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Abstract. In the process of decision making, the necessity of aggregation of input
arguments into a single output becomes a key step; as a result, the selection of an
appropriate aggregation operator is a vital aspect. The aim of this contribution is threefold.
First, we study algebraic operations of Trapezoidal Intuitionistic Fuzzy Numbers (TrIFNs),
and then on the basis of these operational laws, we de�ne four types of harmonic mean
operators with TrIFNs. Second, the required properties of the proposed operators are
reviewed. After that, an approach based on the proposed operators is introduced to solve
a group decision making problem. Finally, a practical example is furnished to demonstrate
the applicability of the proposed operators in the decision making context. The contribution
ends by introducing comparative analysis of the obtained results.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Aggregation operators have a structural feature that
combines a �nite number of data points with a single
value. Aggregation operators are important tools of
information fusion in the decision making problem [1-
3], neural networks [4], fuzzy logic controller [5], and
many other �elds. Depending on the di�erent nature of
information and their relations, various types of aggre-
gation operators have been developed. Among several
aggregation operators, the Arithmetic Mean (AM),
the Geometric Mean (GM), and the Harmonic Mean
(HM) operators are fundamental operators. Based
on these basic operators, di�erent types of operators
are developed and extended to several environments.
Yager [6] proposed the Ordered Weighted Averaging
(OWA) operator where the input arguments are or-
ganized in order. The Ordered Weighted Geometric
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(OWG) operator [7] is established based on OWA and
GM operators, and the Ordered Weighted Harmonic
(OWH) operator [8] is developed by combining OWA
and HM operators.

However, it is not always possible that input
data are numerical values (crisp values). There may
arise some situations where the input data are in
imprecise forms rather than numerical values, and
this occurs due to lack of information, limitation of
knowledge, subjectivity of the human judgment, etc.
The imprecise information may be suitably expressed
in the form of linguistic variable [9], fuzzy set [10],
Intuitionistic Fuzzy Set (IFS) [11] or hesitant fuzzy
set [12] which seem to suitably describe an ill-known
quantity. In 1965, Zadeh [10] proposed the notion
of fuzzy set which captures the imprecise information
by assigning a membership degree to each element of
the universe. Under the fuzzy environment, a lot of
aggregation operators are developed. As an illustra-
tion, Fuzzy OWA (FOWA) operator was introduced by
Wang and Fan [13]. Di�erent types of harmonic mean
operators under fuzzy environment, e.g. fuzzy weighted
harmonic mean operator, fuzzy OWH operator, and
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fuzzy hybrid harmonic operators, were developed by
Xu [14]. To �nd the correlation among the arguments,
various types of operators, such as power average [15],
Choquet integral [16], Bonferroni mean [17] operators,
are developed. In the linguistic fuzzy environment,
Tian et al. [1] de�ned linguistic fuzzy weighted fuzzy
Bonferroni mean operator and Yu et al. [12] de�ned
linguistic hesitant fuzzy Heronian mean operator. Ma
et al. [3] introduced 2 tuple linguistic aggregation
operators on the basis of subjective sensation and
objective numerical scales.

By considering the non-membership degree to
the fuzzy set, Atanassov [11] proposed IFS theory
where the membership degree and non-membership
degree do not always complement each other. There
may arise some hesitations. Thus, in some cases,
IFS theory is more appropriate to deal with inexact
information present in real-world applications than the
ordinary fuzzy set. Eventually, in less than three
decades since its �rst appearance, IFS theory has
been investigated by many authors [18-24] and used
for decision making [18,23,25], mathematical program-
ming [20,24,26-28], medical diagnosis [19], to name
a few. With this viewpoint, the extension of all
aforementioned aggregation operators to intuitionistic
fuzzy environment has received considerable attention
of many researchers [29,30].

The notion of Intuitionistic Fuzzy Number
(IFN) [31-37], de�ned on the continuous universe, is
improved to quantify imprecise quantity. Basically, the
concept of IFNs can be viewed as an extensive approach
to conventional IFS, which is based on discrete sets.
In the information integration process, discrete sets
may lose partial information [38], while continuous sets
preserve the unity of information and, consequently, are
more suitable to model imprecise information rather
than former sets. Under this circumstance, extending
the concept of discrete sets to continuous sets, IFNs are
de�ned which can more suitably model imprecise data
involved in real-world decision making problems [39-
46]. There are few numbers of aggregation operators
existing to aggregate IFNs in the literature. Wang
and Zhong [47] proposed the weighted arithmetic and
geometric average operators with Trapezoidal IFNs
(TrIFNs). Wan and Dong [48] developed Choquet
integral operator with Triangular IFNs (TIFNs). With
TrIFNs information, in 2016, Wan et al. [2] introduced
a fuzzy generalized OWA operator and generalized
hybrid weighted averaging operator. In [49], Wan
et al. developed arithmetic aggregation operators for
triangular Atanassov's IFNs. Furthermore, generalized
Choquet integral operator of triangular Atanassov's
IFNs was developed by Dong et al. [50]. Wan and
Zhu [51] de�ned triangular intuitionistic fuzzy triple
Bonferroni harmonic mean operators. Wu and Cao [52]
de�ned di�erent families of geometric aggregation op-

erators to aggregate TrIFNs. Liu and Jin [53] studied
Bonferroni mean operator to aggregate trapezoid fuzzy
linguistic variables. In 2013, a power-average operator
of TrIFNs was introduced by Wan [54] and this op-
erator was used in the decision making problem. In
2015, Wan and Dong [55] developed power geometric
operators for TrIFNs. Wan and Yi [56] developed
power-average operators for TrIFNs by using strict
t-norms and t-conorms. Nowadays, research studies
concentrate on interval-valued TrIFNs [57-59] and in
this direction, Dong and Wan [57] developed gener-
alized weighted aggregation operators with interval-
valued TrIFNs.

The aim of this contribution is not to cover
all the ranges of Multi-Attribute Group Decision
Making (MAGDM) problem under intuitionistic fuzzy
environment, but merely to discuss the aggregation
step. The HM operator is an appropriate tool in
the situations, while outliers exist in the data set.
If the population consists of few outliers which are
much larger than the remaining data, then the HM
is the best average operator to use because the HM
gives less importance to high-value outliers. For this
reason, in this work, we introduce a new aggregation
operator, Trapezoidal Intuitionistic Fuzzy Harmonic
Mean (TrIFHM) for aggregating TrIFNs. Furthermore,
di�erent families of harmonic mean operators are also
developed. Particularly, this study focuses on the
development of the weighted HM operator, OWH
mean, induced OWH mean, and hybrid HM operators
with TrIFNs information. The main feature of the
proposed operators is that the aggregated value is also
TrIFN. Then, an approach to MAGDM problem with
TrIFNs is developed based on the proposed operators.

