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Abstract. Researchers in the applied sciences are often concerned with multivariate
random variables. In particular, multivariate discrete data often arise in many �elds
(statistical quality control, biostatistics, failure and reliability analysis, etc.) and modeling
such data is a relevant task, as well as simulating correlated discrete data satisfying some
speci�c constraints. Here, we consider the discrete Weibull distribution as an alternative
to the popular Poisson random variable and propose a procedure for simulating correlated
discrete Weibull random variables with marginal distributions and correlation matrix
assigned by the user. The procedure relies upon the Gaussian copula model and an
iterative algorithm for recovering the proper correlation matrix for the copula ensuring
the desired correlation matrix on the discrete margins. A simulation study is presented,
which empirically assesses the performance of the procedure in terms of accuracy and
computational burden, and in relation to the necessary (but temporary) truncation of the
support of the discrete Weibull random variable. Inferential issues for the proposed model
are also discussed and are eventually applied to a dataset taken from the literature, which
shows that the proposed multivariate model can satisfactorily �t real-life correlated counts
even better than the most popular or recent existing ones.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Stochastic simulation has been playing a more and
more important role in statistical research in recent
years. Thanks to the increasing availability of compu-
tational resources, the evaluation of the performance
of techniques of statistical analysis and the assessment
of the reliability of stochastic models are now often
carried out via computer-simulated data; this is the
unique viable solution when handling complex estima-
tors in inferential problems, whose statistical properties
cannot be derived analytically. The researcher is
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often concerned with multivariate random variables
(r.v.'s). In particular, multivariate discrete data or,
more simply, correlated count data often arise in
many contexts (statistical quality control, biostatistics,
failure analysis, etc.). Such data are often modelled
through the multivariate normal distribution, which,
however, being a continuous r.v., �ts the data hardly
adequately; or through a multivariate Poisson model,
which would require the data to have marginal means
almost equal to the marginal variances. Here, we con-
sider the discrete Weibull distribution as an alternative
to the popular Poisson r.v. and propose a procedure
for simulating correlated discrete Weibull r.v.'s, with
marginal distributions and correlation matrix set by
the user. The procedure really relies upon the Gaussian
copula model and an iterative algorithm for recovering
the proper correlation matrix for the copula ensuring
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the desired correlation matrix on the discrete margins.
The rest of the paper is structured as follows: In
the next section, the discrete Weibull distribution is
introduced and its features are brie
y described. Sec-
tion 3 outlines the simulation procedure for generating
correlated discrete Weibull r.v.'s with assigned margins
and correlation matrix. Section 4 shows the results of a
Monte Carlo simulation study, proving the performance
of the proposed method, with a special focus on its
capability to recover the desired correlations and its
computation time. Section 5 is devoted to parameter
estimation and Section 6 considers a real dataset
that can be �tted by the bivariate discrete Weibull
model. The �nal section concludes the paper with some
remarks and future research perspective.

2. The discrete Weibull distribution

The discrete Weibull distribution was introduced by
Nakagawa and Osaki [1] as a discrete counterpart
of the continuous Weibull distribution, which was a
popular stochastic model used especially in engineering
reliability and survival analysis. It is also called type I
discrete Weibull distribution, in order to distinguish
it from other models proposed later by Stein and
Dattero [2] (type II discrete Weibull) and Padgett and
Spurrier [3] (type III discrete Weibull). For the model
proposed by Nakagawa and Osaki [1], the cumulative
distribution function (c.d.f.) is:

F (x; q; �) = 1� q(x+1)� ; x 2 N0;

with 0 < q < 1 and � > 0; consequently, its probability
mass function (p.m.f.) is de�ned as:

p(x; q; �) = qx
� � q(x+1)� x 2 N0: (1)

This distribution, di�erently from the two alternative
types, retains the form of the c.d.f. of the continuous
Weibull model. Note that for each choice of the
parameter �, it results in p(0; q; �) = 1 � q, and
for � = 1, the discrete Weibull r.v. reduces to the
geometric r.v. with parameter 1� q.

The discrete Weibull distribution can be used
in reliability problems for modelling discrete failure

data, such as the number of shocks, cycles, or runs a
component or structure can overcome before failing, or
for modelling discrete lifetimes, i.e. when the lifetime
of a device or a system is not measured in terms
of the calendar time, but in terms of the number of
periods (e.g., days, weeks, etc.) it successfully works
until failure. More generally, it can virtually model
any type of count data. Contrary to the Poisson
r.v., which cannot adequately model count data whose
variance exceeds the mean, something that often occurs
in practice, the discrete Weibull r.v. can model both
underdispersed and overdispersed data (see [4] and
Table 1, which reports the expected value and the
variance of the discrete Weibull distribution for several
combinations of q and �). This distribution can also
handle count data presenting an excess of zeros, which
arise in many physical situations (see [4]).

By the way, one can note that the discrete Weibull
r.v. can also handle only positive counts by simply
modifying its c.d.f. as follows:

F (x; q; �) = 1� qx� ; x 2 N;
whose associated p.m.f. then becomes:

p(x; q; �) = q(x�1)� � qx� ; x 2 N:
With regard to the issues related to point and interval
estimation of the parameters of the discrete Weibull
distribution, one can refer to Khan and Khalique and
Abouammoh [5], Kulasekera [6], and Barbiero [7].

It is worth noting that some univariate discrete
distributions have been derived as modi�cations of the
(type I) discrete Weibull r.v. or as discrete analogues
of modi�ed continuous Weibull r.v.'s, often with the
intent of imposing a hazard function with some desired
features. Among them, we remind the reader of the
discrete additive Weibull distribution [8]; see [9] for a
complete review.

