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Abstract. The rectangular two-dimensional Single Knapsack Problem (SKP) consists
of packing a �xed rectangular space (so-called pallet) with a subset of smaller rectangular
shapes (so-called pieces) of di�erent dimensions and without rotation. Pieces have di�erent
values. The objective is to maximize the sum of the values of the pieces packed. This paper
proposes a new method for solving rectangular two-dimensional SKP based on the column
generation approach. The mathematical formulation of the proposed model is the simplest
of all present mathematical formulations in the the state-of-the art. The computational
performance indicates that it is an e�ective method based on quality of solution.

© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Cutting and Packing (C&P) problems are highly en-
countered in many �elds, such as management science,
engineering sciences, information sciences, production,
and logistics. They arise in several real-world industries
such as glass, steel, wood, paper, clothing, and leather.
C&P problems are special cases of combinatorial opti-
mization problems [1] and are the common problem of
packing a large space with some smaller shapes. Based
on problem dimension, there are three di�erent types
of C&P problems: one-dimensional, two-dimensional,
or three-dimensional; for instance, steel bar cutting
in one-dimensional [2], glass sheet cutting in two-
dimensional [3], and packing boxes into a container
in three-dimensional problems [4]. Concerning piece
number limitation, there are two di�erent types of
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C&P problems: constrained or unconstrained. The
characteristic of \constrained" refers to those whose
number of the ordered pieces is well known and limited.
In other words, the packed pieces exceeding the ordered
well-known demands are considered as wasted space or
scrap. C&P problems are also classi�ed in two types:
weighted or un-weighted. In the weighted type, a piece
has a predetermined value, but in the un-weighted one,
the value of a piece is concerned with its dimensions.

The present paper is concerned with the problem
of packing a number of rectangles (so-called pieces) of
di�erent dimensions into a larger stock sheet (so-called
pallet), such that the total value of the packed pieces
is maximized. The problem, based on Dycho�'s coding
scheme [1], is denoted as 2=B=O=F . The \2" indicates
that a two-dimensional pattern is considered. The aim
is to pack a subset of the pieces \B" within one pallet
\O", and we have relatively few \F" non-identical
types of pieces. Besides, according to the typology of
Wascher et al. [5], the problem falls into the rectangu-
lar two-dimensional Single Knapsack Problem (SKP).
The paper introduces a new mathematical formulation
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based on the column generation approach [6,7]; so,
this research belongs to the approach of mathematical
programming formulation.

The rectangular two-dimensional SKP belongs to
the class of NP-hard problems [8]. Several heuristic
methods have been developed for this problem such
as genetic algorithm [9], quasi-human based heuris-
tic [10], tabu search [8], GRASP [11], sequence-pair
representation [12], simulated annealing [13], particle
swarm optimization [14], greedy [15], ant colony [16],
etc. For this problem, a few mathematical formulation
models are introduced in the literature. The traditional
approach generates all of the possible packing patterns
and formulates an individual model. In the 60s,
the cyclical approach of Gilmore and Gomory [6,7],
namely column generation, was introduced in which
a 1-Dimensional Pattern (1DP), based on the dual
prices, is generated within each round of the algorithm
loop. Beasley [17] introduced a simple formulation in
Euclidean coordinates, such that the bottom-left corner
coordinate de�nes the piece position. He used four
constraints for each piece to prevent pieces' overlap-
ping. Chen et al. [18] relaxed Beasley formulation by
using four binary variables for packing a composition
of two pieces. Hadjiconstantinou and Christo�des [19]
introduced a zero-one integer programming formula-
tions of the problem. Even for small-problem instances,
they have to consider very large zero-one programs,
because the number of variables depends on the size
of the pallet that is to be packed. Formulation of
Tsai et al. [20], furthermore, was the same as that
of Chen et al. [18], except that it includes two binary
variables instead of four. The table of the two variables
includes four compositions as each of them refers to
one of the basic orientations: left, right, top, and
bottom. Research work of Tsai et al. [21] was a kind of
strip formulation based on the linear equations. They
divided the pallet length into various strips, i.e. strips
lengths are equal to the pallet width and strips widths
are equal to unit-scale. In the �rst step, the upper limit
for wasted space is calculated; therefore, applying the
calculated upper limit reduces the complexity. In the
second step, the strips are generated, and in the �nal
step, an individual model is formulated and solved.
Caprara and Monaci [22] introduced some numeration
algorithms to search for the best pattern. Fekete and
Schepers [23] and Fekete et al. [24] developed di�erent
tree search algorithms for solving the problem. They
combined the use of data structure for characterizing
feasible packing with new classes of lower bounds and
some heuristics.

