive in all
DMUs

Output series, which is positive in
some DMUs and negative in others
2zt series, which is positive in all DMUs
z; series, which is positive in some
units and negative in others
Constant return to scale

Weights of outputs, which are
non-negative

Output weight of the k-th stage
Output weight of the k-th stage for
semi-positive and semi-negative
Weights of inputs which are non-
negative

Input weights of the k-th stage
Intermediate weight of the k-th stage

for semi-positive and semi-negative
inputs

Intermediate weight of the ¢-th stage,
which is positive

Weight of the k-th stage

Input to the j-th stage
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xgjl-),xg-) Input to the j-th stage when I belongs
to the negative and positive sets
xf] Input to the k-th stage related to

DMU;

(Dk _(2)k
.SL',L-]- s xij
and Seml—negatlve

Tik Input to the k-th stage

Tio Input to the stage related to DMU,

xﬁi%xﬁ? Input to the stage related to DMU,
when I belongs to negative and
positive sets

X; Input to Stage 1, which is positive

Xj Input to Stage 1, which is semi-positive
and semi-negative

Yrj Output of the j-th stage

yg-),yg) Output of the j-th stage when R
belongs to negative and positive sets

yg)k,yg)k Output of the k-th stage related
to DMU; for semi-positive and
semi-negative

yffj Output of the k-th stage related to
DMU;

Yrk Output of the k-th stage

Yro Output of the stage related to DMU,

yﬁ})), si) Output of the stage related to DMU,
when DMU, belongs to negative and
positive sets

Y; Outputs of Stage 2, which is positive

Y; Outputs of Stage 2, which is
semi-positive and semi-negative

Z; Output of Stage 1, which is positive

Z; Output of Stage 1, which is semi-
positive and semi-negative

zl(j;’h) Intermediate product related to the

k-th and h-th stages for DMU;

zg)(k’h), zg)(k’h)lntermediate variable of the k-th and
h-th stages related to DMU;

zég’k) Intermediate stage related to DMU;
from k and g loops, which is positive

zé?(g’k), zg?(g’k)lntermedia‘ce stage related to DMU;

from k and ¢ loops, which is from
semi-positive and semi-negative data
sets

Ztj Intermediate variable of the j-th stage

ztj(l),ztj(z) Intermediate variable of the j-th

stage when 7 belongs to negative and

positive sets

Input to the j-th stage for semi-positive

w(EX) The membership function for each of
the objective functions for ideal and
anti-ideal answers related to DMU,

ﬁ’,‘; Intermediate weight of the k-th stage

ur Intermediate weight of the k-th stage

Ihey [ty fbe Weights of intermediate stage, which
are non-negative

€ Positive and small variable
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