The discrete Weibull model is implemented
in the R environment [10] through the package
DiscreteWeibull [11], which comprises several func-
tions for computing the p.m.f., the c.d.f., the quantile
function, and the �rst and second moments, and
for implementing the pseudo-random generation and
sample estimation.

Table 1. Expected value (E) and variance (V ) for the discrete Weibull r.v. for some combinations of its parameters.

q
E V E V E V E V E V

� = 0:5 � = 0:75 � = 1 � = 1:5 � = 2

0.6 7.26 291 2.48 15.3 1.5 3.75 0.93 0.95 0.74 0.49

0.7 15.2 1:24 � 103 4.25 40.2 2.33 7.78 1.30 1.53 0.98 0.68

0.8 39.7 8:07 � 103 8.33 141 4.00 20.0 1.96 2.83 1.38 1.04

0.9 180 1:62 � 105 23.4 1:05 � 103 9.00 90.0 3.55 7.61 2.23 2.12
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3. Modelling correlated discrete Weibull
distributions

The building, study, and application of multivariate
distributions is one of the classical �elds in statistics,
which still continues to be an active area of re-
search [12]. There are several methods for constructing
multivariate r.v.'s. Whereas the construction based on
the de�nition of their joint probability mass or density
function poses some di�culties and often results in
practical limitations, for example, in the range of
possible pairwise correlations, the speci�cation via two
independent components: 1) Marginal distributions,
2) a copula function that provides the dependence
structure, is much more straightforward [13,14].

Restricted to the bidimensional case, in [15], a re-
view on constructions of discrete bivariate distributions
is given. Recognizing that \Unlike their continuous
analogues, discrete bivariate distributions appear to
be harder to construct," a list of existing (cluster
of) methods is presented and described, among which
is the \construction of discrete bivariate distributions
with given marginals and correlation".

The discrete Weibull distribution was employed
by Englehardt and Li [4] in a correlated random
multiplicative growth model for microbial counts in
water; more recently, Englehardt [16] showed that the
discrete Weibull distribution could model products of
autocorrelated causes, generated via copula, but no
other models had been proposed for building correlated
discrete Weibull r.v.'s. A vector of correlated discrete
Weibull r.v.'s can be easily built resorting to copulas.
Moreover, using a simulation technique implemented in
the R environment, called GenOrd [17], the univariate
discrete Weibull distributions can be linked together
through a Gaussian copula with the desired correla-
tions. GenOrd was originally conceived for modelling
and simulating correlated ordinal r.v.'s, i.e., variables
de�ned on a k-point scale (with values 1; 2; � � � ; k,
see [18]); later, it was extended to the case of discrete
r.v.'s (with �nite or countable support) [19].

Simulating a random vector X = (X1; : : : ; Xk) of
k r.v.'s with margins F1; � � � ; Fk linked together by a
Gaussian copula with correlation matrix RN translates
into the following steps:

1. Simulate from Z � N(0;RN ) a k-variate standard
normal distribution with correlation matrix RN ;

2. Compute U = (�(Z1); � � � ;�(Zk)), where � is the
c.d.f. of the standard normal r.v.;

3. Compute X = (F�1
1 (U1); � � � ; F�1

k (Uk)), where
F�1
i denotes the inverse c.d.f. of Xi.

The GenOrd procedure incorporates an algorithm, im-
plemented by the function ordcont, that is able to
ensure the desired correlation matrix R between the k

discrete margins by computing the proper correspond-
ing correlation matrix RN . It is well known, in fact,
that the correlations between the normal components
Zi are modi�ed throughout the transformation process
leading to the desired margins. For each pair of
components (Xi; Xj), the following relationship by
Cario and Nelson [20] holds:

E(XiXj) = E
�
F�1
i (�(Zi))F�1

j (�(Zj))
�

=
+1Z
�1

+1Z
�1

F�1
i (�(Zi))F�1

j (�(Zj))�'�Nij (zi; zj)dzidzj ;
(2)

with '�Nij (�; �) being the standard bivariate density
function with correlation coe�cient �Nij ; from Eq. (2),
then, the correlation �ij can be (usually only) numer-
ically derived, generally di�erent from �Nij . This issue
is well-known in the statistical literature and several
attempts to derive some properties of such \distortion"
on the correlation coe�cient have been made (see, for
example, [20-23].

This algorithm relies upon the discretization of
normal r.v.'s that necessarily requires a �nite support
for the target discrete r.v.'s Xi (see [18] for details).
In this case, it can be shown that the double integral
in Eq. (2) reduces to a �nite sum of double integrals
of the bivariate normal c.d.f. with correlation �Nij
computed over rectangles in R2; thus, the value of �ij
can be easily derived analytically or numerically, say,
�ij = G(�Nij ; Fi; Fj), where G(�) is some function. This
task can be worked out thanks to the availability of
statistical software (mvtnorm) implementing the bivari-
ate normal c.d.f. [24]. The algorithm, however, can be
adapted to the case of discrete r.v.'s with countable
support by operating a preliminary truncation on it;
this translates into selecting a proper right bound
(e.g., the (1 � 
)-quantile, with 0 < 
 << 1 being
a `truncation parameter' [19,25]).