The rest of the paper is structured as follows: In
Section 2, some de�nitions and operations related to
TrIFNs and a ranking process of TrIFNs are described.
Di�erent families of harmonic mean operators are
developed in Section 3 and also their properties are
studied in this section. In Section 4, an application
of the proposed operators in MAGDM problem under
intuitionistic fuzzy environment is discussed. In Sec-
tion 5, a practical example is illustrated. A comparison
analysis is also conducted in this section. A concrete
conclusion is drawn in Section 6.

2. Preliminaries

2.1. De�nition and operations of TrIFNs
Here, we present a brief introduction to TrIFNs, in-
cluding their operations, which will be required for our
subsequent developments. We start by recalling the
de�nition of TrIFN.

De�nition 1. Let eA = [(a; b; c; d); w eA; u eA] be a
TrIFN de�ned on real-line R. The membership and
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non-membership functions of eA are respectively given
as follows:

� eA(x) =

8>>>>>>><>>>>>>>:

(x�a)w eA
(b�a) ; for a � x < b;

w eA; for b � x � c;
(d�x)w eA

(d�c) ; for c < x � d;
0; for x < a, x > d:

(1)

and:

� eA(x) =

8>>>>>>><>>>>>>>:

(b�x)+(x�a)u eA
(b�a) ; for a � x < b;

u eA; for b � x � c;
(x�c)+(d�x)u eA

(d�c) ; for c < x � d;
1; for x < a, x > d;

(2)

where w eA represents the maximum membership degree,
whereas u eA is the minimum degree of non-membership
of element x 2 eA. They follow the relation: 0 �
w eA; u eA � 1;0 � w eA + u eA � 1. Function � eA(x) =
1�� eA(x)�� eA(x) is called hesitancy of element x in eA.
However, if b = c, then TrIFN is reduced to a TIFN.
In the context of decision making problem, TrIFN eA
allows one to simulate human cognitive processes in
a more appropriate manner than the traditional fuzzy
number. The interpretation of TrIFNs is found in [31].

De�nition 2 [55]. If a � 0 and one of a, b, c, and d is
nonzero, then TrIFN eA = [(a; b; c; d);w eA; u eA] is called
positive TrIFN.

De�nition 3. Two TrIFNs eA = [(a1; b1; c1; d1);w eA;
u eA] and eB = [(a2; b2; c2; d2);w eB ; u eB ] are said to be
equal if a1 = a2, b1 = b2, c1 = c2, d1 = d2, w eA = w eB
and u eA = u eB .

De�nition 4 [52]. Let eA = [(a1; b1; c1; d1);w eA; u eA]
and eB = [(a2; b2; c2; d2);w eB ; u eB ] be two TrIFNs and
� � 0 be a scalar. Then:

� eA + eB = [(a1 + a2; b1 + b2; c1 + c2; d1 + d2);w eA +
w eB � w eAw eB ; u eAu eB ];

� eA � eB = [(a1a2; b1b2; c1c2; d1d2);w eAw eB ; u eA + u eB �
u eAu eB ];

� � eA = [(�a1; �b1; �c1; �d1); 1� (1� w eA)�; u�eA];

� eA� = [(a�1 ; b�1 ; c�1 ; d�1 );w�eA; 1� (1� u eA)�].

De�nition 5. Let eA1 = [(a1; b1; c1; d1);w eA1
; u eA1

] be
a positive TrIFN, then:

1eA1
= eA�1

1 =
��

1
d1
;

1
c1
;

1
b1
;

1
a1

�
;w eA1

; u eA1

�
:

2.2. Ranking process of TrIFNs
To solve a MAGDM problem, ranking of alternatives
is one of the key steps. In comparing IFNs, researchers
have introduced various ranking methods. One of such
methods that is employed in the present study is a
centroid-based ranking method of TrIFNs [60]. Now,
we present the method to compute the centroid point
of a TrIFN by using the following steps.

- Step I: Computation of X coordinate. Let eA =
[(a; b; c; d);w eA; u eA] be a TrIFN whose member-
ship and non-membership functions are de�ned in
Eqs. (1) and (2), respectively, and depicted in
Figure 1. Let fLeA : [a; b] ! [0; w eA], fReA : [c; d] !
[0; w eA] be the left and right parts of membership
function � eA, respectively, and gLeA : [a; b] ! [0; u eA],
gReA : [c; d] ! [0; u eA] be left and right parts of non-
membership function � eA of TrIFN eA, respectively.
Functions fLeA(x), fReA (x), gLeA(x), and gReA(x) can be
mathematically represented by using Eqs. (1) and
(2) as follows:

fLeA(x) =
w eA(x� a)
b� a ; for a � x � b;

gLeA(x) =
(x� b) + u eA(a� x)

a� b ; for a � x � b;

fReA (x) =
w eA(d� x)
d� c ; for c � x � d;

gReA(x) =
(x� c) + u eA(d� x)

d� c ; for c � x � d:

Let (X eA, Y eA) be the centroid point of eA.
To compute the centroid point, the area under

Figure 1. Trapezoidal intuitionistic fuzzy number A.
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both membership and non-membership functions is
considered. First, the whole area is partitioned into
�ve rectangles (Figure 1): APMR, PEBM, EFCB,
FQNC, and QDSN. The coordinates of the corner
points of these rectangles are given as follows:

A : (a; 0); B : (b; w eA); C : (c; w eA);

D : (d; 0); E : (b; 0); F : (c; 0);

S : (d; 1); P :
�
aw eA � au eA + b
w eA � u eA + 1

; 0
�
;

Q :
�
dw eA � du eA + c
w eA � u eA + 1

; 0
�
; R : (a; 1);

M :
�
aw eA � au eA + b
w eA � u eA + 1

;
w eA

w eA � u eA + 1

�
;

N :
�
dw eA � du eA + c
w eA � u eA + 1

;
w eA

w eA � u eA + 1

�
:

Then, X coordinate (X eA) of the centroid point of
TrIFN eA can be computed as follows:

X eA=

PxR
a
xgLeAdx+

bR
Px
xfLeAdx+

cR
b
xwdx+

QxR
c
xfReA dx+

dR
Qx
xgReAdx

PxR
a
gLeAdx+

bR
Px
fLeAdx+

cR
b
wdx+

QxR
c
fReA dx+

dR
Qx
gReAdx

;
(3)

where Px and Qx are X coordinates of points P and
Q, respectively.

