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Abstract. In many realistic production environments, jobs will take longer time if they
begin later. This phenomenon is known as deteriorating jobs which have widely been
studied. In this paper, the piecewise linear deterioration is discussed in a single-machine
scheduling problem of minimizing the maximum tardiness. After proving the NP-hardness
of problem, a Branch and Bound and a heuristic algorithm with O(n2) are proposed to
solve the large-scale problems by near-optimal solutions. The heuristic approach is also
used to determine an upper bound on the solution of B&B algorithm. The computational
results of evaluating performance of the two algorithms con�rm the excellent performance
of B&B algorithm as it is able to solve the problems with at least 32 jobs within a reasonable
time. Notably, the heuristic approach is quite accurate and e�cient with an average error
percentage of less than 0.3%.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Nowadays, scheduling problems are applied in di�erent
production and service systems. In traditional schedul-
ing problems, it is assumed that the job processing
times are known and constant. This assumption
may not be true for all the cases; there are many
situations in which a job consumes more time when
processed later. In fact, when a given job delays
its starting time or waits for process, its processing
time may be increased [1]. In usual, the increment
in processing time is a function of starting time or
position in sequence [2]. These kinds of job are known
as deteriorating jobs, and there is a growing interest to
study them in the literature.
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Applications of deteriorating jobs can be found in
the �re-�ghting, maintenance planning and scheduling,
medical procedures, and searching for an object under
worsening weather or growing darkness [1]. Rolling
process in the steel industries is another well-known
case of deteriorating jobs. Steel ingots must be heated
up to a predetermined temperature in preheating stage;
each ingot rolled earlier has less heat exchange with
environment and its preheating time will be shorter.
Another important application of the above situation
is lathing process, in which the needed lathing time will
be increased due to gradual exhaustion of tools [3].

In this paper, Graham symbols [4], in the form
of �j�j, is used where �, �, and  demonstrate
machine environment, problem speci�cation, and ob-
jective function, respectively. The variables and pa-
rameters used in this paper are described in Table 1.

There is a growing interest in the literature
to study the scheduling problems with deteriorating
jobs [5-6]. Alidaee and Womer [7] classi�ed the de-
terioration functions into three di�erent kinds: linear,
piecewise linear, and non-linear. Most authors assumed
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Table 1. Variables and parameters.
Description Notation Description Notation

Number of jobs n Maximum lateness Lmax = max
t�i�nfLtg

ith job ji; i = 1; 2; :::; n Tardiness of ji Ti = maxf0; Ci � dig
Set of all jobs to be scheduled N = fj1; j2; :::; jng Maximum Tardiness Tmax = max

l�i�nfTig
Actual processing time of ji Pi; i = 1; 2; :::; n Partial sequence of scheduled jobs �
Normal processing time of ji ai; i = 1; 2; :::; n Set of unscheduled jobs (complementary of �) �0

Deterioration rate of ji bi i = 1; 2; :::; n Partial sequence with scheduling ji after � �i
Starting time of each job S Maximum tardiness of partial sequence � Tmax(�)

Due date of ji di, i = 1; 2; :::; n Completion time of ji Ci; i = 1; 2; :::; n
Ui = 0 if di � Ci; otherwise Ui = 1 Ui; i = 1; 2; :::; n Weight of ji wi; i = 1; 2; :::n

Release time of ji ri; i = 1; 2; :::; n Maximum completion time cmax = max
l�i�nfCig

Total completion time
Pn
i=1 Ci Weighted total completion time

Pn
i=1 wiCi

Number of tardy jobs NT =
Pn
i=1 Ui Number of weighted tardy jobs

Pn
i=1 wiUi

Lateness of ji Li = Ci � di

a linear or piecewise linear deterioration function. The
problem of deteriorating jobs was reviewed by Cheng
et al. [8]. They assumed that the processing time of
a job is a linear function of its starting time. In the
linear functions, the deterioration rates may be similar
or di�erent. In di�erent deterioration rates, normal
processing times might be zero or positive. Therefore,
the linear deterioration functions are as follows:

Pi = ai + biS; Pi = ai + bS; Pi = biS:

Browne and Yechiali [9] showed that the optimal
sequence in problem 1jPi = ai + biSjCmax is based
on non-decreasing rate of ai=bi. Bachman and Janiak
[10] proved that problem 1jPi = ai + biSjLmax is NP-
complete and presented two heuristics with complexi-
ties of O (n:log n) and O(n2). The problem was also
investigated by Hsu and Lin [11] and a Branch and
Bound (B&B) algorithm was proposed which was able
to solve 100 jobs. Ng et al. [12] proposed a B&B
algorithm for problem F2jPi = ai + biSjPCi which
was able to handle problems with 15 jobs. Also, they
involved a heuristic in the proposed B&B algorithm
as an upper bound. Lee et al. [13] considered
problem FmjPij = aij+bitjPTi and developed a B&B
and two metaheuristic algorithms. Yin et al. [14]
studied parallel machine scheduling of deteriorating
jobs with disruption and presented pseudo-polynomial
time solution algorithms. Luo and Ji [15] considered
single-machine scheduling with variable maintenance
under deteriorating jobs as 1jVM;Pi = ai + biSjCmax,
and proved that the problem is NP - hard.

Lee et al. [16] proposed a heuristic and B&B algo-
rithm to minimize makespan in a Linear Deteriorating
Jobs Scheduling Problem (LDJSP) with release time,
i.e. 1jPi = ai + bS; ri jCmax; the proposed algorithm
solved problems with 28 jobs. Wu and Lee [17]
presented a B&B and several heuristics for problem

F2jPi = ai + biSj�F . The paper was extended by
Lee et al. [18] and a B&B and several heuristics
were developed to minimize makespan. Jafari and
Moslehi [1] proved that problem 1jPi = ai + bS jPUi
is NP-hard; hence, a B&B procedure and a heuristic
with O(n2) as an upper bound were proposed. Wang
and Wang [19] studied problem F3jPij = aij+bSjCmax
and derived several dominance properties, some lower
bounds and two heuristic algorithms and applied them
in a proposed B&B algorithm to �nd the optimal
solution. Yin et al. [20] considered some two-agent
single-machine scheduling problems with increasing
linear job deterioration and proved their complexity.

The LDJSP with zero normal processing time
(Pi = biS) on a single-machine was investigated by
Mosheiov [21]; he presented the optimal solutions
using simple rules for performance criteria Cmax,

P
Ci,P

WiCi, Tmax, Lmax, and
P
Ui. Wang et al. [22]

showed that problem F2jPi = biS jPCi is NP-hard;
they proposed a B&B algorithm able to handle 14
jobs. Yang and Wang [23] developed a B&B and
heuristic algorithm for problem F2jPi = biS jPWiCi.
This kind of deterioration function was considered by
the others. Some assumed that the machines are not
available at any time due to preventive maintenance
or breakdown. For instance, Woo and Lee [24] studied
the availability constraints on a single machine in two
resumable and non-resumable cases. They proposed an
integer programming model and a heuristic algorithm,
respectively, for two problems:

1jr � a; Pi = biS jCmax;

and:

1jnr � a; Pi = biS jXC
i
:

Some authors supposed that setup time of each job
is not constant; it is a simple linear function of its
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starting time similar to processing time. Cheng et
al. [25] presented a B&B algorithm for problem 1jPi =
biS; Si = b0iS jTmax. Lee et al. [26] proposed a B&B
algorithm for problem 1jPi = biS; Si = b0iS jPUi which
could solve the instances up to 1000 jobs in a reasonable
time. Lee and Lu [2] provided a B&B algorithm for
problem 1jPi = biS; Si = b0iS jPWiUi.

Some authors assumed that the deterioration
function is piecewise linear in which the actual process-
ing time of each job is a function of two or more than
two constant or linear criteria. Kubiak and Velde [27]
studied problem 1jPi jCmax in which Pi is considered
as a non-decreasing three-criteria function as follows:

Pi =

8><>:ai if S � y1

ai + bi(S � y1) if y1 < S < y2

ai + bi(y2 � y1) if S � y2

(1)

where y1 and y2 are the input variables. They showed
that the problem in special case, y2 = 1 and y1 > 0,
is NP-hard and proposed a binary B&B algorithm.
Moslehi and Jafari [3] surveyed the piecewise linear
deteriorating jobs scheduling problem where the deteri-
oration function is similar to Eq. (1) and the objective

is to minimize the number of tardy jobs. They proved
that problem:

1jPi = ai + bi(S � y1); y1 > 0; y2 > y1j
nX
i=1

Ui;

is NP-hard and developed a B&B procedure and a
heuristic algorithm. Lalla Ruiz and Vob [28] considered
problem PmjPi = ai or ai+bijPCi and presented two
mathematical models.