The structure of this paper is as follows. The
column generation approach [6,7] is briey explained
in Section 2, and then, a detailed description of the
proposed model is given in Section 3. Analytical results

are presented in Section 4 and �nally, conclusions of
this research study are given in Section 5.

2. Column generation approach

Assume a lot of bars with identical lengths and also a
set of pieces with di�erent sizes and various demands.
The question is: How many bars should be cut for each
1DP to meet the piece's demands and minimize the
total cut bars? Figure 1 shows the original column
generation approach to answer the above question. In
this �gure, Model (1)-(3) selects the best set of 1DPs,
and Model (4)-(6) generates a new 1DP, in each round,
based on the shadow prices derived from Model (1)-(3).
So, in Model (1)-(3), a new column, indicating a new
1DP, is added to the revised simplex tablet, in each
round, in order to optimize the cutting process:

min
KX
k=1

Tk �Xk +
PX
p=1

lp � Yp; (1)

St.
KX
k=1

apk �Xk � Yp = Hp p = 1; :::; P; (2)

8 Xk; Yp � 0; (3)

where:
Tk Scrap length in 1DP k (k = 1; � � � ;K);
Xk The numbers of bars to be cut as 1DP

k (k = 1; � � � ;K);
lp Length of piece p (p = 1; � � � ; P );
Yp The additional number of cut piece p

(p = 1; � � � ; P );

Figure 1. The original column generation approach.
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apk The number of piece p included in 1DP
k (p = 1; � � � ; P and k = 1; � � � ;K);

Hp Demand of piece p (p = 1; � � � ; P ),

and:

Max
PX
p=1

�p � tp; (4)

St.
PX
p=1

lp � tp � L; (5)

8 tp 2 (0; 1); (6)

where:
L Length of the bars;
lp Length of piece p (p = 1; � � � ; P );
�p Shadow prices concerning

Constraints (2) (p = 1; � � � ; P );
tp Is a binary variable and is equal to 1 if

1DP contains piece p; otherwise, it is
equal to 0 (p = 1; � � � ; P ).

3. The proposed model

Consider a single rectangular pallet of dimensions
(L;W ) and set P including m (i = 1; � � � ;m) rectan-
gular pieces of dimensions (li; wi) with predetermined
values vi. The objective is to pack the pallet with
a subset of pieces (i.e., the unconstrained problem)
without rotation in such a way as to maximize the sum
of the values of the packed pieces. Each piece to be
packed has a �xed orientation (it cannot be rotated, i.e.
length of the packed pieces should be parallel to length
of the pallet). The considered 2-Dimentional Pattern
(2DP) should be orthogonal (i.e., edges of pieces must
be parallel to the edges of the pallet).

The paper proposes a model to generate a 2DP
based on a new idea. The new de�nition of piece
location in the pallet is illustrated in Figure 2. In this
�gure, the vertical dotty lines split 2DP into a set of
inclusive 1DPs. The 1DPs have a length equal to the
pallet width, but with di�erent widths. Each piece is
split into some parts in strips. For instance, in Figure 2,
piece 1 is split into four parts in 1DPs 1, 2, 3, and 4.
1DP 4 also contains parts of pieces 1, 2, and 6. There
are two kinds of scraps: the scrap in 1DPs, namely
inner scrap (e.g., the hatched area in 1DP 2), and the
scrap at the end side of the pallet, namely marginal
scrap (e.g., the marginal scrap with width S).