- Step II: Computation of Y coordinate. In order to
compute Y coordinate of centroid point, the inverse
functions of left and right parts of the membership
and non-membership functions of TrIFN eA are con-
sidered. The whole area is partitioned into three
bounded areas (Figure 2): ABCD, DNS, and ARM,
where the coordinates of the corner points of these
areas are provided in Step I. As fLeA , fReA , gLeA and
gReA are strictly monotonic and continuous functions,
consequently their inverse functions should exist also
be strictly monotonic and continuous. Let hLeA :
[0; w] ! [a; b] and hReA : [0; w] ! [c; d] be the inverse
functions of fLeA and fReA , respectively. Let gLeA inverse

Figure 2. Inverse of trapezoidal intuitionistic fuzzy
number A.

functions of gLeA and gReA be kLeA[0; u]! [a; b] and kReA :
[0; u] ! [c; d], respectively. Functions hLeA(y); hReA(y),
kLeA(y) and kReA(y) can be mathematically represented
as follows:

hLeA(y) = a+
(b� a)y

w
; for 0 � y � w;

kLeA(y) =
(a� b)y + (b� au)

1� u ; for u � y � 1;

hReA(y) = d� (d� c)y
w

; for 0 � y � w;

kReA(y) =
(d� c)y + (c� du)

1� u ; for u � y � 1:

Then, Y coordinate (Y eA) of the centroid point of
TrIFN eA can be computed as shown in Box I, where
My and Ny are Y coordinates of points M and N ,
respectively.

The ranking of two TrIFNs eA and eB with
centroid points (X eA; Y eA) and (X eB ; Y eB) can be done
in the following way:
(a) If X eA < X eB , then eA < eB;
(b) If X eA = X eB , then

if Y eA < Y eB , then eA < eB;
else Y eA = Y eB , then eA = eB.

Y eA =

wR
0
y(hReA � hLeA)dy +

"
1R
0
yd:dy �

NyR
0
yhReAdy � 1R

Ny
ykReAdy

#
+

"
MyR
0
yhLeAdy +

1R
My

ykLeAdy � 1R
0
aydy

#
wR
0

�
hReA � hLeA� dy +

"
1R
0
d:dy �

NyR
0
hReAdy � 1R

Ny
kReAdy

#
+

"
MyR
0
hLeAdy +

1R
My

kLeAdy � 1R
0
ady

# : (4)

Box I
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3. Intuitionistic harmonic mean operator

In this section, HM operator for crisp numbers is
discussed �rst, and then this operator is developed
under intuitionistic fuzzy environment.

3.1. Harmonic mean
The HM and weighted HM operators can be de�ned as
follows.

De�nition 6. Let �a1; �a2; � � � ; �an be n real numbers.
Then, HM operator is de�ned as follows:

H(�a1; �a2; � � � ; �an) =
n

nP
j=1

1
�aj

; (5)

that is, HM is the reciprocal of the AM of the
reciprocals.

De�nition 7. Let �a1; �a2; � � � ; �an be n real numbers.
Then, weighted HM operator is de�ned by:

H� (�a1; �a2; � � � ; �an) =
1

nP
j

�j
�aj

; (6)

where � = (�1; �2; � � � ; �n)T is a weight vector of �aj(j =
1; 2; � � � ; n); �j 2 [0; 1] and

Pn
j=1 �j = 1.

When outliers exist in the sample data set, HM
operator would be the best choice [61] to aggregate the
data as the HM gives less importance to high-value
outliers.

For example, suppose that there are thirteen bars
(Figure 3) of almost similar height in a sample and
there is one bar which is more than three times longer.
Consequently, this outlier may strongly a�ect the AM
and may provide an average value which is biased due
to the presence of this bar. However, HM provides the
less biased result as it gives less importance to outliers.
In this example, the aggregated value obtained by AM
is approximately 47.7, while it is approximately 41 by
HM, i.e., in this case, the AM overstates the average
value by over 15%. Hence, if the aim is to compute
the average value of data where few outliers exist, then
HM is the best one.

Figure 3. Bar diagram of thirteen data with one outlier.

3.2. Family of harmonic mean operators of
TrIFNs

The aforementioned discussion motivates us to develop
harmonic mean operator in the intuitionistic fuzzy
environment. The description of this operator is given
below. Let 0 be the set of positive TrIFNs

De�nition 8. Let eAj = [(aj ; bj ; cj ; dj); w eAj , u eAj ]
(j = 1; 2; ::; n) be a collection of positive TrIFNs. A
Trapezoidal Intuitionistic Fuzzy Weighted Harmonic
Mean (TrIFWHM) operator is a mapping TrIFWHM :0n ! 0 which is de�ned by:

TrIFWHM( eA1; eA2; � � � ; eAn) =
1

nP
j=1

�jeAj
; (7)

where � = (�1; �2; � � � ; �n)T is a weight vector of TrIFNseAj (j = 1; 2; � � � ; n), �j 2 [0; 1], and
Pn
j=1 �j = 1.

Furthermore, if weight vector � = (�1; �2; � � � ; �n)T re-
duces to � = ( 1

n ;
1
n ; � � � ; 1

n )T , then operator TrIFWHM
reduces to Trapezoidal Intuitionistic Fuzzy Harmonic
Mean (TrIFHM) operator which is de�ned below.

De�nition 9. Let eAj (j = 1; 2; � � � ; n) be a collection
of positive TrIFNs. A TrIFHM operator is a mapping
TrIFHM : 0n ! 0 which is de�ned by:

TrIFHM( eA1; eA2; � � � ; eAn) =
n

nP
j=1

1eAj
: (8)

Theorem 1. Let eAj (j = 1; 2; � � � ; n) be a collection
of positive TrIFNs and � = (�1; �2; � � � ; �n)T be a weight
vector of eAj where �j 2 [0; 1];

Pn
j=1 �j = 1. Then, the

aggregation result by using TrIFWHM operator is again
a TrIFN and:

TrIFWHM( eA1; eA2; � � � ; eAn)

=

" 
1

nP
j=1

�j
aj

;
1

nP
j=1

�j
bj

;
1

nP
j=1

�j
cj

;
1

nP
j=1

�j
dj

!
;

1�
nY
j

(1� w eAj )�j ;
nY
j

u�jeAj
#
: (9)

Proof: Proof of this theorem can be done by the
principle of mathematical induction.

When n = 2, then TrIFWPHM ( ~A1; ~A2) is
calculated as shown in Box II. So, Eq. (9) is true for
n = 2.

Suppose that Eq. (9) holds for n = k, i.e.:

TrIFWHM( eA1; eA2; � � � ; eAk)
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TrIFWPHM( eA1; eA2) =
1

�1eA1
+ �2eA2

=
1

�1h
(a1;b1;c1;d1)w eA1

;u eA1

i + �2h
(a2;b2;c2;d2);w eA2

;u eA2

i
=

1

�1
h�

1
d1
; 1
c1 ;

1
b1 ;

1
a1

�
;w1; u1

i
+ �2

h�
1
d2
; 1
c2 ;

1
b2 ;

1
a2

�
;w eA2

; u eAji
=

1h�
�1
d1
; �1c1 ;

�1
b1 ;

�1
a1

�
; 1� (1� w eA1

)�1 ; u�1eA1

i
+
h�

�2
d2
; �2c2 ;

�2
b2 ;