Jafari and Moslehi [29] proved that problem:

1jPi = ai + bi(S � y1); y1 > 0; y2 > y1j
nX
i=1

Wi Ui;

is NP-hard and provided a B&B algorithm able to
handle 28 jobs. Lai et al. [30] presented the optimal
solutions to a single-machine problem with non-linear
deterioration function. Lee and Yu [31] provided
pseudo-polynomial time algorithms to optimize the
parallel machine scheduling under potential disruption.

In Table 2, we present a review on the studies
directed onto the deteriorating jobs scheduling prob-
lems where dispatching rule, heuristics, and integer

Table 2. Researches on the deteriorating jobs scheduling problems.

Ref. no. Deterioration function Objective Problem Solution
approach

[9] Linear (Pi = ai + biS) Cmax 1jPi = ai + biSjCmax DR
[10] Linear (Pi = ai + biS) Lmax 1jPi = ai + biSjLmax Heu
[11] Linear (Pi = ai + biS) Lmax 1jPi = ai + biSjLmax B&B
[12] Linear (Pi = ai + biS)

P
Ci F2jPi = ai + biSjPCi B&B

[17] Linear (Pi = ai + biS) �F F2jPi = ai + biSj �F B&B, Heu
[18] Linear (Pi = ai + biS) Cmax F2jPi = ai + biSjCmax B&B, Heu
[16] Linear (Pi = ai + biS) Cmax 1jPi = ai + bS; rijCmax B&B, Heu
[1] Linear (Pi = ai + biS)

P
Ui 1jPi = ai + bSjPUi B&B, Heu

[21] Linear (Pi = biS) Cmax,
P
Ci, 1jPi = biS jCmax 1jPi = biS jPCi DRP

WiCi, 1jPi = biS jPWiCi 1jPi = biS jTmax

Tmax, Lmax,
P
Ui 1jPi = biS jLmax 1jPi = biS jPUi

[22] Linear (Pi = biS)
P
Ci F2jPi = biS jPCi B&B

[23] Linear (Pi = biS)
P
WiCi F2jPi = biS jPWiCi B&B, Heu

[24] Linear (Pi = biS) Cmax,
P
Ci 1jr � a; Pi = biS jCmax Heu, IP

1jnr � a; Pi = biS jPCi

[25] Linear (Pi = biS) Tmax 1jPi = biS; Si = b0iS jTmax B&B
[26] Linear (Pi = biS)

P
Ui 1jPi = biS; Si = b0iS jPUi B&B

[2] Linear (Pi = biS)
P
WiUi 1jPi = biS; Si = b0iS jPWiUi B&B

[27] Piecewise Linear Cmax 1jPi = ai + bi(S � y1); y1 > 0; y2 =1jCmax B&B

[3] Piecewise Linear
P
Ui 1jPi = ai + bi(S � y1); y1 > 0; y2 > y1j nP

i=1
Ui B&B, Heu

[29] Piecewise Linear
P
WiUi 1jPi = ai + bi(S � y1); y1 > 0; y2 > y1j nP

i=1
Wi Ui B&B

This study Piecewise Linear Tmax 1jPi = ai + bi(S � y1); y1 > 0; y2 > y1jTmax B&B, Heu
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programming are shown as DR, HE, and IP, respec-
tively.

As can be seen, maximum tardiness as a perfor-
mance measure has only been considered in a speci�c
case of liner deterioration function with zero normal
processing time (Pi = biS) [25]; the actual processing
time of each job in real applications is as a piecewise
linear function as in Figure 1 so that the deterioration
happens in a period of time after the starting process
leading to an increase in the actual processing time.
This increment will not, however, continue to the end;
in fact, after a speci�c time, the value of deterioration
will be constant until the end of the process. It
is noteworthy to mention that the piecewise linear
deterioration function, addressed in this paper, may
cover all the possible forms of linear deterioration
functions. Finally, no research can be found in the
scheduling problems with piecewise linear deterioration
function and minimization of the maximum tardiness.
The problem is focused in our paper.

The rest of the paper is organized as follows. In
Section 2 the problem de�nition and its complexity
are presented. In Section 3 a heuristic algorithm and
Section 4 a B&B procedure in are proposed to solve
the problem. In Section 5, computational experiments
are developed in order to test the performance of
algorithms. Conclusions and directions for future
research are presented in Section 6.

2. Problem

According to Table 1, we describe and formulate our
considered problem. There are n jobs in set N , N =
fj1; j2; :::; jng, to be processed on a single machine. All
the jobs are available at time 0 and will be processed
without interruption or preemption. The machine is
available all the time, and it can handle no more than
one job at a time. We assume that each job has a
speci�c deterioration rate, and the actual processing
time of ji is based on a piecewise linear function of its
starting time, S, as in Eq. (2) and Figure 1, where y1
and y2 are considered as parameters:

Figure 1. Actual processing time of ji.

Pi =

8><>:ai if S � y1

ai + bi(S � y1) if y1 < S < y2

ai + bi(y2 � y1) if S � y2

(2)

The objective is to �nd an admissible schedule, such
that the maximum tardiness is minimized. The prob-
lem is demonstrated as:

1jPi = ai + bi(S � y1); y1 > 0; y2 > y1jTmax:

We analyze the problem complexity at �rst. If any
problem P reduces to problem Q and problem P is
NP-hard, then problem Q will also be NP-hard [32].
Cheng et al. [25] showed that problem 1jPi = biS; Si =
b0iSjTmax is NP-hard. The problem is reducible to:

1jPi = ai + bi(S � y1); y1 > 0; y2 > y1jTmax;

therefore, the latter is also NP-hard. Accordingly,
it is reasonable to utilize general procedures, such as
B&B, to �nd only the optimal solution and heuristic
algorithm to �nd a near-optimal solution.

3. Heuristic algorithm

In this section, a heuristic algorithm with O(n2) is
developed to solve the problem. In any iteration, one
job among n jobs is chosen and scheduled. The steps of
algorithm for each job are repeated n times; therefore,
it can be solved in O(n2). The sequence obtained
by heuristic algorithm, H, is denoted as �h and its
objective function is de�ned by Tmax(h). Pi[k] and
Ci[k] are the actual processing time and completion
time of ji in position k, respectively, which are obtained
using relations (3) and (4):

Ci[k] =

8><>:S + ai if S � y1

ai + (1 + bi)S � biy1 if y1 < S < y2

ai + bi(y2 � y1) + S if y2 � S (3)

Pi[k] = Ci[k]� S: (4)

In this algorithm, choosing jobs for scheduling is
totally based on the shortest processing times (ai), the
largest deterioration rates (bi), and the shortest due
dates (di). In Steps 1 and 2, all the jobs are considered
and eligible ones are located at the beginning of
sequence and are deleted from non-scheduled jobs set.
Through Steps 3-11, if the completion time of the
last scheduled job (S) is before y1, set A is formed
containing jobs like ji in which:

ai � �a; bi � �b; di � �d;

where:

�a=
nX
i=1

ai

,
n; �b=

nX
i=1

bi

,
n; and �d=

nX
i=1

di

,
n:

If set A is empty or S is between y1 and y2, eligible jobs
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are chosen from the set of unscheduled jobs according
to Steps 12 and 14. In Step 16, if S is greater than
y2, then non-scheduled jobs are arranged based on the
EDD rule and scheduled at the end of scheduled jobs.
The steps of algorithm H are as follows:

- Step 0. Start. Set k = 1, L = fj1; j2; :::; jng, A = �,
S = 0, Tmax = 0.

- Step 1. If:

ji 2 L;
ai = minf

j2L
ajg; bi = maxf

j2L
bjg;

di = minf
j2L

djg S + ai � y1;

then go to Step 2; else, go to Step 3.
- Step 2. Schedule ji in position k and calculate Ci[k].

Set S = Ci[k], L = L�ji, and k = k+1. If k = n+1,
then go to Step 16; else, go to Step 1.