Concerning the above de�nitions, Model (7)-(13)
is the preliminary mathematical formulation. The
objective function, Term (7), is the sum of values of
the packed pieces. According to Terms (8), the sum of

Figure 2. Splitting a 2DP into the inclusive 1DPs.

widths of 1DPs, including a given piece, must be equal
to the given piece length. Note that the upper bound
for the number of strips is the number of pieces (n =
m). Terms (9) control the upper bound of the stacked
sizes in 1DPs. Constraint (10) states that the pallet
length is the upper bound for the sum of 1DPs widths:

Max
X
i2P

�i � vi; (7)

St.
X
j2S

�ij � dj � li � � = 0 i 2 P; (8)

X
i2P

wi � �ij �W j 2 S; (9)

X
j2S

dj � L; (10)

8 �i 2 (0; 1); (11)

8 �ij 2 (0; 1); (12)

8 dj � 0; (13)

where:
L&W Length and width of the pallet;
P Set of pieces;
li; wi&vi Length, width, and value of piece i

(i = 1; � � � ;m);
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�i = A binary variable and is equal
to 1 if piece i is packed into the
pallet; otherwise, it is equal to 0
(i = 1; � � � ;m);

S Set of strips;
�ij A binary variable and is equal to 1

if 1DP j contains piece i, otherwise
it is equal to 0 (i = 1; � � � ;m and
j = 1; � � � ; n);

dj Width of 1DP j (j = 1; � � � ; n).

It should be noted that 2DP generated by
Model (7)-(13) may contain interrupted pieces. This
2DP, under a relaxation named \contiguity", is a
solution to the non-preemptive cumulative-resource
schedule problem [25]. However, it is not a feasible
point for SKP.

Some interruptions occur because all 1DPs, in-
cluding a given piece, are not aligned side by side.
For example, in Figure 3(a), piece 2 is interrupted,
in which the interruption is solved by arranging the
1DPs as \1DP 2 - 1DP 1 - 1DP 3". Some interruptions
also occur due to the inappropriate arrangement of

parts in IDPs. For example, in Figure 3(b), piece 2
is interrupted, so that the interruption is solved by
appropriately arranging the parts in 1DP 3.

But, some interruptions cannot be resolved. For
example, in Figure 3(c), piece 2 is interrupted, but any
arrangement of IDPs results in the interruption of one
of the packed pieces. In this case, there is no pattern in
which all 1DPs, including a given piece, can be aligned
side by side. Figure 3(d) shows another interruption.
In this example, all 1DPs, including a given piece, are
aligned side by side, but the intrinsic combination of
the pattern elements results in interruption; so, any
arrangement of parts in IDPs results in the interruption
of one of the packed pieces.

3.1. The model relaxation
Clearly, Constraints (8) of Model (7)-(13) includes
nonlinear relations. Therefore, we try to convert the
model into linear form. Constraints (9) are taken out
of Model (7)-(13) and transferred into another model.
Consequently, binary variables, �ij , will be considered
as the model parameters. After this relaxation, Model
(7)-(13) is written as Model (14)-(18):

Figure 3. The piece interruption (arrow: interchange; grey: interrupted piece).



M.A. Hate�/Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 3287{3296 3291

Max
X
i2P

�i � vi; (14)

St.
X
j2S

�ij � dj � li � � = 0 i 2 P; (15)

X
j2S

dj � L; (16)

8 �i 2 (0; 1); (17)

8 dj � 0; (18)

where:
L Length of the pallet;
P Set of pieces;
li&vi Length and value of piece i (i =

1; � � � ;m);
�i A binary variable and is equal

to 1 if piece i is packed onto the
pallet; otherwise, it is equal to 0
(i = 1; � � � ;m);

S Set of strips;
�ij A binary parameter and is equal to 1

if 1DP j contains piece i; otherwise,
it is equal to 0 (i = 1; � � � ;m &
j = 1; � � � ; n);

dj Width of 1DP j (j = 1; � � � ; n).

In order to solve the problem, the paper proposes
an algorithm based on the column generation approach.
In the proposed algorithm, in each round of the
process loop, a 1DP is generated and added to Model
(14)-(18). So, in each round, it should be written
that: n = n + 1. Now, regarding Model (14)-(18),
considers a given tablet of the revised simplex method
with n initial 1DPs. In order to manage to obtain
the optimal solution through the simplex tablet, the
reduced cost of incoming dj (j = n + 1 i.e. new
1DP) should be negative. In the simplex tablet, a
vector (1; 2; � � � ; m; �) represents the shadow prices.
In this vector, 1 to m represent the shadow prices
concerning Constraints (15), and � is the shadow price
of Constraint (16). The technological coe�cient of
dj is also written as (�1j ; �2j ; � � � ; �mj ; 1). Thus, the
reduced cost of dj is written as in Term (19):