�2
a2

�
; 1� (1� w eA2

)�2 ; u�2eA2

i
=

1h�
�1
d1

+ �2
d2
; �1c1 + �2

c2 ;
�1
b1 + �2

b2 ;
�1
a1

+ �2
a2

�
;1��1�w eA1

��1
+1��1�w eA2

��2��1��1�w eA1

��1��
1��1�w eA2

��2�
; u�1eA1

u�2eA2

i
=

1h
( �1d1

+ �2
d2
; �1c1 + �2

c2 ;
�1
b1 + �2

b2 ;
�1
a1

+ �2
a2

); 1�Q2
j=1

�
1� w eAj��j ;Q2

j=1 u
�jeAj
i

=

24 1
�1
a1

+ �2
a2

;
1

�1
b1 + �2

b2
;

1
�1
c1 + �2

c2
;

1
�1
d1

+ �2
d2

!
; 1�

2Y
j=1

�
1� w eAj��j ; 2Y

j=1

u�jeAj
35

=

26664
0BBB@ 1

2P
j=1

�j
aj

;
1

2P
j=1

�j
bj

;
1

2P
j=1

�j
cj

;
1

2P
j=1

�j
dj

1CCCA ; 1�
2Y
j=1

�
1� w eAj��j ; 2Y

j=1

u�jeAj
37775 : (10)

Box II

=

" 
1

kP
j=1

�j
aj

;
1

kP
j=1

�j
bj

;
1

kP
j=1

�j
cj

;
1

kP
j=1

�j
dj

!
;

1�
kY
j=1

(1� w eAj )�j ;
kY
j=1

u�jeAj
#
:

Now for n = k + 1, using above expression and
operational laws, we will have:

TrIFWHM( eA1; eA2; � � � ; eAk; eAk+1)

=
1

kP
j=1

�jeAj + �k+1eAk+1

=

" 
1

k+1P
j=1

�j
aj

;
1

k+1P
j=1

�j
bj

;
1

k+1P
j=1

�j
cj

;
1

k+1P
j=1

�j
dj

!
;

1�
k+1Y
j=1

�
1� w eAj��j ; k+1Y

j=1

u�jeAj
#
:

So, Eq. (9) is true for n = k + 1. Hence, by
mathematical induction, Eq. (9) holds for all n.

Now, we shall study desirable properties of the
proposed TrIFWHM operator.

(P1) Idempotency: If all of input arguments eAj are
equal and eAj = eA = [(a; b; c; d);w eA; u eA], 8j. Then:

TrIFWHM( eA1; eA2; � � � ; eAn)

= TrIFWHM( eA; eA; � � � ; eA) = eA:
Proof: We have

TrIFWHM( eA1; eA2; � � � ; eAn)

=

" 
1

nP
j=1

�j
aj

;
1

nP
j=1

�j
bj

;
1

nP
j=1

�j
cj

;
1

nP
j=1

�j
dj

!
;

1�
nY
j

�
1� w eAj��j ; nY

j

u�jeAj
#
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=

" 
1 
nP
j=1
�j

!
a

;
1 
nP
j=1
�j

!
b

;
1 
nP
j=1
�j

!
c

;
1 
nP
j=1
�j

!
d

!
;

1� �1� w eA� nP
j=1

�j
; u

nP
j=1

�jeA
#

= [(a; b; c; d);w eA; u eA]

0@* nX
j=1

�j = 1

1A = eA:
(P2) Monotonicity: Let eAj = [(aj ; bj ; cj ; dj);w eAj ;
u eAj ] and �eAj = [(�aj ;�bj ; �cj ; �dj); �w eAj ; �u eAj ] (j = 1; 2; � � � ;
n) be two collections of positive TrIFNs. If aj � �aj ,
bj � �bj , cj � �cj , dj � �dj , w eAj � �w eAj and u eAj � �u eAj ,8j, then:

TrIFWHM( eA1; eA2; � � � ; eAn)

� TrIFWHM
��eA1;

�eA2; � � � ; �eAn� :
Proof: Since aj � �aj and �j � 0, 8j

) �j
aj
� �j

�aj
)

nX
j=1

�j
aj
�

nX
j=1

�j
�aj
) 1

nP
j=1

�j
aj

� 1
nP
j=1

�j
�aj

:

Similarly:

1
nP
j=1

�j
bj

� 1
nP
j=1

�j
�bj

;
1

nP
j=1

�j
cj

� 1
nP
j=1

�j
�cj

;

and
1

nP
j=1

�j
dj

� 1
nP
j=1

�j
�dj

:

Since

w eAj � �w eAj ) 1� w eAj � 1� �w eAj
)

nY
j=1

�
1� w eAj��j � nY

j=1

�
1� �w eAj��j ;

�j � 0; 8 j;

) 1�
nY
j=1

�
1� w eAj��j � 1�

nY
j=1

�
1� �w eAj��j ;

8 j; and

u eAj � �u eAj ) u�jeAj � �u�jeAj ; �j � 0; 8 j;

)
nY
j=1

u�jeAj �
nY
j=1

�u�jeAj ; 8 j:

Hence" 
1

nP
j=1

�j
aj

;
1

nP
j=1

�j
bj

;
1

nP
j=1

�j
cj

;
1

nP
j=1

�j
dj

!
;

1�
nY
j

�
1� w eAj��j ; nY

j

u�jeAj
#

�
" 

1
nP
j=1

�j
�aj

;
1

nP
j=1

�j
�bj

;
1

nP
j=1

�j
�cj

;
1

nP
j=1

�j
�dj

!
;

1�
nY
j

�
1� �w eAj��j ; nY

j

�u�jeAj
#

) TrIFWHM( eA1; eA2; � � � ; eAn)

� TrIFWHM(�eA1;
�eA2; � � � ; �eAn):

(P3) Boundedness: Let eAj (j = 1; 2; � � � ; n) be a
collection of positive TrIFNs and leteA� = [(min

j
fajg;min

j
fbjg;min

j
fcjg;min

j
fdjg);

min
j
fw eAjg;max

j
fu eAjg];

eA+ = [(max
j
fajg;max

j
fbjg;max

j
fcjg;max

j
fdjg);

max
j
fw eAjg;min

j
fu eAjg]:

TheneA� � TrIFWHM( eA1; eA2; � � � ; eAn) � eA+:

Proof: Boundedness is the consequence of idempo-
tency and monotonicity.

Now, on the basis of De�nition 4 and OWH
operator [8], we de�ne Trapezoidal Intuitionistic Fuzzy
Ordered Weighted Harmonic Mean (TrIFOWHM) op-
erator.

De�nition 10. Let eAj (j = 1; 2; � � � ; n) be a collec-
tion of positive TrIFNs. A TrIFOWHM operator is a
mapping TrIFOWHM : 0n ! 0 which is de�ned by:

TrIFOWHM( eA1; eA2; � � � ; eAn) =
1

nP
j=1

tj
A�(j)

; (11)
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where t = (t1; t2; � � � ; tn)T is an associated weight

vector and tj 2 [0; 1],
nP
j=1

tj = 1. (�1; �2; � � � ; �n) is any

permutation of (1; 2; � � � ; n) and eA�(j) � eA�(j�1); 8j =
2; 3; � � � ; n.