- Step 3. Calculate:

a =
nX
i=1

ai=n; b =
nX
i=1

bi=n

and d =
nX
i=1

di=n:

- Step 4. If S < y1, then set A is updated based on
the following condition:

For ji 2 L :

if ai � a; bi � b; and di � d;
then

A = A+ ji:

- Step 5. If A = �, go to Step 6; else, go to Step 9.
- Step 6. If S < y1, then set A is updated based on

the following condition:

For ji 2 L :

if ai � a and bi � b
then

A = A+ ji:

If A = �; go to Step 7; else, go to Step 9:

- Step 7. If S < y1, then set A is updated based on
the following condition:

For ji 2 L :

if ai � a and di � d
then

A = A+ jj

If A = �; go to Step 8; else, go to Step 9:

- Step 8. If S < y1, then set A is updated based on
the following condition:

For ji 2 L :

if bi � b and di � d
then

A = A+ ji:

If A = �; go to Step 10; else, go to Step 9:

- Step 9. If A = � and S < y1, then go to Step 6.
If S � y1, go to Step 14; else, choose ji with
the smallest ai from A and schedule it in the kth
position. Set S = Ci[k], L = L� ji, A = A� ji, and
k = k + 1. If k = n + 1, then go to Step 16; else,
repeat Step 9.

- Step 10. If S � y1, then go to Step 14; else, for all
the jobs ji 2 L, if di � �d, then set A = A+ ji.

- Step 11. If A = �, then go to Step 12; else, choose
ji with the smallest ai

bi and the largest bi from A, set
A = A � ji and go to Step 13. If there is no such
a job, then choose ji with the largest bi from A, set
A = A� ji, and go to Step 13.

- Step 12. Choose ji with the smallest ai
bi and largest

bi from L and go to Step 13. If there is no such a
job, then choose ji with the largest bi from L and go
to Step 13.

- Step 13. Schedule ji in position k. Set S = Ci[k],
L = L � ji, and k = k + 1. If k = n + 1, then go
to Step 16; if S < y1, then go to Step 11; else, go to
Step 14.

- Step 14. If S � y2, then go to Step 15; else, choose
ji 2 L with one of the following conditions and go
to Step 13:
� ji has the smallest ai=bi and smallest di;
� ji has the largest bi and smallest di;
� ji has the smallest ai=bi and largest bi;
� ji has the smallest ai and smallest di;
� ji has the smallest bi and smallest di;
� ji has the smallest ai;
� ji has the largest bi.

- Step 15. Sequence unscheduled jobs by the EDD
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rule from k to n.

1. Step 16. Denote the �nal sequence as �h and its
objective function as Tmax(h), respectively.

4. B&B algorithm

In this section, a B&B algorithm using the back-
tracking strategy is proposed to search for the optimal
solution where upper bound, lower bounds, and domi-
nance rules are used in an e�cient manner. At �rst, we
establish several dominance rules to fathom the search-
ing tree, and then present a property to determine
the ordering of remaining jobs (set �0). In addition,
three lower bounds are provided in Subsection 4.3. In
the proposed B&B algorithm, when a job from set �0
is selected for scheduling, its involvement in set � is
checked by dominance rules and lower bounds. If it is
not fathomed, then it will be added to the end of set �.

4.1. Upper bound
In this paper, heuristic algorithm H is considered as
the upper bound of problem and its �nal sequence (�h)
will be a basis for generating the searching tree.

4.2. Dominance rules
Dominance rules are important in solving the schedul-
ing problems. In this subsection, some dominance
properties are given to be employed in the B&B
algorithm. It is assumed that partial sequence, �, with
completion time, S, and maximum tardiness, Tmax(�),
is in hand. If ji is processed immediately after partial
sequence, �, then the resulted sequence is shown as �i
and if jj is located after �i, then the sequence will be
shown by �ij. Notably, partial sequence �ji is the result
of pairwise interchange of ji and jj in partial sequence
�ij. To show that �ij dominates �ji, one should prove
that Tmax(�ij) � Tmax(�ji) and Cj(�ij) � Ci(�ji).

Completion times of ji and jj in partial sequence
�ij are as follows:

Ci(�ij) =

8><>:S + ai if S � y1

ai + (1 + bi)S � biy1 if y1 < S < y2

ai + bi(y2 � y1) + S if y2 � S (5)

Cj(�ij) =8><>:S + aj + ai if Ci(�ij) � y1

aj + (1 + bj)Ci(�ij)� bjy1 if y1 < Ci(�ij) < y2

aj + bj(y2 � y1) + Ci(�ij) if y2 � Ci(�ij) (6)

Lemma 1. In problem 1jPi = ai + bi(S � y1); y1 >
0; y2 > y1jTmax, the jobs completed before y1 will be
arranged by the EDD rule.

Proof. The actual processing time of jobs completed
before y1 is constant. Hence, the problem would be
like the basic form 1jTmax where sequence based on the
EDD rule is optimal; therefore, completed jobs before
y1 will be arranged by the EDD rule.

Lemma 2. In problem 1jPi = ai + bi(S � y1); y1 >
0; y2 > y1jTmax, if S > y1 and the following relations
hold, then there exists an optimal sequence in which ji
must be processed before jj :

y2 � ai + S(1 + bi)� biy1; (7)

y2 � aj + S(1 + bj)� bjy1; (8)

ai + aj + aibj + (S � y1)(bi + bj + bibj) + S � dj
� Tmax(�); (9)

aj + aibj + (S � y1)(bj + bibj) + di � dj ; (10)

ai + aj + ajbi + (S � y1)(bi + bj + bibj) + S � di
� Tmax(�); (11)

ai + ajbi + (S � y1)(bi + bibj) + dj � di; (12)

dj � aibj � ajbi + di; (13)

aj/bj � ai/bi: (14)

Proof. Since S > y1, y2 � ai + S(1 + bi)� biy1, and
y2 � aj + S(1 + bj) � bjy1, the completion times of ji
and jj in �ij and �ji are as follows:

Ci(�ij) = ai + (1 + bi)S � biy1; (15)

Cj(�ij)=ai+aj+aibj+(S�y1)(bi+bj+bibj)+S;(16)

Cj(�ji) = aj + (1 + bj)S � bjy1; (17)

Ci(�ji)=ai+aj+ajbi+(S�y1)(bi+bj+bibj)+S:(18)

From aj/bj � ai/bi, it implies that:

Ci(�ji) � Cj(�ij): (19)

According to the de�nition of tardiness and max-
imum tardiness, we have the following relations:

Ti(�ij) = maxf0; ai + (1 + bi)S � biy1 � dig; (20)

Tj(�ij) = maxf0; ai + aj + aibj

+ (S � y1)(bi + bj + bibj) + S � djg; (21)

Tj(�ji) = maxf0; aj + (1 + bj)S � bjy1 � djg; (22)
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Ti(�ji) = maxf0; ai + aj + ajbi

+ (S � y1)(bi + bj + bibj) + S � dig; (23)

Tmax(�ij) = maxfTmax(�); Ti(�ij); Tj(�ij)g; (24)

Tmax(�ji) = maxfTmax(�); Ti(�ji); Tj(�ji)g: (25)

Due to Relations (9), (10), and (24), the following
relation is satis�ed:

Tmax(�ij) = Tj(�ij): (26)

Also, Relations (11), (12), and (25) express that the
following relation is valid:

Tmax(�ji) = Ti(�ji): (27)

Relation (13) shows that Ti(�ji) � Tj(�ij): So, we have
the following relation:

Tmax(�ji) � Tmax(�ij): (28)

Based on Relations (19) and (28), we can con�rm
that sequence �ij dominates sequence �ji, and thus the
proof is completed.