Figure 1 displays the relationship between �N and
� when both margins X1 and X2 are Bernoulli variables
with probability of success 1=2 (Figure 1(a); in this
case, there exists an analytical expression for function
G: � = 2=� arcsin(�N )); or when X1 and X2 are
Binomial variables with parameters n = 2 and prob-
ability of success 1=2 (Figure 1(b)); or, �nally, when
X1 and X2 are Binomial variables with parameters
n = 2 and probability of success 3=4 (Figure 1(c)).
Note also that once the two marginal distributions are
assigned, the target � cannot be set at will in the usual
range (�1;+1), but has to satisfy stricter conditions
(see [18,26]); this is apparent for the case displayed in
Figure 1(c); here, it can be shown that � cannot be
smaller than �2=3. Lower and upper bivariate bounds
can be computed by the function corrcheck in GenOrd.
However, note that these bounds, for k > 2, de�ne
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Figure 1. Relationship between correlation coe�cients �N and � when the components of a bivariate normal, Z1 and Z2,
are discretized into X1 and X2.

necessary, but not su�cient conditions for the existence
of the joint discrete distribution.

Focusing on the simulation of correlated discrete
Weibull r.v.'s, the proposed procedure can be sketched
out as follows, properly rearranging the scheme seen
before, used for simulating r.v.'s linked by the Gaussian
copula:

1. (Preliminary support truncation) For a chosen
value of the truncation parameter, 
i, for each
discrete Weibull component, Xi, i = 1; � � � ; k, with
c.d.f. Fi, compute a truncated support and then a
corresponding approximate c.d.f. F �i ;

2. (Recovering the correlation matrix of the Gaussian
copula) By using the ordcont function in GenOrd,
recover, through an iterative search, the correlation
matrix RN of a k-variate standard normal r.v.
imposing the desired correlation matrix R on the
k discrete Weibull r.v.'s with c.d.f. F �i ;

3. (Drawing the sample) By using the ordsample
function in GenOrd, draw a sample of chosen size n,
z = [zhi], h = 1; � � � ; n, from a k-variate standard
normal r.v. with correlation matrix RN , apply �rst
the standard normal c.d.f., uhi = �(zhi), and then
the inverse c.d.f. F�1

i , xhi = F�1
i (uhi). x = [xhi] is

a sample from the correlated discrete Weibull r.v.'s
with c.d.f. Fi and correlation matrix R.

4. A Monte Carlo simulation study

Through a Monte Carlo simulation study, we want
to assess the capability of the proposed simulation
technique of recovering the desired correlation coe�-
cients between the discrete Weibull components and
in terms of the truncation parameter, 
. We do not
need to check its capability of correctly simulating
each marginal distribution, since this is ensured by the
`inverse transform sampling' performed on the basis of
the actual inverse c.d.f. (see [19]). Also, we want to
check the computation time required by the procedure,
in particular, when the dimensionality k increases.
Preliminary results are reported in Barbiero [27].

4.1. Checking the \accurateness" of the
procedure

In the simulation study, for the sake of simplicity,
we �rst start focusing on the generation of k = 3
correlated discrete Weibull r.v.'s under various exper-
imental settings. Speci�cally, we consider two sub-
studies. The �rst one considers k = 3 identically
distributed and equally correlated discrete Weibull
r.v.'s, i.e. the simplest kind of scenarios. The three
marginal distributions are all characterized by one of
the following three vectors of parameters (q; �), v1 =
(0:7; 0:75), v2 = (0:8; 1:5), and v3 = (0:9; 2); the r.v.'s
are correlated through a common correlation coe�cient
� taking the values �0:2, 0.2, 0.4, and 0.6. Thus,
12 simulation settings arise. A negative value for the
common correlation has been introduced, since, even
if less often, count data in practical applications can
be negatively associated (let us think about purchases
of complementary products or of substitutes). The
second sub-study considers three di�erent vectors of
parameters, v1, v2, and v3, for the three discrete
Weibull distributions X1, X2, and X3, respectively;
the correlation matrix R is characterized by three
di�erent values chosen among four (�0:2, 0.2, 0.4, and
0.6) for the three distinct correlations �12, �13, and
�23. Thus, 24 simulation settings arise (the number
of permutations of 4 elements{the four values of �).
This sub-study aims at testing how the simulation
procedure handles more complicated scenarios than
those evaluated in the �rst sub-study, characterized by
both di�erent margins and unequal correlations.

A �rst issue worth analyzing prior to proceeding
with the Monte Carlo study is the e�ect of the trun-
cation parameter, 
. In order to yield accurate results
on the value of the target correlation coe�cient, �, one
should try to keep 
 as small as possible; but a too small
value of 
 would entail a large number of points in the
support of the (temporarily truncated) r.v., resulting
in a long computational time of the ordcont routine
of the GenOrd procedure. A compromise has then to
be sought between precision and machine time; thus,
a preliminary study can be carried out to identify
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an \optimal" value of 
. We performed it on the
scenarios of the two simulation studies. To this aim,
we considered 6 values of 
, from 10�2 to 10�7, with a
step ratio of 1=10; and, for each one of the settings, via
ordcont, we computed the value of the common �N as
a function of the target � and of the parameter vector
v. The results for the �rst sub-study, concerning k =
3 equally distributed and correlated discrete Weibull
r.v.'s., are graphically displayed in Figure 2. They
are interesting and somehow surprising since they show
that the trend of the common �N as a function of 
,
keeping � and v �xed, is not necessarily monotonic;
however, �N actually reaches stability quite fast, even

according to a di�erent rate mostly depending on the
combination of the values of q and �. Large values of
mean and variance tend to slow down the stabilization
process. For example, for the scenario characterized
by � = 0:2, q = 0:7, and � = 0:75 for all the three
random components (panel d), the common correlation
coe�cient �N of the Gaussian copula recovered by
GenOrd is �N = 0:2552062 with 
 = 10�2, �N =
0:2633874 with 
 = 10�3, �N = 0:2655006 with