Theorem 2. Let eAj (j = 1; 2; � � � ; n) be a collection
of positive TrIFNs and t = (t1; t2; � � � ; tn)T be an

associated weight vector where tj 2 [0; 1],
nP
j=1

tj =

1. Then, the aggregated result of eAj by using the
TrIFOWHM operator is still a TrIFN, i.e.:

TrIFOWHM( eA1; eA2; � � � ; eAn)

=

" 
1

nP
j=1

tj
a�(j)

;
1

nP
j=1

tj
b�(j)

;
1

nP
j=1

tj
c�(j)

;
1

nP
j=1

tj
d�(j)

!
;

1�
nY
j

�
1� w eA�(j)�tj ; nY

j

utjeA�(j)
#
; (12)

where (�1; �2; � � � ; �n) is a permutation of (1; 2; � � � ; n)
and eA�(j) � eA�(j�1), 8 j = 2; 3; � � � ; n.

Theorem 3. Let eAj (j = 1; 2; � � � ; n) be a collection
of positive TrIFNs and t = (t1; t2; � � � ; tn)T be the

associated weight vector and tj 2 [0; 1],
nP
j=1

tj = 1.

Then, TrIFOWHM satis�es the following properties:

(P1) Idempotency: If all input arguments eAj are
equal and eAj = A = [(a; b; c; d);w eA; u eA], 8j. Then:

TrIFOWHM( eA1; eA2; � � � ; eAn)

= TrIFOWHM( eA; eA; � � � ; eA) = eA:
(P2) Monotonicity: Let eAj = [(aj ; bj ; cj ; dj);w eAj ;
u eAj ] and �Aj = [(�aj ;�bj ; �cj ; �dj); �w eAj ; �u eAj ] (j = 1; 2; � � � ;
n) be two collections of positive TrIFNs. If aj � �aj ,
bj � �bj , cj � �cj , dj � �dj , w eAj � �w eAj and u eAj � �u eAj ,8j, then

TrIFOWHM( eA1; eA2; � � � ; eAn)

� TrIFOWHM(�eA1;
�eA2; � � � ; �eAn):

(P3) Boundedness: Let eAj (j = 1; 2; � � � ; n) be any
collection of positive TrIFNs and theneA� � TrIFOWHM( eA1; eA2; � � � ; eAn) � eA+:

whereeA� = [(min
j
fajg;min

j
fbjg;min

j
fcjg;min

j
fdjg);

min
j
fw eAjg;max

j
fu eAjg];

eA+ = [(max
j
fajg;max

j
fbjg;max

j
fcjg;max

j
fdjg);

max
j
fw eAjg;min

j
fu eAjg]:

(P4) Commutativity: If f eB1; eB2; � � � ; eBng is any
permutation of f eA1; eA2; � � � ; eAng, then

TrIFOWHMf eA1; eA2; � � � ; eAng
= TrIFOWHMf eB1; eB2; � � � ; eBng:

Remark 1. It is to be noted that TrIFWHM oper-
ator (Eq. (7)) does not have commutative property,
but operator TrIFOWHM (Eq. (11)) has commutative
property. Moreover, depending on the associate weight
vector, t, few special cases of the TrIFOWHM operator
are analyzed below:

� If t = (1; 0; � � � ; 0)T , then

TrIFOWHMf eA1; eA2; � � � ; eAng = max
j
f eAjg:

� If t = (0; 0; � � � ; 1)T , then

TrIFOWHMf eA1; eA2; � � � ; eAng = min
j
f eAjg:

� If tj = 1 and ti = 0, i 6= j, then

TrIFOWHMf eA1; eA2; � � � ; eAng = eA�(j);

where eA�(j) is the jth largest TrIFN eAj(j =
1; 2; � � � ; n).

� If t = ( 1
n ;

1
n ; � � � ; 1

n )T , then:

TrIFOWHMf eA1; eA2; � � � ; eAng
= TrIFHMf eA1; eA2; � � � ; eAng:

In the following, Trapezoidal Intuitionistic Fuzzy In-
duced OWH Mean (TrIFIOWHM) operator is pre-
sented.

De�nition 11. Let eAj (j = 1; 2; � � � ; n) be a collection
of positive TrIFNs and t = (t1; t2; � � � ; tn)T be an
associated weight vector and tj 2 [0; 1],

Pn
j=1 tj = 1.

A TrIFIOWHM operator is de�ned by:
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TrIFIOWHM[(U1; eA1); (U2; eA2); � � � ; (Un; eAn)]

=
1

nP
j=1

tjeBj
; (13)

where eBj = [(ej ; fj ; gj ; hj);w0eBj ; u0eBj ] is eAi value of the

TrIFIOWHM pair (Ui; eAi) having the jth largest Ui.
In (Ui; eAi), Ui is known as the order-inducing variable,
and eAi is known as the TrIFNs argument variable.

Theorem 4. Let eAj (j = 1; 2; � � � ; n) be a collection
of positive TrIFNs and then their aggregation result by
using the TrIFIOWHM operator be also a TrIFN, i.e.:

TrIFIOWHM( eA1; eA2; � � � ; eAn)

=

" 
1

nP
j=1

tj
ej

;
1

nP
j=1

tj
fj

;
1

nP
j=1

tj
gj

;
1

nP
j=1

tj
hj

!
;

1�
nY
j

�
1� w0eBj�tj ; nY

j

u
0tjeBj
#
; (14)

where t = (t1; t2; :::; tn)T is an associated weight vector

and tj 2 [0; 1],
nP
j=1

tj = 1.

Theorem 5. Let eAj (j = 1; 2; � � � ; n) be a collection
of positive TrIFNs and t = (t1; t2; � � � ; tn)T be an

associated weight vector and tj 2 [0; 1],
nP
j=1

tj = 1.

Then, the operator TrIFIOWHM satis�es idempotency,
monotonicity, and commutativity properties.

It is known that the TrIFWHM operator re-
ects the importance of individual input and the
TrIFOWHM gives the importance to their ordered
positions. Now, we introduce a new operator, Trape-
zoidal Intuitionistic Fuzzy hybrid Harmonic Mean
(TrIFhHM) operator, which lends the importance to
both of the given inputs as well as their ordered
positions.

De�nition 12. Let eAj (j = 1; 2; � � � ; n) be a col-
lection of positive TrIFNs and t = (t1; t2; � � � ; tn)T be

associated weight vector where tj 2 [0; 1],
nP
j=1

tj = 1.