Reduced cost (dj) = (1; 2; � � � ; m; �)
� (�1j ; �2j ; � � � ; �mj ; 1)

= � +
mX
i=1

i � �ij : (19)

Note that the coe�cient of dj is zero for the objective

function. In order to direct dj as a basic variable,
Term (19) should be negative, since the objective
function of Model (14)-(18) is to be maximized. Fi-
nally, a model that generates a new 1DP could be
considered as Model (20)-(22). It should be noted that
Constraint (21) is the same as Constraint (9) that was
taken out of Model (7)-(13) as the relaxation:

Max � � �X
i2P

i � �i; (20)

St.
X
i2P

wi � �i �W; (21)

8 �i 2 (0; 1); (22)

where:
W Width of the pallet;
P Set of pieces;
wi Width of the piece i (i = 1; � � � ;m);
i Shadow prices concerning Constraints

(15) (i = 1; � � � ;m);
� Shadow price of Constraint (16);
�i A binary variable and is equal to 1 if

1DP contains piece i; otherwise, it is
equal to 0 (i = 1; � � � ;m).

3.2. Dealing with the \piece interruption"
For the �rst action, we should try to obtain a pattern
without piece interruption by appropriately arranging
1DPs and also parts in 1DPs. Otherwise, a pattern,
including the intrinsic interruption, would be at reach.
In such a pattern, a total value of the picked pieces
is de�nitely equal to or better than the SKP opti-
mal solution. Thus, the strategy to deal with these
interruptions is to remove the interrupted pieces. Of
course, the 1DPs, including the removed pieces, should
also be eliminated. Note the fact that a combination
of some 1DPs caused the current interruption; so,
we have to prevent coming back to this combination.
Therefore, prior to removing the interrupted piece(s),
the combination of strips is put into set SC (Strips
Combination). In addition, after solving Model (20)-
(22), if the combination of the existing strips plus new
generated strip is in set SC, the new 1DP should be
rejected; besides, we should prevent its regeneration
using the following constraint that is added to Model
(20)-(22). In this constraint, K is the number of the
parts in the strip:X
i2strip

�i � K � 1: (23)

To remove interrupted pieces, we encounter the ques-
tion \Which piece should be removed (e.g., piece 1,
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Figure 4. Modeling 2DPs as a graph (grey: interrupted
piece; black: scrap).

piece 2, or piece 3 in Figure 3(c))?" To answer this
question, in the interruption as in Figure 3(c), we
model 2DP as a graph in which each vertex stands
for a strip and the edges indicate adjacency of vertexes
concern to pieces. By this de�nition, a pattern without
the interruption is a tree in the form of serial of
vertexes. For example, Figure 4(a) contains a pattern
without the interruption; in the graph of this pattern,
label \1, 6" on edge between vertexes 1 and 2 states
that strips 1DP 1 and IDP 2 should be adjacent because
of pieces 1 and 6. Figure 4(b) contains a pattern

with interruption. The graph of this pattern is not
a tree; so, to have a tree by the serial form of vertexes,
some edges of this graph should be cut. The best
cuts are the ones that minimize total values of cut
edges. Note that value of an edge is the sum of the
values of the concerned pieces. To this issue, the
model proposes a Piece Interruption Resolving (PIR)
algorithm that is derived from the Prim's algorithm [26]
to solve Minimum Spanning Tree (MST) problem. A
MST for a weighted graph is a spanning tree for which
the sum of the weights of the edges is as small as
possible. For our problem, some changes in Prim's
algorithm are considered. First, a maximum spanning
tree should be obtained; so, we keep choosing the edge
with the biggest values. Second, to obtain a tree by
the serial form of vertexes, in each of iterations, we
select a new edge connected to tail-end vertexes of the
serial tree. Third, in addition to the \value" criteria,
the PIR algorithm considers the \label" criteria of the
graph. The pseudo-code of the PIR algorithm is shown
in Figure 5.

3.3. The �nal procedure
Figure 6 presents the �nal procedure of the proposed
model.

Elements of the procedure are described as fol-
lows:

� At the start, some initial 1DPs are generated;
� Set S includes 1DPs for Model (14)-(18);
� Model (14)-(18) is to select the best 1DPs among a

given set of 1DPs (Set S);
� Model (20)-(22) is to generate a new 1DP, based

on the shadow prices of Constraints (15) and (16)
derived from Model (14)-(18);

Figure 5. The PIR algorithm.
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Figure 6. The �nal procedure of the proposed model.