Lemma 3. In problem 1jPi = ai + bi(S � y1); y1 >
0; y2 > y1jTmax, if S > y1 and the following relations
hold, then there exists an optimal sequence in which ji
must be processed before jj :

y2 � ai + S(1 + bi)� biy1; (29)

y2 � aj + S(1 + bj)� bjy1; (30)

Tmax(�) � ai + S(1 + bi)� biy1 � di; (31)

Tmax(�) � ai + aj + aibj + (S � y1)(bi + bj + bibj)

+ S � dj ; (32)

Tmax(�) � aj + S(1 + bj)� bjy1 � dj ; (33)

Tmax(�) � ai + aj + ajbi + (S � y1)(bi + bj + bibj)

+ S � di; (34)

aj/bj � ai/bi: (35)

Lemma 4. In problem 1jPi = ai + bi(S � y1); y1 >
0; y2 > y1jTmax, if S > y1 and the following relations
hold, then there exists an optimal sequence in which ji
must be processed before jj :

y2 � ai + S(1 + bi)� biy1; (36)

y2 � aj + S(1 + bj)� bjy1; (37)

Tmax(�) � ai + S(1 + bi)� biy1 � di; (38)

Tmax(�) � ai + aj + aibj + (S � y1)(bi + bj + bibj)

+ S � dj ; (39)

ai + aj + ajbi + (S � y1)(bi + bj + bibj)

+ S � di � Tmax(�); (40)

ai + ajbi + (S � y1)(bi + bibj) + dj � di; (41)

aj/bj � ai/bi: (42)

Lemma 5. In problem 1jPi = ai + bi(S � y1); y1 >
0; y2 > y1jTmax, if S > y1 and the following relations
hold, then there exists an optimal sequence in which ji
must be processed before jj :

y2 � ai + S(1 + bi)� biy1; (43)

y2 � aj + S(1 + bj)� bjy1; (44)

ai + S(1 + bi)� biy1 � di � Tmax(�); (45)

dj � aj + aibj + (S � y1)(bj + bibj) + di; (46)

ai + aj + ajbi + (S � y1)(bi + bj + bibj)

+ S � di � Tmax(�); (47)

ai + ajbi + (S � y1)(bi + bibj) + dj � di; (48)

aj/bj � ai/bi: (49)

Notably, the proofs of Lemmas 3 to 5 are omitted
since they are similar to that of Lemma 2. However,
they are available upon the request of the interested
readers. We present Lemma 6 to determine the
ordering of jobs in set �0 and to further speed up
searching process.

Lemma 6. In problem 1jPi = ai + bi(S � y1); y1 >
0; y2 > y1jTmax, if S � y2, then the optimal sequence
after y2 will be obtained by using EDD rule on set �0
as follows.

Proof. After y2, actual processing time of jobs in
set �0 is known and constant so that the problem
is equivalent to problem 1jjTmax in which optimal
sequence is obtained via EDD rule. So, jobs started
after y2 should be arranged by EDD rule.

Lemma 7. In problem 1jPi = ai + bi(S � y1); y1 >

0; y2 > y1j nP
i=1

Ui , if there exists ji so that relations
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ai = minf
j2�0

ajg, bi = maxf
j2�0

bjg, di = minf
j2�0

djg, and

S + ai � y1 hold, then there always exists an optimal
sequence in which ji is scheduled at time S.

Proof. As ji has the least normal process time, it
will have shortest completion time and starting and
processing times of the following jobs will become
shorter. Also, the selection of ji makes the job with the
largest deterioration rate be scheduled in a condition
that there would not be any deterioration for it. It
would make the next jobs have less deterioration and
the shortest completion time. On the other hand, ji
has the least due date; so, scheduling it on time S will
not increase the maximum tardiness.

As a result, employing the above lemma at the
start of each algorithm may lead to scheduling the
jobs at the beginning and omit them from set N
whose search space of problem is reduced. In addition,
implementing the lemma in depth search process of
B&B algorithm leads to the selection of the best job
from set �0; so, there is no need to search the other
branches.

4.3. Lower bounds
Lower bounds can further enhance the e�ciency of
B&B algorithm. In each node, the objective function
of partial sequence � is Tmax(�) and its lower bound is
shown by LB�. In order to obtain LB�, the following
theorems are presented.

Theorem 1. In partial sequence � for problem 1jPi =
ai+bi(S�y1); y1 > 0; y2 > y1jTmax, if all the jobs in set
�0 are scheduled one by one at time S, then lower bound
LB1 is obtained according to the following relation:

LB1 = maxfTmax(�); max8i2�0f0; Ci(�i)� digg: (50)

Proof. Obviously, any di�erent sequence of jobs in
set �0 will have no e�ect on Tmax(�). Also, scheduling
a given job in set �0 at time S leads to one of the
following two cases for that job. If the job becomes
tardy at time S, then its tardiness will increase after
S; in contrast, if the job does not become tardy at
time S, then its tardiness will not decrease after S.
Hence, maximum tardiness of set �0 will never be less
than max8i2�0f0; Ci(�i)�dig. Therefore, the objective
function of each complete sequence would not be less
than LB1.

Theorem 2. In partial sequence � for problem 1jPi =
ai + bi(S� y1); y1 > 0; y2 > y1jTmax, lower bound LB2
is calculated as follows:

LB2 = maxfTmax(�); Tmax(�0EDD) g; (51)

where Tmax(�0EDD) is obtained according to EDD rule
for the jobs in set �0 assuming deterioration at time S
for each job.

Proof. Any arbitrary sequence of jobs in set �0 will
have no impact on Tmax(�). Furthermore, it is apparent
that the actual processing time and completion time of
each job assuming the deterioration at time S is not
higher than the real deterioration. Since the maximum
tardiness in basic form 1jjTmax is optimized via EDD
rule, by relaxing the assumption of real deterioration
and using the deterioration at time S for all the jobs in
set �0, the maximum tardiness will never be less than
Tmax(�0EDD). Hence, the objective function of each
complete sequence will not be less than LB2.

Theorem 3. In partial sequence � for problem 1jPi =
ai + bi(S� y1); y1 > 0; y2 > y1jTmax, lower bound LB3
is calculated by the following relation:

LB3 = maxfTmax(�); Tmax(�0LB)g; (52)

where Tmax(�0LB) is calculated by algorithm LB.

Algorithm LB

- Step 0. Set Tmax = 0, C = S, M = 1, k = 1, �0 =
fj1; j2; :::; jug, NT (�0) = 0, B�0 = fb�0[1]; b

�0
[2]; :::; b

�0
[u]g,

and D�0 = fd�0[1]; d
�0
[2]; :::; d

�0
[u]g, such that b�

0
[1] � b�

0
[2] �

::: � b�
0

[u] and d�
0

[1] � d�
0

[2] � ::: � d�
0

[u]g where u is the
number of jobs in set �0.

- Step 1. Choose a job with the least aj from set
�0 and schedule it at time C. If C � y1, then set
C = C + aj , M = M + 1, �0 = �0 � jj and go to
Step 2; else, select M deterioration rates from set
D�0 and assign them to M scheduled jobs at the end
of sequence in a non-increasing order; then, calculate
their completion times. Set C = Cj , M = M + 1,
and �0 = �0 � jj .

- Step 2. If C � d[k] � Tmax, then k = k + 1 and go
to step 3; else, set Tmax = C� d[k], k = k+ 1 and go
to Step 1.

- Step 3. If k � u, then go to Step 1; else, set
Tmax(�0LB) = Tmax.

Proof. The proof of Theorem 3 is presented in the
Appendix.

The lower bound for every node of B&B tree is
calculated by the following relation:

LB� = maxfLB1; LB2; LB3g: (53)
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5. Computational experiments

In this section, a set of random generated test problems
is considered in order to evaluate the performance of
B&B and heuristic algorithms. The test problems were
solved on a Pentium 4 PC with 2.53 GHz CPU and 3G
RAM under Windows XP. In the following subsections,
the problem generation procedure and analysis of the
results are described. Notably, the intervals of uniform
distribution for the test problem parameters are similar
to those of [3].

5.1. Test problems
The normal processing times (ai) and deterioration
rates (bi) are randomly generated from discrete uni-
form distribution over (0; 10] and continuous uniform
distribution over (0; 1], respectively. y1 and y2 are
also generated from continuous uniform distributions
over intervals [0; A=3] and [0; 2A=3] for y1 and intervals
[A=3; 2A=3] and [2A=3; A] for y2, where A is assumed
to be determined as in:

A =
nX
i=1

ai:

As y2 > y1, in order to generate values of y1 and y2,
three distinctive conditions for di�erent combinations
of y1 and y2 would be logical. Due dates were also
generated randomly from continuous uniform distribu-
tions over (0; 0:5Cmax], [0:5Cmax; Cmax], (0; Cmax], and
(0; 1:5Cmax] where Cmax is makespan of the obtained
sequence based on the non-decreasing ratio of ai=bi.
For the number of jobs (n), values of 8, 12, 16,
20, 24, 28, 32, 36, 40, and 44 were utilized [3].
Considering the intervals of y1, y2, and due date, 12
groups, S111 to S224, were formed whose de�nitions
and speci�cations are briey given in Table 3. For any
possible combination of S111 to S224 and n, 20 test
problems were randomly generated. Accordingly, 2400
(i.e., 12�10�20) sample problems were generated and
solved totally.