 = 10�4, �N = 0:2659209 with 
 = 10�5, �N =
0:2659926 with 
 = 10�6, and �N = 0:2660024 with

 = 10�7. The correlation coe�cient of the 3-variate
standard normal r.v. is then quite di�erent from the

Figure 2. Value of �N computed by GenOrd under various settings (identi�ed by the common correlation � and vector of
parameters v) and for di�erent values of the truncation parameter 
.
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target correlation among the discrete Weibull r.v.'s. As
to the e�ect of the truncation parameter 
, whereas
there is a non-negligible change in �N moving from

 = 10�2 to 
 = 10�3 and 
 = 10�4, moving from
10�4 to 10�7 yields a relative change (increase) in
the correlation coe�cient �N of 0.19% only. Similar
considerations hold for the second sub-study. For
instance, for the scenario characterized by �12 = 0:2,
�13 = 0:4, and �23 = 0:6, the correlation matrix of
the Gaussian copula computed by GenOrd, according
to three di�erent values of 
 (
1 = 10�4, 
2 = 10�5,

3 = 10�6), is:

RN

1

=

0@ 1 :2462291 :4799779
:2462291 1 :6370234
:4799779 :6370234 1

1A ;

RN

2

=

0@ 1 :2464809 :4804511
:2464809 1 :6370470
:4804511 :6370470 1

1A ;

RN

3

=

0@ 1 :2465235 :4805311
:2465235 1 :6370500
:4805311 :6370500 1

1A ;

and is considerably di�erent from the target R. Also,
in this case, reducing the magnitude of the truncation
parameter (from 10�4 to 10�6 and beyond) does not
entail a signi�cant improvement in terms of precision
of the correlation coe�cients, �Nij , (for the three values
considered here, always smaller than 0.1%). However,
generally speaking, setting 
 may require more caution
when handling discrete Weibull marginals with large
mean and variance, since a too crude truncation of
the support may impose gross approximation errors on
the computation of RN and, on the contrary, setting
a very small value of 
 may dramatically increase the
computation time required for recovering RN .

Now, 
 = 10�4 seems to be, at least for all the
scenarios considered here, a satisfactory compromise;
we decided to keep it �xed for the complete Monte
Carlo study. Then, under each setting of the two
sub-studies, we generate 5,000 random samples of sizes
50 � 3 and 100 � 3 through the GenOrd procedure. In
order to assess its performance, we compute the Monte
Carlo distribution of the three sample correlation co-
e�cients �̂12, �̂13, and �̂23, which, for the values of n
examined here, are nearly unbiased estimators of the
corresponding �ij . Thus, the closer the Monte Carlo
mean of �̂ij to the target value �ij , the better the
performance of the simulation technique.

The synthetic results are reported in Table 2
and con�rm that GenOrd is able to reproduce the
target correlations satisfactorily under each setting.
The largest absolute \bias" (i.e., di�erence between
target and Monte Carlo average values) for the �rst

study is about 0.018, for the scenario with � = �0:2,
v1, and n = 50; whereas for the second study, it is
approximately equal to 0.01 for �13 in the settings
characterized by �12 = 0:4, �13 = 0:6, and �23 = �0:2,
n = 50. As expected, the overall bias decreases when
moving from n = 50 to n = 100; thus, this study
implicitly represents an assessment of the behaviour of
the sample correlation as an estimator of �, too. Please
note that for the �rst sub-study, for symmetry reasons,
the three sample correlations should theoretically have
the same sample distribution; discrepancies among the
three average values under each scenario are due only
to the Monte Carlo approximation. These results
con�rm that the preliminary truncation of the support
of the discrete Weibull r.v.'s (via the parameter 
 here
set equal to 10�4) does not a�ect the computation
of the correlation matrix RN negatively (i.e., it does
not introduce sensible unwanted bias), at least for the
examined settings.

As for the computation time, carrying out the
simulation task takes di�erent times depending on
the speci�c simulation setting, more speci�cally on
the marginal distributions. The most time-consuming
settings are those involving the parameter vector (q =
0:7; � = 0:75), which determines the largest mean and
variance, and then a truncated support comprising a
large number of points; this leads to a longer com-
putational time in the discretization process required
for recovering the proper correlation matrix of the
Gaussian copula. Nevertheless, even for the `worst'
scenario (constant correlation � = 0:6 and 
 = 10�6),
the whole computation time is never larger than 3
minutes, the actual drawing of samples (of size 100)
requiring less than 15 seconds (on a machine with Intel
Core i3-2100 CPU @ 3.10 GHz, 4 GB RAM).

A remark should be made about possible prob-
lems with speci�c combinations of parameters. When
handling small (much smaller than 1) values of �,
especially if combined with values of the parame-
ter q close to 1, which give rise to a pronounced
skewness of the distribution, the discretization step
required for recovering RN may be computationally
cumbersome, since the upper bound of the truncated
support becomes very large. For `moderate' values
of the truncation parameter 
 (say 0:001 � 0:01), the
algorithm can easily recover the correlation matrix of
the Gaussian copula. For very small values of 
 (say <
10�3), such task may become practically unattainable
(or, better, it requires many minutes to be carried out).
However, many of these (q, �) combinations produce
`unlikely' discrete Weibull distributions. Just to get
an idea, if q = 0:8 and � = 0:2, the 0.99-quantile is
� 3:7 � 106, the expected value � 2:2 � 105, and the
standard deviation � 3:4 � 106. However, in order to
overcome this issue, alternative ways to recover the
correlation matrix of the multivariate Gaussian copula
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Table 2. Synthetic results of the �rst Monte Carlo simulation study, k = 3.