A TrIFhHM operator of n dimension is a mapping
TrIFhHM : 0n ! 0 which is de�ned by:

TrIFhHM( eA1; eA2; � � � ; eAn) =
1

nP
j=1

tjeA0�(j)
; (15)

where A0�(j) is the jth largest of weighted TrIFNseA0j( eA0j = n�j eAj ; j = 1; 2; � � � ; n). Here, n is called
balancing coe�cient, and � = (�1; �2; � � � ; �n)T is the
weight vector of eAj (j = 1; 2; � � � ; n) and �j 2 [0; 1],Pn
j=1 �j = 1 and (�1; �2; � � � ; �n) is a permutation of

(1; 2; � � � ; n), 8 j = 1; 2; � � � ; n.

Theorem 6. Let eAj (j = 1; 2; � � � ; n) be a collection
of positive TrIFNs and t = (t1; t2; � � � ; tn)T be an

associated weight vector where tj 2 [0; 1],
nP
j=1

tj = 1.

Then, their aggregation result by using the TrIFhHM
operator is also a TrIFN, i.e.:

TrIFhHM( eA1; eA2; � � � ; eAn)

=

" 
1

nP
j=1

tj
a0�(j)

;
1

nP
j=1

tj
b0�(j)

;
1

nP
j=1

tj
c0�(j)

;
1

nP
j=1

tj
d0�(j)

!
;

1�
nY
j

�
1� w0eA�(j)�tj ; nY

j

u
0tjeA�(j)

#
: (16)

Remark 2. In the following, depending on the weight
vectors, few special cases of the TrIFhHM operator are
analyzed:

� If � = (�1; �2; � � � ; �n)T approaches � = ( 1
n ;

1
n ; :::;

1
n )T , then vector ( eA0�(1); eA0�(2); � � � ; eA0�(n)) ap-
proaches ( eA�(1); eA�(2); � � � ; eA�(n)) and the opera-
tor TrIFhHM reduces to TrIFOWHM operator
(Eq. (11));

� If t = (t1; t2; � � � ; tn)T approaches t = ( 1
n ;

1
n ; :::;

1
n )T , then ( eA0�(1); eA0�(2); � � � ; eA0�(n)) approaches ( eA1;eA2; � � � ; eAn) and the operator TrIFhHM reduces to
TrIFWHM operator (Eq. (7)).

4. An application to group decision making
problem with TrIFNs information

With the increasing complexity in real-life decision
making scenario, it is usually a hard task for a single
expert to evaluate all the relevant issues correctly.
Thus, in order to improve the rationality and relia-
bility of the decisive result, many real-world processes
take place by a group of experts. With this view
point, a group decision making problem is presented
where the information is quanti�ed by TrIFNs. Let
the MAGDM problem be designed by m alternatives
A = fA1;A2; � � � ;Amg. The expert unit assesses
these m alternatives with respect to n attributes C =
fC1; C2; � � � ; Cng with their corresponding weights � =
(�1; �2; � � � ; �n)T , where �j 2 [0; 1], j = 1; 2; � � � ; n and
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Pn
j �j = 1. The set of attributes C can be classi�ed

into two subsets: the subset of bene�t attributes P
and the subset of cost attributes Q with P [ Q = C,
P \ Q = �. The characteristic of bene�t attribute is
the larger, the better and that of cost attribute is the
smaller, the better. Let E = fE1; E2; � � � ; Ekg be the
set of k experts and � = (�1; �2; � � � ; �k)T be the weight
vector of these k experts, where:

�l 2 [0; 1]; l = 1; 2; � � � ; k and
kX
l=1

�l = 1:

The TrIFWHM operator and TrIFhHM-based ap-
proach to solve MAGDM problem can be described in
the following steps:

- Step 1: Construction of decision matrix. The
MAGDM problem with TrIFNs can be given in the
form of decision matrix Dt = ( eAlij)m�n, provided by
decision maker El as follows:

Dl=
� eAlij�m�n=

0BBBBBBBBBBBBB@

C1 C2 � � � Cn
A1 eAl11

eAl12 � � � eAl1n
A2 eAl21

eAl22 � � � eAl2n
...

...
... � � � ...

Am eAlm1
eAlm2 � � � eAlmn

1CCCCCCCCCCCCCA
:

where:eAlij = [(alij ; b
l
ij ; c

l
ij ; d

l
ij);w

leAij ; uleAij ]
(l = 1; 2; � � � ; k):

- Step 2: Normalization of the decision matrix. To
avoid the e�ect of di�erent attributes' scale on
decisive results, the primary task is to transform
the decision matrix into the normalized decision
matrix:

Nl = (erlij)m�n =

0BBBBBBBBBBBB@

C1 C2 � � � Cn
A1 erl11 erl12 � � � erl1n
A2 erl21 erl22 � � � erl2n
...

...
... � � � ...

Am erlm1 erlm2 � � � erlmn

1CCCCCCCCCCCCA
;

where each eriij can be computed by the following
formulae:

erlij =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

��
alij
amax ;

blij
amax ;

clij
amax ;

dlij
amax

�
;

wleAij ; uleAij
i
; for i = 1; � � � ;m,

j 2 P;��
1� alij

amax ; 1� blij
amax ; 1� clij

amax ; 1� dlij
amax

�
;

wleAij ; uleAij
i
; for i = 1; � � � ;m;

j 2 Q;

(17)

where:

amax = max
i;j
falij ; blij ; clij ; dlijg;

i = 1; 2; � � � ;m; j = 1; 2; � � � ; n:
For the sake of simplicity, it can be written as:erlij = [(r1l

ij ; r
2l
ij ; r

3t
il ; r

4l
ij );w

leAij ; uleAij ]:
- Step 3: Computation of the individual overall

ratings of all the alternatives. To derive the
individual overall ratings of all the alternatives, the
TrIFWHM operator is applied and:eRli = TrIFWHM(erli1; erli2; � � � ; erlin);

i = 1; 2; � � � ;m; l = 1; 2; � � � ; k: (18)

- Step 4: Computation of the collective overall
ratings of all the alternatives. The collective overall
ratings of all the alternatives are derived by utilizing
TrIFhHM operator:eRi = TrIFhHM( eR1

i ; eR2
i ; � � � ; eRki )

= [(ai; bi; ci; di);w eRi ; u eRi ]: (19)

- Step 5: Ranking of the alternatives. Ranking is
done according to the ranking process de�ned in
Section 2.2.

- Step 6: End.

5. Enterprise selection example

In this section, to illustrate the application of the
proposed operators, we consider a MAGDM problem
adopted from [54].

A company wants to form a cooperative alliance
with some potential enterprises to ful�ll the mar-
ket demand. After pre-evaluation, three enterprises,
Ai(i = 1; 2; 3), are selected for further evaluation. The
expert unit selects the best enterprises on the basis
of the following four attributes: producing ability C1,
the technology capability C2, capital currency C3, and
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research ability C4. Let � = (0:15; 0:35; 0:3; 0:2)T be
the weight vector of these four attributes. In the
expert committee, there are three experts E1, E2,
and E3, whose corresponding weight vector is � =
(0:35; 0:35; 0:30)T .