5.2. Computational results
Heuristic procedure H and B&B algorithm were coded
in C++ and sample problems were solved. In our
B&B method, a time limit equal to 4000 seconds for
each problem was considered; if a problem does not
get the optimal solution in this limitation, then B&B
procedure will be stopped. In Table 4, computational
results for 12 groups of problems are presented. As
observed in Table 4, the optimal solution is achieved
for all the sample problems with at least 32 jobs.
Moreover, some sample problems with more jobs are
also solved.

In order to study the performance of heuristic
approach, the error percentages based on the following
equation are recorded:

Table 3. Speci�cations of the di�erent groups of
problems.

No Range of deterioration
function variables

Range of due dates

y2 y1

1 [A=3; 2A=3] [0; A=3] (0; :5Cmax]
2 [A=3; 2A=3] [0; A=3] [:5Cmax; Cmax]
3 [A=3; 2A=3] [0; A=3] (0; Cmax]
4 [A=3; 2A=3] [0; A=3] (0; 1:5Cmax]
5 [2A=3; A] [0; A=3] (0; :5Cmax]
6 [2A=3; A] [0; A=3] [:5Cmax; Cmax]
7 [2A=3; A] [0; A=3] (0; Cmax]
8 [2A=3; A] [0; A=3] (0; 1:5Cmax]
9 [2A=3; A] [0; 2A=3] (0; :5Cmax]
10 [2A=3; A] [0; 2A=3] [:5Cmax; Cmax]
11 [2A=3; A] [0; 2A=3] (0; Cmax]
12 [2A=3; A] [0; 2A=3] (0; 1:5Cmax]

%Error = (Z � Z�)/Z� � 100 %;

where Z and Z� are Tmax obtained from heuristic
algorithm and optimal schedule, respectively.

In Table 4, average and maximum values of
%Error are presented. The corresponding column
shows that the average %Error is less than 0.3% which
proves that the proposed heuristic algorithm is highly
accurate; therefore, solving the large-scale problems
is recommended. Notably, the computation time of
heuristic algorithm is not recorded since it is almost
�nished in zero time.

As can be seen in Table 4, the performance of
B&B algorithm is di�erent for 12 groups; it signi�-
cantly depends upon the values of due dates, y1 and
y2. As the maximum tardiness in the problems with
large due dates is lower than the maximum tardiness
in those with short due dates, a great decrease in the
number of nodes happens, which results in the easy
problems. Generally, large values of y1 cause a decrease
in the completion times of jobs because jobs do not
have any deterioration up to time y1. Decreasing the
completion times of jobs leads to an increase in the
number of utilization of the dominance rules and lower
bounds, especially LB3; so, it makes the problems hard
to solve. Large values of y2 also bring about an increase
in the quantity of employing the lemmas and theorems.
According to Lemma 8, on the other hand, obtaining
the optimal solution for small values of y2 is easier than
that for large values; hence, large values of y2 make the
problems di�cult.

The results given in Table 4 indicate that the
maximum job size, whose B&B method is able to solve,
is 44 belonging to groups S114, S124, and S224. Figure 2
demonstrates the minimum average of CPU times for
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Table 4. Performance of B&B and heuristic algorithms.

G
ro

u
p

n

# of
optimum
samples

% Error

Avg
CPU

time of
B&B (s)

%Avg of fathomed nodes by

%Avg of
all

fathomed
nodes

B&B H Avg Max Lema 6 Lem 1 Lem 7 Lem 2 Lem 3 Lem 4 Lem 5 LB3 LB1 LB2

S111

8 20 15 0.09 0.43 0.00 4.49 1.30 1.27 4.37 0.21 1.50 3.19 76.02 2.91 4.74 97.04

12 20 12 0.11 0.56 0.02 8.63 1.26 2.61 2.13 2.97 1.77 2.64 65.88 4.70 7.41 97.89

16 20 12 0.09 0.60 0.12 13.59 0.48 1.86 2.55 3.49 2.94 4.19 59.13 4.45 7.32 99.07

20 20 10 0.05 0.34 1.42 14.45 2.62 4.12 1.95 2.92 1.62 2.30 58.07 5.14 6.81 91.81

24 20 6 0.08 0.70 32.82 15.52 0.35 3.64 0.95 1.85 1.32 3.22 59.86 4.70 8.59 91.84

28 20 7 0.05 0.12 293.03 12.41 0.32 4.37 1.12 1.65 3.03 2.01 63.67 6.88 4.53 95.81

32 20 6 0.07 0.68 1072.02 16.82 0.47 5.41 2.25 8.49 2.08 2.55 50.59 5.18 6.17 92.12

36 12 5 0.04 0.19 1000.25 11.21 0.58 1.37 1.61 2.81 1.43 3.14 66.13 6.18 5.54 94.27

S112

8 20 16 0.05 0.35 0.00 10.98 1.00 3.06 0.76 0.32 0.99 0.78 76.53 1.72 3.85 98.66

12 20 13 0.24 1.24 0.00 13.85 1.98 1.43 0.45 0.14 0.41 3.11 74.78 0.24 3.62 96.23

16 20 12 0.13 0.59 0.04 11.64 3.01 2.17 1.33 0.01 0.75 0.59 76.66 1.66 2.17 88.26

20 20 7 0.15 1.09 0.37 21.36 2.15 1.73 0.54 0.08 2.28 1.66 64.33 1.59 4.29 94.41

24 20 8 0.11 0.98 2.64 30.54 1.51 0.74 1.14 0.81 1.65 1.36 59.76 1.18 1.30 90.52

28 20 6 0.04 0.44 28.93 26.17 2.35 1.32 0.14 1.36 0.00 0.94 66.38 0.49 0.85 84.63

32 20 4 0.03 0.37 100.04 34.24 5.39 4.51 0.09 0.21 0.05 1.48 51.83 0.09 2.11 95.72

36 20 5 0.09 1.03 725.82 22.07 3.68 2.96 0.85 1.91 1.24 2.66 61.43 1.27 1.93 89.61

40 17 4 0.06 0.36 2154.78 14.71 3.65 0.92 1.45 0.56 1.37 2.51 72.73 0.94 1.16 93.53

S113

8 20 13 0.08 0.34 0.00 7.31 1.77 2.10 0.79 0.35 1.81 1.86 69.44 4.04 10.52 97.40

12 20 18 0.01 0.12 0.01 8.50 1.52 1.16 1.21 1.45 4.86 2.84 66.33 4.40 7.73 96.06

16 20 14 0.11 1.75 0.09 8.14 2.15 2.50 1.76 2.26 0.70 3.50 64.54 6.33 8.13 90.93

20 20 9 0.29 4.67 0.54 21.05 2.23 5.19 0.53 2.31 0.55 2.70 55.06 5.59 4.80 92.54

24 20 7 0.02 0.22 6.27 16.25 1.35 4.25 0.69 0.85 0.87 1.29 61.91 4.35 8.19 91.84

28 20 4 0.07 1.16 45.18 25.24 4.21 6.12 1.16 1.20 2.25 3.41 46.61 5.12 4.68 93.35

32 20 1 0.06 0.91 116.26 28.25 2.65 3.84 0.44 0.94 1.69 2.45 50.48 4.12 5.14 92.68

36 20 2 0.04 0.24 650.33 24.38 1.24 4.45 1.96 2.21 1.78 2.84 50.75 6.55 3.84 94.74

40 11 1 0.18 1.22 1327.30 18.96 1.09 3.75 1.66 1.95 1.09 2.85 59.80 4.43 4.42 95.60

S114

8 20 18 0.04 0.62 0.00 2.45 0.84 1.25 0.65 0.12 0.26 1.26 86.54 4.24 2.38 91.24

12 20 15 0.18 1.66 0.00 3.45 2.28 2.20 1.21 2.14 0.05 0.61 73.65 5.42 8.99 90.76

16 20 10 0.06 0.48 0.11 8.65 1.24 0.65 0.23 0.72 0.42 1.45 76.78 3.11 6.75 90.14

20 20 11 0.00 0.05 0.86 6.24 0.92 0.89 0.76 0.64 0.13 0.83 80.34 6.87 2.38 94.56

24 20 6 0.03 0.12 1.27 10.65 0.00 1.40 1.62 1.14 0.42 1.14 76.84 4.24 2.55 93.37

28 20 5 0.01 0.08 3.94 12.65 0.68 0.36 0.85 0.81 0.92 0.35 70.23 3.51 9.64 90.27

32 20 3 0.02 0.11 15.13 6.84 1.21 1.02 1.32 0.41 0.19 0.65 78.21 2.54 7.61 89.77

36 20 4 0.02 0.06 95.58 8.54 2.12 1.86 0.65 0.67 1.81 1.32 68.58 5.51 8.94 92.76

40 20 1 0.00 0.06 435.41 7.79 3.24 2.47 0.34 1.42 0.68 1.55 72.12 3.61 6.78 94.78