(a) Monte Carlo averages of sample correlations for the 12 settings of sub-study 1 (
 = 10�4)

n � = �0:2 � = 0:2 � = 0:4 � = 0:6

50 �̂12 �̂13 �̂23 �̂12 �̂13 �̂23 �̂12 �̂13 �̂23 �̂12 �̂13 �̂23

v1 -0,218 -0,214 -0,214 0,198 0,203 0,201 0,401 0,407 0,399 0,599 0,600 0,599
v2 -0,204 -0,198 -0,197 0,198 0,199 0,198 0,396 0,396 0,393 0,595 0,594 0,593
v3 -0,203 -0,198 -0,196 0,198 0,198 0,196 0,396 0,397 0,394 0,595 0,595 0,595

100 �̂12 �̂13 �̂23 �̂12 �̂13 �̂23 �̂12 �̂13 �̂23 �̂12 �̂13 �̂23

v1 -0,209 -0,209 -0,209 0,203 0,203 0,201 0,398 0,403 0,401 0,597 0,600 0,599
v2 -0,200 -0,199 -0,199 0,198 0,200 0,198 0,397 0,398 0,398 0,597 0,597 0,598
v3 -0,200 -0,197 -0,199 0,199 0,198 0,199 0,397 0,398 0,398 0,597 0,598 0,597

(b) Monte Carlo averages of sample correlations for the 24 settings of sub-study 2 (4 scenarios
for each row; values within brackets are the target correlations) (
 = 10�4)

(�12) (�13) (�23) (�12) (�13) (�23) (�12) (�13) (�23) (�12) (�13) (�23)

�̂12 �̂13 �̂23 �̂12 �̂13 �̂23 �̂12 �̂13 �̂23 �̂12 �̂13 �̂23

n (-0.2) (0.2) (0.4) (-0.2) (0.2) (0.6) (-0.2) (0.4) (0.2) (-0.2) (0.4) (0.6)
50 -0.204 0.207 0.396 -0.203 0.207 0.595 -0.204 0.406 0.204 -0.205 0.408 0.594
100 -0.202 0.202 0.397 -0.202 0.202 0.596 -0.202 0.402 0.200 -0.204 0.404 0.597

n (-0.2) (0.6) (0.2) (-0.2) (0.6) (0.4) (0.2) (-0.2) (0.4) (0.2) (-0.2) (0.6)
50 -0.202 0.608 0.204 -0.206 0.607 0.400 0.205 -0.207 0.396 0.207 -0.203 0.595
100 -0.202 0.605 0.201 -0.203 0.605 0.400 0.200 -0.205 0.397 0.202 -0.202 0.598

n (0.2) (0.4) (-0.2) (0.2) (0.4) (0.6) (0.2) (0.6) (-0.2) (0.2) (0.6) (0.4)
50 0.201 0.405 -0.202 0.198 0.404 0.595 0.200 0.608 -0.203 0.200 0.606 0.396
100 0.201 0.403 -0.199 0.201 0.402 0.598 0.201 0.605 -0.200 0.202 0.604 0.398

n (0.4) (-0.2) (0.2) (0.4) (-0.2) (0.6) (0.4) (0.2) (-0.2) (0.4) (0.2) (0.6)
50 0.401 -0.206 0.198 0.407 -0.203 0.594 0.399 0.202 -0.203 0.399 0.201 0.596
100 0.401 -0.202 0.199 0.403 -0.203 0.597 0.401 0.200 -0.200 0.403 0.202 0.598

n (0.4) (0.6) (-0.2) (0.4) (0.6) (0.2) (0.6) (-0.2) (0.2) (0.6) (-0.2) (0.4)
50 0.397 0.610 -0.204 0.398 0.610 0.193 0.605 -0.201 0.204 0.603 -0.210 0.394
100 0.401 0.606 -0.200 0.399 0.606 0.199 0.604 -0.202 0.200 0.603 -0.203 0.398

n (0.6) (0.2) (-0.2) (0.6) (0.2) (0.4) (0.6) (0.4) (-0.2) (0.6) (0.4) (0.2)
50 0.603 0.202 -0.203 0.604 0.200 0.393 0.603 0.403 -0.204 0.603 0.404 0.194
100 0.602 0.201 -0.201 0.603 0.202 0.398 0.602 0.403 -0.201 0.602 0.403 0.198

that induces the target correlation matrix, i.e. handling
Eq. (2), can be inspected, for example resorting to some
approximation by the continuous Weibull model.

4.2. Checking the \scalability" of the procedure
In a second empirical study, we try to address the
\scalability" of the algorithm, that is, to check for its
tightness when increasing the dimensionality k of the
random vector to be simulated. Here, we �rst consider