Now, we shall utilize the TrIFWHM and the
TrIFhHm operators to propose an approach to solve
above enterprise selection problem with intuitionistic
fuzzy information as follows:

- Step 1: The evaluation of alternatives (enterprises)
against all the attributes is given in Tables 1-3;

- Step 2: The above criteria are bene�t criteria.
So, the normalized decision matrices, computed by
utilizing Eq. (17), are provided in Tables 4 to 6;

- Step 3: The individual overall ratings (TrIFNs) of
all alternatives, Ai, by using TrIFWHM operator
with � = (0:15; 0:35; 0:3; 0:2)T are computed and

Table 1. Decision matrix provided by expert E1.

Alter.� C1 C2 C3 C4

A1 [(2; 4; 6; 8); 0:5; 0:4] [(2; 4; 6; 7); 0:7; 0:2] [(17; 18; 19; 20); 0:6; 0:3] [(3; 4; 6; 7); 0:7; 0:1]
A2 [(3; 5; 6; 7); 0:6; 0:3] [(15; 17; 19; 20); 0:7; 0:2] [(3; 4; 5; 6); 0:7; 0:2] [(4; 5; 6; 7); 0:6; 0:4]
A3 [(1; 2; 3; 4); 0:7; 0:2] [(2; 3; 4; 5); 0:5; 0:4] [(2; 4; 5; 6); 0:6; 0:4] [(15; 16; 18; 20); 0:8; 0:1]

�Alter.: Alternative

Table 2. Decision matrix provided by expert E2.

Alter.� C1 C2 C3 C4

A1 [(15; 16; 17; 20); 0:9; 0:1] [(2; 4; 5; 7); 0:5; 0:3] [(2; 5; 6; 8); 0:7; 0:2] [(3; 5; 6; 7); 0:8; 0:1]
A2 [(4; 5; 6; 7); 0:6; 0:3] [(16; 17; 19; 20); 0:8; 0:2] [(3; 4; 5; 6); 0:7; 0:2] [(4; 5; 6; 7); 0:6; 0:3]
A3 [(1; 3; 5; 6); 0:6; 0:4] [(2; 3; 4; 6); 0:6; 0:3] [(2; 3; 4; 5); 0:6; 0:4] [(17; 18; 19; 20); 0:6; 0:3]

�Alter.: Alternative

Table 3. Decision matrix provided by expert E3.

Alter.� C1 C2 C3 C4

A1 [(4; 5; 6; 8); 0:5; 0:4] [(1; 2; 3; 4); 0:7; 0:2] [(17; 18; 19; 20); 0:6; 0:25] [(3; 4; 5; 6); 0:7; 0:1]
A2 [(3; 5; 6; 7); 0:6; 0:2] [(2; 3; 4; 6); 0:6; 0:3] [(3; 4; 5; 6); 0:7; 0:2] [(16; 17; 19; 20); 0:8; 0:2]
A3 [(16; 17; 18; 20); 0:8; 0:1] [(4; 5; 6; 7); 0:5; 0:4] [(2; 4; 5; 6); 0:6; 0:4] [(3; 4; 6; 7); 0:7; 0:2]

�Alter.: Alternative

Table 4. Normalized decision matrix provided by expert E1.

Alter.� C1 C2 C3 C4

A1 [(0:1; 0:2; 0:3; 0:4); 0:5; 0:4] [(0:1; 0:2; 0:3; 0:35); 0:7; 0:2] [(0:85; 0:9; 0:95; 1); 0:6; 0:3] [(0:15; 0:2; 0:3; 0:35); 0:7; 0:1]
A2 [(0:15; 0:25; 0:3; 0:35); 0:6; 0:3] [(0:75; 0:85; 0:95; 1); 0:7; 0:2] [(0:15; 0:2; 0:25; 0:3); 0:7; 0:2] [(0:2; 0:25; 0:3; 0:35); 0:6; 0:4]
A3 [(0:05; 0:1; 0:15; 0:2); 0:7; 0:2] [(0:1; 0:15; 0:2; 0:25); 0:5; 0:4] [(0:1; 0:2; 0:25; 0:3); 0:6; 0:4] [(0:75; 0:8; 0:9; 1); 0:8; 0:1]

�Alter.: Alternative

Table 5. Normalized decision matrix provided by expert E2.

Alter.� C1 C2 C3 C4

A1 [(0:75; 0:8; 0:85; 1:0); 0:9; 0:1] [(0:1; 0:2; 0:25; 0:35); 0:5; 0:3] [(0:1; 0:25; 0:3; 0:4); 0:7; 0:2] [(0:15; 0:25; 0:3; 0:35); 0:8; 0:1]
A2 [(0:2; 0:25; 0:3; 0:35); 0:6; 0:3] [(0:8; 0:85; 0:95; 1); 0:8; 0:2] [(0:15; 0:2; 0:25; 0:3); 0:7; 0:2] [(0:2; 0:25; 0:3; 0:35); 0:6; 0:3]
A3 [(0:05; 0:15; 0:25; 0:3); 0:6; 0:4] [(0:1; 0:15; 0:2; 0:3); 0:6; 0:3] [(0:1; 0:15; 0:2; 0:25); 0:6; 0:4] [(0:85; 0:90; 0:95; 1); 0:6; 0:3]

�Alter.: Alternative

Table 6. Normalized decision matrix provided by expert E3.

Alter.� C1 C2 C3 C4

A1 [(0:2; 0:25; 0:3; 0:4); 0:5; 0:4] [(0:05; 0:1; 0:15; 0:2); 0:7; 0:2] [(0:85; 0:9; 0:95; 1); 0:6; 0:25] [(0:15; 0:2; 0:25; 0:3); 0:7; 0:1]
A2 [(0:15; 0:25; 0:3; 0:35); 0:6; 0:2] [(0:1; 0:15; 0:2; 0:3); 0:6; 0:2] [(0:15; 0:2; 0:25; 0:3); 0:7; 0:2] [(0:8; 0:85; 0:95; 1:0); 0:8; 0:2]
A3 [(0:8; 0:85; 0:9; 1:0); 0:9; 0:1] [(0:2; 0:25; 0:3; 0:35); 0:5; 0:4] [(0:1; 0:2; 0:25; 0:3); 0:6; 0:4] [(0:15; 0:2; 0:3; 0:35); 0:8; 0:1]

�Alter.: Alternative



S. Das and D. Guha/Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 3308{3323 3319

shown below. Here, TrIFWHM operator is used as
all the decision matrices consist of extreme outliers.
It is worth noticing that few outliers (too large data
relative to others) exist in Tables 4 to 6. For this
reason, TrIFWHM operator is utilized as a fusion
technique to relieve the inuence of extreme outliers
on the �nal results:eR1