� If objective function of Model (20)-(22) is not
positive (a diamond in Figure 6), the new 1DP has
the potential to improve the objective function of
Model (14)-(18); so, it is added to set S; otherwise,
this directs us to construct a 2DP for SKP by
appropriately arranging 1DPs and also parts in
1DPs;

� If there is no arrangement of 1DPs in which all
1DPs, including a given piece, are aligned side by
side (a diamond in Figure 6), the combination of
the current 1DPs is put into set SC; then, the
interrupted pieces and IDPs, including those, are
removed. For this purpose, a PIR algorithm has
been previously recommended;

� If there is an appropriate arrangement of 1DPs in
which all 1DPs, including a given piece, are aligned
side by side, but there is no arrangement of the
parts in 1DPs including non-interrupted pieces (a
diamond in Figure 6), the combination of the current

1DPs is put into set SC; then, the interrupted pieces
and IDPs, including those, are eliminated;

� Set SC includes the combination of 1DPs containing
piece interruption. A diamond is considered to
prevent the occurrence of the SC elements. Thus,
if the set of the current 1DPs (set S) plus new
proposed 1DP is in SC, Constraint (23) is added
to Model (20)-(22). Set U includes the entire
inequalities of type Constraint (23) concerning the
forbidden strips;

� Adding several limitations, Constraint (23) could
bring about infeasibility of Model (20)-(22). A
diamond is considered to control this situation.

4. Analytical results

4.1. Formulation analysis
In this section, the proposed model is compared with
other mathematical programming formulations in the
state of the art. So far, only a few mathematical pro-
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Table 1. Structural components of the models formulations.

Model T88 C91 T93 The proposed
model

Growing the number of
variables for increasing
the number of the pieces

Exponential Exponential Linear Linear

Growing the number of
constraints for increasing
the number of the pieces

Exponential Exponential Linear Linear

Type of variables
Mixed

(continuous
and binary)

Mixed
(continuous
and binary)

Full integer Continuous

Dimension measurement Continuous
input sizes

Continuous
input sizes

Integer input sizes Continuous
input sizes

Dealing with the
\piece interruption"

N.A. N.A. The interrupted
pieces are removed

The issue
is resolved

gramming formulations have been proposed. Table 1
shows the comparison of structural components of the
proposed model and studies of Tsai et al. [20] (in brief:
T88), Chen et al. [18] (C91), and Tsai et al. [21] (T93).
By comparison, it is clear that our new formulation
constitutes a signi�cant progress. One indication is
the fact that the relation between formula size and
the number of pieces is linear, while the others are
exponential. Besides, the proposed model includes a
full continuous linear programming formulation, i.e.
it could be solved by more e�cient algorithms. The
comparison is less conclusive: both have pretty for-
mulations, except that the \piece interruption" is not
resolved in the T93.

4.2. Computational analysis
The study is conducted on three groups of instances.
The �rst is 12 small-test instances SKP1 through
SKP12. In this group, the number of pieces ranges
from 5 to 10. The second group is 12 instances
Beasley1 through Beasley12 taken from Beasley's OR
library [27]. They can be found at http://mscmga.ms.
ic.ac.uk/jeb/orlib/ngcutinfo.html. The third group
includes instances OKP1 through OKP5 that are con-
siderably larger than the previous groups. They were
taken from [23] and were originally designed for broader
tests. Table 2 shows the characteristics of the selected
instances and computational results. The �rst column
lists the instance names; the second shows lengths and
widths of pallets followed by the number of pieces. For
example, in instance SKP1, the pieces are f(70, 60),
(50, 40), (50, 40), (30, 30), (30, 30)g.

The computational comparison is included for �ve
exact algorithms ([17] (in brief: B85); [19] (HC95); [23]

Figure 7. The 2DPs generated by the proposed model for
SK4, SKP5, and SKP7.