44 20 2 0.04 0.09 1650.96 7.12 1.04 0.95 0.00 0.89 0.44 0.59 77.34 4.42 7.21 94.24

S121

8 20 16 0.04 0.49 0.00 2.24 2.43 2.35 1.34 1.47 2.93 1.62 74.86 4.21 6.55 94.43

12 20 16 0.06 0.97 0.00 3.82 0.65 4.57 2.61 2.73 4.61 2.05 67.22 3.43 8.31 95.67

16 20 11 0.05 0.35 1.12 8.56 2.54 3.49 2.02 2.12 2.14 1.68 62.37 4.34 10.74 86.34

20 20 8 0.05 0.27 8.44 7.44 1.14 6.73 1.33 2.37 3.08 2.94 60.64 6.94 7.39 96.72

24 20 4 0.00 0.04 35.82 9.32 1.36 8.41 3.76 1.43 2.59 2.57 59.44 4.30 6.82 95.07

28 20 5 0.01 0.11 455.67 10.65 0.85 0.24 2.45 3.74 1.68 1.44 66.18 5.86 6.91 90.51

32 20 3 0.02 0.21 2890.83 7.74 1.73 16.37 2.76 2.47 2.34 3.51 46.52 8.23 8.33 94.92

36 16 1 0.00 0.01 1850.19 6.96 2.38 2.61 3.27 4.70 1.11 2.73 66.19 4.63 5.42 84.20

8 20 15 0.08 0.74 0.00 3.29 2.41 1.81 0.04 1.45 0.98 0.57 88.58 0.41 0.46 92.42
aLem: Lemma.



380 A.A. Jafari and M.M. Lot�/Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 370{385

Table 4. Performance of B&B and heuristic algorithms (continued).

G
ro

u
p

n

# of
optimum
samples

% Error

Avg
CPU

time of
B&B (s)

%Avg of fathomed nodes by

%Avg of
all

fathomed
nodes

B&B H Avg Max Lema 6 Lem 1 Lem 7 Lem 2 Lem 3 Lem 4 Lem 5 LB3 LB1 LB2

S122

12 20 12 0.05 0.61 0.08 2.43 3.63 1.75 0.69 0.75 2.37 1.65 84.10 1.69 0.94 94.61

16 20 13 0.12 1.05 0.48 6.74 1.54 2.59 0.88 1.70 1.67 2.37 80.49 0.75 1.27 96.45

20 20 10 0.19 1.16 1.22 3.81 0.98 1.97 0.96 0.42 1.76 1.93 86.18 0.60 1.39 88.26

24 20 5 0.06 0.91 14.48 8.56 2.12 1.24 0.41 1.34 2.58 0.71 79.22 1.37 2.45 93.20

28 20 5 0.11 1.35 110.33 8.12 3.58 1.48 0.65 0.97 0.64 0.95 81.36 0.00 2.25 92.42

32 20 2 0.21 0.45 866.89 4.97 2.91 1.13 0.29 1.94 2.37 1.84 82.15 1.43 0.97 94.18

36 20 3 0.09 0.81 2154.78 5.93 0.41 0.92 1.27 1.02 1.13 2.08 84.95 0.82 1.47 90.04

S123

8 20 16 0.06 0.90 0.00 6.35 0.96 0.24 1.21 2.51 1.55 1.20 75.18 4.60 6.20 94.18

12 20 12 0.11 1.58 0.00 4.57 2.64 0.83 0.84 1.57 0.95 2.67 77.82 3.99 4.12 96.28

16 20 13 0.18 2.13 0.03 5.14 1.43 0.92 1.70 2.63 1.82 1.13 77.08 2.19 5.96 90.59

20 20 8 0.02 0.30 0.67 3.68 1.76 0.81 0.36 0.97 0.80 2.19 79.99 5.86 3.58 95.66

24 20 3 0.09 0.45 44.15 2.27 2.39 0.81 1.22 1.84 1.02 0.87 78.45 4.77 6.36 88.74

28 20 3 0.03 0.06 180.55 5.69 3.72 0.60 1.95 1.22 0.93 2.55 74.04 3.51 5.79 93.62

32 20 1 0.02 0.12 428.91 6.12 1.87 0.51 0.72 0.97 1.24 0.72 78.09 4.84 4.92 94.93

36 20 2 0.08 0.10 712.25 4.71 2.44 0.88 2.42 1.41 2.79 0.42 71.48 5.26 8.19 89.67

40 12 2 0.04 0.08 950.56 6.91 3.26 0.69 0.63 1.22 1.75 1.94 75.19 4.69 3.72 92.25

S124

8 20 16 0.02 0.11 0.00 3.47 1.32 0.69 0.98 1.41 1.27 0.94 80.05 3.11 6.76 90.99

12 20 15 0.03 0.16 0.00 4.66 1.45 0.46 1.38 1.18 2.84 0.65 74.44 2.56 10.38 94.24

16 20 13 0.04 0.12 0.00 3.19 2.34 0.04 1.75 0.94 0.73 1.28 77.06 3.96 8.71 92.35

20 20 9 0.00 0.01 0.02 4.21 1.54 0.42 0.84 0.00 0.49 0.78 80.45 4.81 6.46 96.03

24 20 11 0.00 0.02 0.09 7.96 2.34 0.00 2.76 1.09 1.65 2.34 69.69 4.62 7.55 88.27

28 20 7 0.00 0.00 6.94 2.35 1.84 0.09 0.54 1.54 0.49 0.71 83.36 5.89 3.19 93.14

32 20 5 0.00 0.03 34.43 8.58 0.97 0.01 1.89 0.43 1.38 1.22 78.55 4.21 2.76 87.42

36 20 5 0.01 0.08 147.81 6.41 1.23 0.00 1.19 1.89 0.91 1.07 71.99 5.37 9.94 92.86

40 20 6 0.00 0.04 675.92 7.80 2.43 0.87 0.97 2.01 1.00 2.63 73.93 4.54 3.82 96.24

44 14 2 0.01 0.12 1348.76 8.28 1.89 0.93 1.65 2.18 1.11 2.78 76.16 2.90 2.12 93.64

S221

8 20 14 0.09 1.44 0.00 5.44 2.65 0.75 1.94 2.66 1.35 2.58 75.32 4.93 2.38 93.72

12 20 10 0.04 0.63 0.05 6.17 4.78 1.32 1.47 0.91 2.51 3.24 64.06 6.55 8.99 97.39

16 20 11 0.07 1.09 0.67 3.30 2.40 1.54 2.05 1.23 0.97 2.85 73.67 5.24 6.75 92.03

20 20 5 0.08 1.39 4.66 3.86 3.13 0.68 2.69 2.12 6.62 2.62 66.46 4.93 6.90 88.55

24 20 9 0.04 0.65 25.72 9.64 2.12 2.95 1.27 1.46 3.06 3.20 55.74 8.63 11.93 97.23

28 20 6 0.12 0.21 185.93 4.79 8.89 1.49 1.38 0.00 1.28 2.77 66.03 3.18 10.18 88.58

32 20 4 0.01 0.04 620.55 5.29 4.72 0.70 2.53 2.75 2.40 6.89 57.26 5.58 11.88 93.08

36 18 3 0.01 0.18 1497.07 5.94 6.55 3.88 1.40 2.08 2.58 2.50 60.35 4.30 10.43 84.56