k = 6 discrete Weibull components, whose margins are
characterized by the following q and � parameters:
q = (q1; � � � ; q6) = (0:7; 0:8; 0:8; 0:8; 0:8; 0:9) and
� = (�1; � � � ; �6) = (0:75; 0:75; 1; 1:5; 2; 2), and whose
correlations are set equal to a constant value �,
with � = �0:1; 0:2; 0:4; 0:6. Then, we consider the
simulation of k = 20 correlated discrete Weibull r.v.'s
with marginal parameters given by q = (q1; � � � ; q20) =
(:7; :7; :7; :7; :7; :7; :7; :7; :8; :8; :8; :8; :8; :8; :8; :8; :9; :9; :9;
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:9) and � = (�1; � � � ; �20) = (:75; :75; 1; 1; 1:5; 1:5; 2; 2;
:75; :75; 1; 1; 1:5; 1:5; 2; 2; 1:5; 1:5; 2; 2), and the same
level of (constant) correlation (� = 0:2; 0:4; 0:6).
Under each setting of the two sub-studies, we generate
5,000 random samples of size 100 � k through the
GenOrd procedure. The value of 
 is varied (10�4,
10�5, 10�6). The performance of the algorithm is still
synthetically assessed through the MC average of the
sample correlations �̂ij . The total computation time is
measured as the sum of two distinct contributions: the
�rst is the time required by the ordcont procedure for
setting up the correlation matrix RN of the k-variate
normal r.v., which we call \preprocessing time",
t1; the second is the time requested by the actual
simulation of 5,000 multivariate samples, t2.

The results for k = 6 and 
 = 10�4 are reported
in Table 3; the MC average value of the sample
correlations �̂ij is always close to the corresponding
�ij , for any choice of the target �ij and for each choice
of the pair (i; j).

In Tables 4 and 5, the computation times for
each of the explored settings are reported for k = 6
and k = 20, respectively. For the same experimental
scenario, an essential role in determining the time t1 is
played by the truncation parameter, 
; smaller values
of 
 lead to larger values of t1. Moreover, the value
of t1 is in
uenced by the level of correlation among
the discrete Weibull components once the value of the
truncation parameter, 
, is �xed. Larger values of �
(in absolute value) require a larger preprocessing time
t1 (this means that ordcont needs more iterations for
convergence when j�j moves to 1).

In greater detail, with k = 6 correlated discrete
Weibull r.v.'s, the pre-processing time t1 is about 1
minute or less, setting 
 = 10�4, whereas, when
choosing 
 = 10�6, it grows up till 3 minutes; the
largest value for t1 is recorded with � = 0:6 (the
convergence of the iterative procedure implemented by
the R function ordcont requires a greater number of
steps).

When k = 20, for the explored scenarios, it takes
up to 9 minutes for recovering the correct correlation
matrix RN of the multivariate normal with 
 = 10�4;
this time grows up till 23 minutes, when setting 
 =
10�6. The worst scenario is again that characterized
by the larger absolute value of � (0.6).

Summarizing these results, we can state that the

Table 4. Computation time in seconds (for the
preprocessing step, t1, and for the simulation of 5,000
samples of size n = 100, t2) for k = 6 correlated discrete
Weibull r.v.'s.

�

 = 10�4 
 = 10�5 
 = 10�6

t1 t2 t1 t2 t1 t2

�0:1 47.8 24.8 67.2 29.0 116.8 30.8

0.2 38.0 23.6 92.2 33.4 152.7 32.9

0.4 60.3 25.9 108.6 29.0 165.4 27.4

0.6 65.5 23.4 134.3 28.3 188.5 30.1

Table 5. Computation time in minutes (for the
preprocessing step, t1, and for the simulation of 5,000
samples of size n = 100, t2) for k = 20 correlated discrete
Weibull r.v.'s.

�

 = 10�4 
 = 10�5 
 = 10�6

t1 t2 t1 t2 t1 t2

0.2 6.07 1.25 9.69 1.19 13.99 1.14

0.4 7.52 1.27 13.03 1.45 18.23 1.13

0.6 8.81 1.20 14.52 1.14 23.16 1.18

GenOrd procedure is not negatively a�ected by the in-
creasing dimensionality k; naturally, the preprocessing
computation time increases with a quadratic rate in k
(�nding the correct RN consists of k(k� 1)=2 iterative
searches), but there are no further obstacles making
the simulation more time-demanding.

5. Inference

In order to estimate the parameters of the multivariate
discrete Weibull model proposed, a two-step procedure
is here suggested, which can be considered as a modi-
�cation of the so called Inference Function of Margins
(IFM), already present in the copula literature [28].
The �rst step works as the components of the r.v.
were independent; the second step takes into account
the association among them. The procedure works as
follows:

1. Estimate the marginal c.d.f.'s, Fi, i = 1; � � � ; k, by
estimating the associated distribution parameters,
�i, through the maximum likelihood method, thus
obtaining F̂i = Fi(�̂i);

Table 3. Results of the Monte Carlo simulation study with k = 6 (
 = 104): Monte Carlo averages of sample pairwise
correlations over 5,000 samples of size n = 100.

� �̂12 �̂13 �̂14 �̂15 �̂16 �̂23 �̂24 �̂25 �̂26 �̂34 �̂35 �̂36 �̂45 �̂46 �̂56

-.1 -.102 -.103 -.098 -.102 -.100 -.103 -.103 -.102 -.100 -.101 -.100 -.100 -.100 -.101 -.100
.2 .202 .202 .203 .202 .203 .203 .200 .202 .202 .198 .202 .202 .201 .197 .199
.4 .402 .400 .405 .402 .403 .400 .403 .404 .405 .400 .401 .399 .400 .399 .398
.6 .601 .602 .604 .606 .605 .602 .603 .606 .606 .599 .601 .601 .599 .597 .598
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2. � Estimate the correlation coe�cient �ij , for each
1 � i < j � k, e.g., through the sample
correlation coe�cient �̂ij ;

� Using ordcont in GenOrd, numerically compute
�̂Nij = G�1(�̂ij ; F̂i; F̂j), for each 1 � i < j �
k, and thus reconstruct the Gaussian copula
correlation matrix R̂N = [�̂Nij ].