(FS97); [22] (CM04); [24] (FSV07)) and the proposed
model. In order to evaluate the performance of the
proposed model, it is implemented in Delphi program-
ming language and is tested on a PC with a Pentium
IV processor (2.33 GHz) with 2.0 GB memory. In
Table 2, \-" indicates that no solution is reported
in the literature. Note that column \CM04" is the
best running times among four algorithms A0, A1,
A2, A3 as reported in [22]. In addition, the running
times for instances OKP1 through OKP5 in column
\B85" are reported in [11]. The same table shows the
proposed model which has found an optimal solution
for all instances, but in considerably high running
times. Despite the running time in comparison, it is
clear that the method is a really exact way to get the
optimal solution. Figure 7 presents the 2DPs generated
by the proposed model for SK4, SKP5, and SKP7 test
instances.

5. Conclusion

This paper proposed a new exact model for solving
the rectangular two-dimensional SKP (Single Knapsack
Problem). The main contribution of this research
was in o�ering an idea for developing the column
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Table 2. Computational results.

Instance
name

Pallet size;
piece number

Running time (seconds); computational results

B85 HC95 FS97 CM04 FSV07 The model

SKP1 (100,100); 5 | | | | | | | | | | < 0:01 9000

SKP2 (100,100); 6 | | | | | | | | | | 0.01 125800

SKP3 (100,100); 7 | | | | | | | | | | < 0:01 9750

SKP4 (100,100); 9 | | | | | | | | | | 0.02 24650

SKP5 (100,100); 10 | | | | | | | | | | 0.02 13040

SKP6 (100,100); 7 | | | | | | | | | | < 0:01 11600

SKP7 (100,100); 5 | | | | | | | | | | < 0:01 9500

SKP8 (100,100); 5 | | | | | | | | | | < 0:01 8900

SKP9 (100,100); 5 | | | | | | | | | | < 0:01 12500

SKP10 (100,100); 5 | | | | | | | | | | < 0:01 5500

SKP11 (100,100); 5 | | | | | | | | | | < 0:01 7700

SKP12 (100,100); 5 | | | | | | | | | | < 0:01 9500

Beasley1 (10,10); 10 0.9 164 | | 0.03 164 | | < 0:01 164 0.05 164

Beasley2 (10,10); 17 4 230 | | 0.04 230 | | < 0:01 230 0.05 230

Beasley3 (10,10); 21 10.5 247 | | 0.09 247 | | < 0:01 247 9.8 247

Beasley4 (15,10); 7 0.1 268 0.04 268 0.01 268 | | < 0:01 268 0.05 268

Beasley5 (15,10); 14 0.4 358 | | 0.01 358 | | < 0:01 358 0.02 358

Beasley6 (15,10); 15 55.2 289 45.2 289 0.13 289 | | < 0:01 289 25.02 289

Beasley7 (20,20); 8 0.5 430 0.04 430 0.01 430 | | < 0:01 430 0.07 430

Beasley8 (20,20); 13 218.6 834 | | 0.09 834 | | < 0:01 834 42.25 834

Beasley9 (20,20); 18 18.3 924 5.2 924 0.03 924 | | 0.02 924 11.25 924

Beasley10 (30,30); 13 0.9 1452 | | 0.02 1452 | | < 0:01 1452 0.85 1452

Beasley11 (30,30); 15 79.1 1688 | | 0.13 1688 | | < 0:01 1688 88.32 1688

Beasley12 (30,30); 22 229 1801 > 800 1851 0.26 1865 | | < 0:01 1865 121.25 1865

Okp1 (100,100); 50 19.71 27486 | 11.6 27718 24.06 10.85 27718 77.53 27718

Okp2 (100,100); 30 13.19 21976 | 116.24 22502 1535.95 20.25 22502 351.25 22502

Okp3 (100,100); 30 11.46 23743 | 73.03 24019 1.91 5.98 24019 128.25 24019

Okp4 (100,100); 61 32.08 31269 | 50.09 32893 0.85 2.87 32893 20.21 32893

Okp5 (100,100); 97 83.44 26332 | 40.14 27923 488.27 11.78 27923 65.00 27923

generation approach to generate two-dimensional pack-
ing patterns. Comparison of the proposed model
with the current mathematical formulation models in
the literature con�rms the progress in the structural
aspects. Besides, the proposed model gets the optimal
solution to all of the instance tests. Despite this fact,
the running times of the solved instances do not show
the e�ciency of the view of solving speed. However,
it is expected that this research leads to progress for
other problem variants. In addition, it is proposed
that the C&P researchers develop the column gener-

ation approach to generate three-dimensional packing
patterns.
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