40 9 3 0.00 0.01 675.66 2.25 7.63 4.27 2.72 1.67 3.67 1.65 66.27 3.45 6.42 92.61

S222

8 20 12 0.12 1.48 0.00 1.45 1.92 2.85 0.82 0.96 1.16 0.89 83.44 5.36 1.15 98.76

12 20 10 0.09 1.36 0.00 5.81 4.68 2.48 1.04 1.63 2.42 0.64 72.20 3.14 5.96 94.92

16 20 7 0.06 0.97 0.21 6.91 3.61 3.47 1.61 1.55 1.45 1.60 69.68 7.31 2.81 94.81

20 20 8 0.11 1.72 3.51 4.34 7.36 0.92 0.94 2.84 1.59 2.32 75.73 1.92 2.04 96.57

24 20 5 0.14 0.98 68.35 8.57 4.71 1.55 1.21 0.60 1.71 2.60 69.64 2.74 6.67 89.29

28 20 2 0.16 1.50 1243.76 2.70 3.12 2.67 0.74 1.54 0.54 1.77 80.20 3.55 3.17 90.67

32 20 3 0.11 0.76 2875.88 6.32 4.07 5.09 1.35 1.01 1.92 1.53 68.12 5.14 5.45 88.25

36 10 0 0.09 0.56 1562.93 4.18 3.71 2.42 1.55 0.96 1.38 2.50 74.47 4.65 4.18 91.73

8 20 13 0.00 0.03 0.00 3.47 2.47 1.27 0.88 1.33 1.34 1.38 74.60 7.94 5.32 94.48

12 20 14 0.13 0.90 0.01 7.96 3.54 1.46 0.73 4.34 1.05 2.80 65.29 10.23 2.59 96.85
aLem: Lemma.
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Table 4. Performance of B&B and heuristic algorithms (continued).

G
ro

u
p

n

# of
optimum
samples

% Error

Avg
CPU

time of
B&B (s)

%Avg of fathomed nodes by

%Avg of
all

fathomed
nodes

B&B H Avg Max Lema 6 Lem 1 Lem 7 Lem 2 Lem 3 Lem 4 Lem 5 LB3 LB1 LB2

S223

16 20 8 0.09 1.03 0.53 5.27 1.38 0.58 1.31 1.10 1.48 1.32 77.08 3.78 6.69 94.46
20 20 4 0.06 0.61 3.98 4.52 4.10 2.73 0.00 2.75 2.00 0.93 69.20 6.65 7.11 90.13
24 20 3 0.00 0.02 84.62 5.29 6.21 1.29 0.61 4.23 0.95 2.03 68.73 8.39 2.27 85.89
28 20 5 0.16 0.86 198.94 6.15 5.97 2.11 1.54 3.12 2.63 2.83 63.09 3.64 8.92 95.31
32 20 0 0.08 0.34 822.50 3.88 2.02 0.93 0.84 2.68 3.54 3.20 74.96 4.50 3.45 91.43
36 15 2 0.03 0.28 1100.50 4.24 2.96 0.67 0.62 3.71 2.01 1.79 74.86 4.96 4.18 93.59

S224

8 20 17 0.02 0.38 0.00 6.10 1.25 1.07 0.84 0.99 2.38 2.29 78.34 5.62 1.12 98.86
12 20 11 0.01 0.09 0.07 4.22 2.55 0.93 1.23 1.16 1.57 1.41 76.37 5.89 4.67 89.21
16 20 13 0.00 0.05 0.15 3.67 1.47 2.49 0.66 1.64 1.16 0.00 83.05 3.45 2.41 96.58
20 20 9 0.00 0.01 1.45 7.51 4.18 2.13 1.05 1.28 3.83 2.40 68.48 2.90 6.24 93.78
24 20 5 0.00 0.01 5.63 4.13 3.09 1.37 0.76 0.86 1.40 5.08 73.07 3.69 6.55 93.07
28 20 7 0.00 0.00 3.49 10.27 7.62 2.55 1.47 0.89 2.07 0.95 64.06 6.22 3.90 84.96
32 20 4 0.00 0.00 2.28 7.38 3.48 0.78 2.04 3.05 0.95 2.67 71.18 4.31 4.16 85.58
36 20 1 0.00 0.02 146.10 4.80 5.67 1.63 0.66 2.01 0.65 1.22 74.38 6.93 2.05 91.45
40 20 1 0.01 0.11 910.59 6.58 2.19 1.79 0.43 1.39 2.93 0.67 78.20 4.21 1.61 88.78
44 20 3 0.00 0.02 1985.68 5.16 1.49 2.02 1.23 1.60 2.62 1.84 77.53 4.64 1.87 93.63

aLem: Lemma.

Figure 2. Average CPU time of B&B algorithm.

solving the three groups in which the values of due
date are generated over the wide interval (0; 1:5Cmax],
although values of y1 and y2 in S224 are large. Also,
groups S111, S121, and S221 have large CPU times and
small solved job sizes; due dates of those groups were
obtained over small range (0; 0:5Cmax]. In addition,
because of the longest interval of y1 and y2 values in
groups S221 and S223, the average CPU times of solving
the generated hard problems are rather high. Since y1
and y2 in group S222 were generated over the longest
interval and due dates were obtained over the short
interval (0:5Cmax; Cmax], this group is strongly hard to
solve; the maximum CPU time and minimum number
of optimal samples belong to this group as given in
Table 4 and Figure 3.

In Table 4, the e�ciency of all the lemmas and
lower bounds is also demonstrated by the average
percentage of fathomed nodes presented according to
the order of accomplishment in B&B algorithm. Due
to having the shortest interval of y2 over [A=3; 2A=3]
in the groups S111, S112, and S113, the number of

Figure 3. Number of optimal samples obtained by B&B
algorithm.

utilizing Lemma 6 is increased and the performance of
this lemma is great. Also, in groups S221, S222, S223,
and S224, where y1 is obtained from the longest interval
[0; 2A=3], Lemma 1 is highly e�cient.

According to Table 4, the e�ciency of LB3 is
so excellent in all the groups; in many problems, it
fathoms the initial nodes of B&B tree so that the
numerous branches of searching tree, and thus a great
percentage of entire nodes are omitted. As it can
be seen, due to having large due dates over intervals
(0:5Cmax; Cmax] and (0; 1:5Cmax] in S112, S114, S122,
S124, S222, and S224, the e�ciency of LB1 and LB2 is
decreased. The average percentage of fathomed nodes
is at least 84% which proves a fantastic performance of
the proposed B&B method.

6. Conclusion and future research

In this paper, the single-machine scheduling problem
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under piecewise linear deteriorating jobs was investi-
gated whose objective is to minimize the maximum
tardiness. It was assumed that the processing time
of jobs is an increasing function of their starting time
according to a piecewise linear function. The problem
is known to be NP-hard; therefore, a B&B algorithm
with several dominance rules and lower bounds was
established to solve the problem optimally. A heuristic
method was also proposed to derive the near-optimal
solutions. The experimental results showed a high
performance of the proposed B&B algorithm as it could
solve the problems with at least 32 jobs in 12 di�erent
groups. Furthermore, it was shown that the average
percentage error of heuristic approach is less than 0.3%
which demonstrates its great capabilities to solve the
large-scale problems. Scheduling problem under deteri-
orating jobs is an interesting topic for research studies.
The future studies may focus on multiple machines
or the other objective functions. Furthermore, some
practical assumptions, such as the machine availability
constraint or release times, might be added. Also,
the other types of deterioration function, such as the
exponential form with the assumption of learning or
forgetting e�ects, can be investigated.
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Appendix

Proof of Theorem 3: Tmax(�0LB) in algorithm LB is
based on comparing the least completion time for each
position after partial sequence � to the best possible
due date (Steps 1 and 2). At �rst, we show that
if non-decreasing ratio of ai=ab is observed for each
position, M , after partial sequence, �, then the shortest
completion time for position M is obtained. Then, we
prove that if this completion time is compared to the
least existing due date, LB3 is a lower bound for this
problem.