Note that here the number of parameters to
be estimated is 2k (two parameters for each discrete
Weibull marginal) plus k(k�1)=2 (the distinct pairwise
correlation coe�cients of the Gaussian copula) for a
total of k(k + 3)=2.

This two-step procedure for the estimation of
parameters is much more straightforward to apply
(and more intuitive and easy to understand) than the
alternative procedure that maximizes the log-likelihood
` of the model with respect to all the parameters
simultaneously. This is particularly true when the
dimensionality k increases. In fact, the log-likelihood
for the copula based discrete Weibull model can be
written as:

`(q;�;RN ; x) =
nX
i=1

logP
�
xi1; � � � ; xik; q;�;RN� ;

(3)

where the probability P (xi1; � � � ; xik; q;�;RN ) is ob-
tained as a rectangle probability of the underlying
multivariate normal distribution, i.e. as a multiple in-
tegral involving the k-variate standard normal density
function �k(z1; � � � ; zk) only:

P (xi1; � � � ; xik; q; �;RN )

=

��1[F1(xi1;q1;�1)]Z
��1[F1(xi1�1;q1;�1)]

� � �
��1[Fk(xik;qk;�k)]Z

��1[Fk(xik�1;qk;�k)]

�k(z1; � � � ; zk; RN )dz1 � � � dzk:
Thus, deriving parameter estimates for the Weibull
model by directly maximizing the joint log-likelihood
in Eq. (3) can be a very hard task, entailing a severe
computational burden [14].

6. An application to a real dataset

In this section, we apply the proposed multivariate
discrete Weibull distribution to model a dataset taken
from the literature. The data, considered in [29] (see
Table 6), consist of the number of aborts by 109
aircrafts in two (�rst = x1, second = x2) consecutive
6 months of a 1-year period. They can be regarded as
repeated observations on the same unit, thus, leading
to a panel data.

Table 6. Bivariate distribution of the data taken
from [29]; number of 
ight aborts by 109 aircrafts in the
�rst and second consecutive six months of a one-year
period.

x1 n x2 0 1 2 3 4
0 34 20 4 6 4 68
1 17 7 0 0 0 24
2 6 4 1 0 0 11
3 0 4 0 0 0 4
4 0 0 0 0 0 0
5 2 0 0 0 0 2

59 35 5 6 4 109

Mitchell and Paulson [29] used a new bivariate
negative binomial distribution derived by convoluting
a bivariate geometric distribution to model the data.

In order to �t the proposed bivariate discrete
Weibull model to these data, we �rst compute the
maximum likelihood estimates for the parameters of
the two margins X1 and X2 (the computation can
be carried out by using the function estdweibull
within the DiscreteWeibull package, with the option
method=''ML''). We obtain q̂1 = 0:3788; �̂1 = 0:9774,
q̂2 = 0:4496; �̂2 = 1:1202, with standard errors se(q̂1) =
0:0459, se(�̂1) = 0:1177, se(q̂2) = 0:0464 and se(�̂2) =
0:1204. Note that both the � parameters are quite
close to 1 (the �rst is slightly smaller, the second a bit
larger); this con�rms that both marginal distributions
are \close" to geometric and somewhat justi�es the
use of a bivariate negative binomial distribution by
Mitchell and Paulson [29].

Then, we compute the sample correlation coe�-
cient between x1 and x2, resulting in �̂ = �0:1608955
from which, by using the function ordcont in GenOrd
(again with 
 = 0:0001) with the maximum likelihood
estimates computed above, we derive an estimate of the
correlation coe�cient of the Gaussian copula: �̂N =
�0:2588228.

From all these �ve parameter estimates, we can
then easily derive the (estimated) theoretical joint
p.m.f. by particularizing what was described in the
previous section for the case of k = 2. For example,
in order to calculate the joint probability in (0; 0), we
compute:

P (X1 = 0; X2 = 0)

= �2

h
��1(F1(0; q̂1; �̂1));

��1(F2(0; q̂2; �̂2)); �N = �0:2588228
i

= �2
�
��1(1�q̂1);��1(1�q̂2); �N=�0:2588228

�
= 0:3027162:
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More generally, after de�ning:

C�N (u; v) =

��1(u)Z
�1

��1(v)Z
�1

�(s; t; �N )dsdt;

the joint c.d.f. of (X1; X2) is given by:

F (x1; x2) = C�N (F1(x1); F2(x2));

and then, for each possible (i; j) 2 N2
0, we have:

P (X1 = i;X2 =j)=C�N
h
F1

�
i; q̂1; �̂1

�
; F2

�
j; q̂2; �̂2

�i
� C�N

h
F1

�
i� 1; q̂1; �̂1

�
; F2

�
j; q̂2; �̂2

�i
� C�N

h
F1

�
i; q̂1; �̂1

�
; F2

�
j � 1; q̂2; �̂2

�i
+ C�N

h
F1

�
i� 1; q̂1; �̂1

�
; F2

�
j � 1; q̂2; �̂2

�i
;

letting Fi(�1; q; �) = 0, i = 1; 2.
For the dataset at hand, the theoretical joint

p.m.f. is reported in Table 7 whereas the expected joint
frequencies are displayed in Table 8.