Let �1 = (�; �; ji; jj) where � and � are partial
sequences with completion times S and C, and i and j
are located in positions M�1 and M after �. Sequence
�2 = (�; �; jj ; ji) is obtained from �1 by interchanging ji
and jj . To show that the shortest completion time for
position M is based on non-decreasing ratio of ai=bi, we
must show that ai=bi � aj=bj to have Cj(�1) � Ci(�2).
According to Relation (2), completion times of ji and
jj in �1 are as follows:

Ci(�1) =

8><>:C + ai if C � y1

ai + bi(C � y1) + C = ai
+(1 + bi)C�biy1 if y1<C � y2 (A.1)

If Ci(�1) < y2, then completion time of jj in �1 is as
follows:

Cj(�1) = aj + bj(Ci(�1)� y1) + Ci(�1)

= aj + bj(ai + (1 + bi)C � biy1 � y1)

+ ai + (1 + bi)C � biy1

= aj + aibj + bj(1 + bi)C � bibjy1 � bjy1 + ai

+ (1 + bi)C � biy1: (A.2)

Now, if Ci(�1) > y2, then completion time of jj in �1
is as follows:

Cj(�1) = aj + bj(y2 � y1) + Ci(�1)

= aj + bj(y2 � y1) + ai + (1 + bi)C � biy1:
(A.3)

Also, completion times of ji and jj in �2 are as follows:

Cj(�2) =

8><>:C + aj if C � y1

aj + bj(C � y1) + C = aj + (1 + bj)
C � bjy1 if y1 < C � y2 (A.4)

If Cj(�2) < y2, then completion time of jj in �1 is as
follows:

Ci(�2) = ai + bi(Cj(�2)� y1) + Cj(�2)

= ai + bi(aj + (1 + bj)C � bjy1 � y1)

+ aj + (1 + bj)C � bjy1

= ai + biaj + bi(1 + bj)C � bibjy1 � biy1 + aj

+ (1 + bj)C � bjy1: (A.5)

Now, if Cj(�2) > y2, then completion time of jj in �1
is as follows:

Ci(�2) = ai + bi(y2 � y1) + Cj(�2)
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= ai + bi(y2 � y1) + aj + (1 + bj)C � bjy1: (A.6)

According to the completion time of ji and jj ,
there are four cases to prove Theorem 3 that need to
be checked one by one.

Case 1: Ci(�1) < y2 and Cj(�2) < y2:

Cj(�1)� Ci(�2) = (aj + aibj + bj(1 + bi)C

� bibjy1 � bjy1 + ai + (1 + bi)C � biy1)

� (ai + biaj + bi(1 + bj)C � bibjy1 � biy1

+ aj + (1 + bj)C � bjy1)

= aj + aibj + bjC + bibjC � bibjy1 � bjy1

+ ai + C + biC � biy1 � ai � biaj � biC
� bibjC + bibjy1 + biy1 � aj � C � bjC + bjy1

= aibj � biaj : (A.7)

Since Cj(�1) � Ci(�2) � 0, we have aibj � biaj � 0.
Therefore, it implies that ai=bi � aj=bj .

Case 2: Ci(�1) < y2 and Cj(�2) > y2:

Cj(�1)� Ci(�2) = (aj + aibj + bj(1 + bi)C � bibjy1

� bjy1 + ai + (1 + bi)C � biy1)� (ai

+ bi(y2 � y1) + aj + (1 + bj)C � bjy1)

= aj + aibj + bjC + bibjC � bibjy1 � bjy1

+ ai + C + biC � biy1 � ai � biy2 + biy1 � aj
� C � bjC + bjy1

= aibj + bibjC � bibjy1

+ biC � biy2: (A.8)

From Ci(�1) < y2, we obtain the following relation:

aibj + bibjC � bibjy1 + biC � biy2 � aibj + bibjC

� bibjy1 + biC � biCi(�1): (A.9)

If the right-hand side of Inequality (A.9) is not positive,
then the left-hand side will not be positive. Thus, the
following relation is valid:

aibj + bibjC � bibjy1 + biC � biCi(�1) = aibj

+ bibjC�bibjy1+biC�bi(ai+(1 + bi)C � biy1)

� 0;

aibj + bibjC � bibjy1 + biC � biai
� biC � bi2C + bi2y1

= bj(ai + biC � biy1)

� bi(ai + biC � biy1)

� 0;

bj(ai + biC � biy1)

� bi(ai + biC � biy1);

bj � bi: (A.10)

On the other hand, from relations Ci(�1) < y2 and
y2 < Cj(�2), we have Ci(�1) < Cj(�2):

ai + (1 + bi)C � biy1 < aj + (1 + bj)C � bjy1;

ai + biC � biy1 < aj + bjC � bjy1;

ai � aj < (bj � bi)C�(bj�bi)y1 =(bj � bi)(C � y1):
(A.11)

Owing to bj � bi and y1 < C, relation (bj � bi)(C �
y1) � 0 and, consequently, ai < aj hold. Accordingly,
we have ai=bi � aj=bj .
Case 3: Ci(�1) > y2 and Cj(�2) < y2:

Cj(�1)� Ci(�2) = (aj + bj(y2 � y1) + ai + (1 + bi)C

� biy1)� (ai + biaj + bi(1 + bj)C � bibjy1

� biy1 + aj + (1 + bj)C � bjy1)

= aj + bjy2 � bjy1 + ai + C + biC � biy1

� ai � biaj � biC � bibjC + bibjy1 + biy1

� aj � C � bjC + bjy1

= bjy2 � biaj � bibjC
+ C + biC � biy1 � ai � biy2 + biy1 � aj
+ bibjy1 � bjC: (A.12)

Since Ci(�1) > y2, we can replace Ci(�1) with y2:
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bjy2 � biaj � bibjC + bibjy1 � bjC < bjCi(�1)

� biaj � bibjC + bibjy1 � bjC
= bj(ai + C + biC � biy1)� biaj
� bibjC + bibjy1 � bjC
= bjai � biaj : (A.13)

Cj(�1)�Ci(�2) � 0; therefore, relations aibj� biaj � 0
and ai=bi � aj=bj are satis�ed.

Case 4: Ci(�1) > y2 and Cj(�2) > y2:

Cj(�1)� Ci(�2) = (aj + bj(y2 � y1) + ai + (1

+ bi)C � biy1)� (ai + bi(y2 � y1) + aj

+ (1 + bj)C � bjy1)

= bj(y2 � C) + bi(C � y2)

= (bj � bi)(y2 � C): (A.14)

Since we want to have Cj(�1) � Cj(�2) � 0, we
have (bj � bi)(y1 � C) � 0. From C � y2, we obtain
bj < bi. While the shortest normal processing time (ai)
is used in Relation (A.1), the least amount of Ci(�1) in
position M is obtained. Therefore, relation ai � aj is
satis�ed. Consequently, we have ai=bi � aj=bj .

In the above four cases, we proved that non-
decreasing ratio ai=bi causes to have the least comple-
tion time for each position. If the start time of position
is before y1, then ratio ai=bi is reduced to ai. According
to Step 1 of algorithm LB, the least amount of ai from
set �0 is selected and scheduled, then it will be omitted
from �0. If the start time is greater than y1 (e.g.,
position M), then the shortest ai remained in set �0
(e.g., aj) is scheduled for this position so that ai � aj .
To ensure non-decreasing ratio of ai=bi, relation bj < bi
must hold; so, M jobs with the least deterioration rates
from set B�0 are chosen and scheduled in positions 1 to
M after � in a non-increasing order. Then, completion
time of job in position M is calculated according to the
completion times of the previous positions.

We showed how to obtain the least completion
time of each position based on the non-decreasing ratio
of ai=bi so far. Now, we prove that if the least existing
due date is assigned to each opposition, the lower
bound will be obtained. We have:

Tmax(�0LB) = max
1�k�uf0; C[k] � d[k]g

= maxf0; C[1] � d[1]; C[2] � d[2]; C[3]

� d[3]; :::; C[u] � d[u]g; (A.15)
where C[k] is the least completion time of position k,
and d[k] is the kth smallest due date from set D�0 .

Suppose that there is a number 1 � h � u in
partial sequence �0LB so that Tmax(�0LB) = C[h] � d[h].
There is partial sequence �0 where d[h] is not assigned
to position h; hence, there is a number 1 � k � u,
so that d[h] � d[k] or d[k] < d[h] where d[h] and d[k]
are assigned to positions k and h, respectively. Since
Tmax(�0LB) = C[h]�d[h], relations C[k]�d[k] � C[h]�d[k]
and Tmax(�0) � maxfC[h] � d[k] � C[k] � d[h]g hold.

If d[h] � d[k], then relation h < k is satis�ed
absolutely. Therefore, we have:

C[h] < C[k];

C[h] � d[h] < C[k] � d[h]

Tmax(�0LB) = C[h] � d[h] < C[k] � d[h] � Tmax(�0);

Tmax(�0LB) � Tmax(�0): (A.16)

If d[k] < d[h], then the following relation is satis�ed:

Tmax(�0LB) = C[h] � d[h] < C[h] � d[k] � Tmax(�0);

Tmax(�0LB) � Tmax(�0): (A.17)

Therefore, partial sequence �0LB dominates partial se-
quence �0. Accordingly, LB3 is a lower bound for the
problem.
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