To test the null hypothesis H0: \The data come
from the bivariate discrete Weibull model" against
the alternative H1: \The data do not come from
the bivariate discrete Weibull model", we employ the
asymptotic chi-squared goodness-of-�t test, based on
the statistic:

�2 =
X
i

X
j

(nij � n�ij)2

n�ij
;

where nij is the observed frequency of (i; j) 2 N2
0 and

n�ij is its theoretical analogue. Since n = 109, it can be
usefully employed for assessing whether the bivariate
discrete Weibull model �ts the data adequately. Some
problems arise on how to collapse adjacent cells, to
ensure every expected frequency is greater than 5 (in
order to apply the asymptotic results satisfactorily).

Table 8. Theoretical joint absolute frequencies for the
data from [29] under the bivariate discrete Weibull model.

x1 n x2 0 1 2 3 � 4

0 33.00 20.13 8.94 3.57 2.07 67.71
1 15.59 6.35 2.19 0.71 0.32 25.16
2 6.65 2.17 0.66 0.20 0.08 9.76
3 2.78 0.76 0.21 0.06 0.02 3.83
4 1.15 0.27 0.07 0.02 0.01 1.52
� 5 0.81 0.15 0.04 0.01 0.00 1.01

59.99 29.83 12.11 4.57 2.50 109

For the grouping displayed in Table 9(a), the value
of the statistic is �2 = 9:573. The �2 statistic under
H0 (under our model) is asymptotically distributed as
an �2 r.v. with 9-5-1 degrees of freedom (the number
of classes being 9; the number of parameters 5).
The corresponding p-value takes the value 0.0226 and
indicates quite a bad �t of the model.

Moving to the grouping displayed in Table 9(b),
the value of the statistic is �2 = 3:807. The �2 statistic
under H0 (under our model) is distributed as an �2 r.v.
with 8-5-1 degrees of freedom and the corresponding p-
value takes the value 0.149, indicating that we accept
the hypothesis that the data come from the bivariate
discrete Weibull model at any signi�cance level smaller
than or equal to 0.149.

If we compute the log-likelihood:

` =
X
i

X
j

nij log p̂(i; j);

where p̂(i; j) is the estimate of the probability P (X1 =
i;X2 = j) = p(i; j) (to be adapted in case i or
j are the maximum observed values of X1 and X2,
respectively), based on the IFM estimates of the
bivariate model, we obtain ` = �243:7517. If we
want to compare this model with some competitors,
we can resort to the Akaike Information Criterion
(AIC), given by AIC = 2� � 2^̀, where � is the
number of parameters of the model and ^̀the maximum
value of the log-likelihood function: the preferred
model is the one with the minimum AIC value. For

Table 7. Theoretical bivariate p.m.f. for the data from Mitchell and Paulson [29] under the bivariate discrete Weibull
model.

x1 n x2 0 1 2 3 � 4

0 0.3027 0.1846 0.0820 0.0328 0.0190 0.6212
1 0.1430 0.0583 0.0201 0.0065 0.0029 0.2309
2 0.0610 0.0199 0.0061 0.0018 0.0007 0.0895
3 0.0256 0.0070 0.0019 0.0005 0.0002 0.0352
4 0.0106 0.0025 0.0006 0.0002 0.0001 0.0139
� 5 0.0074 0.0014 0.0003 0.0001 0.0000 0.0093

0.5504 0.2737 0.1111 0.0419 0.0229 1
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Table 9. Sets of groupings used for computing the chi-squared statistic for the data from [29]. Contiguous cells shaded
with the same colour belong to the same grouping; cells with white background colour have not been aggregated.

the Bivariate Discrete Weibull model (BDW), we do
not compute the value of the AIC exactly (which
would require the simultaneous computation of all
the MLEs), but we can derive an upper bound as
AIC�BDW = 2� � 2` = 497:5034 � AICBDW; for the
Bivariate Negative Binomial distribution (BNB), which
has six parameters, we obtain AICBNB = 500:532; for
the Bivariate Generalized Poisson distribution (BGP)
proposed by Famoye [30], which has �ve parameters,
AICBGP = 498:594. Since the minimum AIC is
obtained for the proposed bivariate discrete Weibull
model, we can conclude it represents a good choice for
the aircrafts data.

7. Conclusion

We proposed a procedure for generating correlated
discrete Weibull r.v.'s with assigned marginal distri-
butions and correlation matrix. A software implemen-
tation is provided in the R environment, which on the
one hand simulates univariate discrete Weibull r.v.'s
(package DiscreteWeibull) and on the other hand
(GenOrd) links the r.v.'s together through a Gaussian
copula, ensuring the desired pairwise correlations. This
multivariate discrete model can handle under- and
overdispersion in the data, unlike multivariate Poisson
models{by far, the most popular when modelling corre-
lated count data{which can handle equi-dispersed data
only. Estimation of the model through a modi�cation
of the so-called Inference Function of Margins (IFM)
is straightforward and much easier than through the
maximum likelihood method. The performance of
the simulation technique, speci�cally the capability of
GenOrd in reproducing the desired correlations, is here
brie
y demonstrated through a simulation study, which
considers several settings. The procedure is shown
not to be time-consuming for the examined scenarios.
However, some combinations of parameters of the
discrete Weibull r.v., in particular those involving
values of � much smaller than 1, by giving rise to
very skew distributions, can critically slow down the
procedure. Future research will better inspect this
point and try to overcome it, possibly resorting to
some approximation by the continuous Weibull model
when estimating the correlation of the Gaussian copula.

Future research will also further address parameter es-
timation and evaluation of goodness-of-�t of the model.
In particular, the need for testing the Gaussian copula
structure's adequacy will be of uttermost importance,
since it is well known that it may fail to capture
dependence between extreme events, and will require
choosing through or adapting the proposals that have
recently been made for goodness-of-�t testing of copula
models.
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