1 =[(0:1496; 0:2609; 0:3775; 0:4452); 0:6469; 0:2182];eR1
2 =[(0:2239; 0:3020; 0:3656; 0:4255); 0:6682; 0:2441];eR1
3 =[(0:1024; 0:1791; 0:2397; 0:2985); 0:6394; 0:2732];eR2
1 =[(0:1245; 0:2540; 0:3083; 0:4046); 0:7195; 0:1808];eR2
2 =[(0:2388; 0:3020; 0:3656; 0:4255); 0:7121; 0:2305];eR2
3 =[(0:1027; 0:1800; 0:2463; 0:3261); 0:6000; 0:3415];eR3
1 =[(0:1060; 0:1840; 0:2532; 0:3235); 0:6469; 0:2066];eR3
2 =[(0:1481; 0:2142; 0:2732; 0:3578); 0:6806; 0:2000];eR3
3 =[(0:1595; 0:2453; 0:3125; 0:3675); 0:6942; 0:2462]:

- Step 4: The collective overall ratings (TrIFNs)
of all alternatives, Ai, by using TrIFhHM with
� = (0:35; 0:35; 0:30)T (experts' weight vector) and
t = (0:25:0:4:0:3)T (associated weight vector) are
computed and shown in Table 7;

- Step 5: Finally, the decision results are obtained
by the centroid-based ranking method discussed in
Section 2.2 and provided in Table 7.

It is observed from Table 7 that the ranking order
of alternatives is A2 > A1 > A3. Hence, the best
enterprise is A2.

Now, the obtained result is compared with the
existing approaches through the aforementioned enter-
prise selection problem. Together, one more compari-
son analysis is drawn where the same problem is solved
with IFSs data instead of TrIFNs.

5.1. Comparison analysis
5.1.1. Comparison of performances with the existing

aggregation operators
In this subsection, the above-mentioned enterprise se-
lection problem (described in Section 5) is solved by us-
ing di�erent operators, such as weighted power-average
operator [54] of TrIFNs, weighted power geometric
operator [55] of TrIFNs, and generalized weighted aver-
aging operator [57] for interval-valued trapezoidal intu-
itionistic fuzzy number to illustrate the applicability of
the proposed operators. The individual overall ratings
of alternatives by using these aggregation operators
and experts' overall ratings of alternatives by using
the corresponding hybrid aggregation operators are
computed to compare the performance of the proposed
harmonic mean operator with the aforementioned ag-
gregation operators. By using the alternatives' �nal
performances, ranking order of the alternatives in each
of the cases is calculated and presented in Table 8.

It is to be observed from Table 8 that the ranking
results by utilizing the proposed harmonic operator
for TrIFNs, weighted power-average operator [54], and
weighted power geometric operator [55] of TrIFNs are
the same. IVTrIFGWA [57] operator selects A2 as the
best alternative; however, ordering of A1 and A3 is
reverse over the other methods. Both weighted power
average operator [54] and weighted power geometric
operator [55] of TrIFNs focus on assigning low weight
to the unfair data (i.e., extreme outliers) by considering
relationship among the input TrIFN arguments. They
directly do not address outlier information among
the TrIFN data sets. In this respect, our proposed
TrIFWHM operator focuses on directly the outlier data

Table 7. Final aggregated values and ranking results.

Alter.� Final aggregation Centroid point Ranking order

A1 eR1 = [(0:1202; 0:2209; 0:2939; 0:3733); 0:6786; 0:1989] X eR1
= 0:2459, Y eR1

= 0:3511
A2 > A1 > A3A2 eR2 = [(0:1892; 0:2587; 0:3208; 0:3934); 0:6903; 0:2246] X eR2

= 0:2914, Y eR2
= 0:3551

A3 eR3 = [(0:1180; 0:1988; 0:2642; 0:3307); 0:6415; 0:2913] X eR3
= 0:2236, Y eR3

= 0:3505
�Alter.: Alternative

Table 8. The ranking order of alternatives for di�erent approaches.

Approach Operator Ranking results

Wan [54] Weighted power average A2 > A1 > A3

Wan and Dong [55] Weighted power geometric A2 > A1 > A3

Dong and Wan [57] IVTrIFGWA A2 > A3 > A1

Proposed TrIFWHM A2 > A1 > A3
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Table 9. Final aggregated values and ranking results of IFS model.

Alter.� Final aggregation Score value Ranking order
A1 R1 = (0:6781; 0:1989) Score(R1) = 0:4792

A1 > A2 > A3A2 R2 = (0:6903; 0:2246) Score(R1) = 0:4657
A3 R3 = (0:6415; 0:2913) Score(R1) = 0:3505

�Alter.: Alternative

to relieve the inuence of it to the ultimate aggregation
results.

In what follows, we compare the proposed model
with the intuitionistic fuzzy value model.

5.1.2. Comparison analysis with IFS-based MAGDM
model

It is owing to fact that IFNs, generalization of IFSs,
are de�ned on the continuous universe of discourse.
Thus, it is more convenient to use IFNs rather than
IFSs. However, to make a comparative analysis, we use
IFSs to express expert's opinion by considering expert's
satisfaction and dissatisfaction degrees (i.e., (wij ; uij)),
actually modeled by TrIFNs Ai(i = 1; 2; 3). Then,
the weighted intuitionistic fuzzy arithmetic mean op-
erator [29] is used to compute the alternatives' overall
ratings. The �nal performance values of alternatives
Ai(i = 1; 2; 3) are computed and given in Table 9.

Finally, the decision results are obtained by using
score function [62]. From Table 9, it is to be noted that
enterprise A1 is the best choice.

It is worth noticing that the resultant ranking
result is di�erent from the ranking order found by
the proposed method (TrIFNs model). This change
is due to the transformation of original information
(TrIFNs) into intuitionistic fuzzy values by discarding
trapezoidal fuzzy numbers from the corresponding
TrIFNs. As a result, TrIFN loses its inherent struc-
ture. Such a transformation distorts experts' original
opinions as well as weakens the ability of information
representation of TrIFNs. it is due to the fact that
TrIFNs provide a suitable framework to maintain the
integrity in information processing in a decision-making
problem, compared to IFSs. Hence, MAGDM problems
with imprecise information, represented by TrIFNs,
provide more accurate results.

6. Conclusion

In this study, we have developed a series of ag-
gregation operators (TrIFWHM, TrIFOWHM, TrI-
FIOWHM, and TrIFhHM) on the basis of HM operator
to aggregate TrIFNs. Through in-depth discussion
of HM operator with TrIFN information, this study
has enriched the theory of harmonic aggregation under
intu- itionistic fuzzy environment. The desirable prop-
erties of the proposed operators have also been studied.
The proposed operators are suitable tools, especially

in the cases where the few outliers exist in the data
set. An enterprise selection example is demonstrated
to illustrate the utilization of the proposed operator for
solving a MAGDM problem. Furthermore, comparison
analysis is conducted to show the e�ectiveness of the
proposed operators.

As stated earlier, in this work, the proposed
operators are used in an enterprise selection problem;
however, it can also be applied to any other areas of
decision problems where uncertainty and hesitation are
involved in the evaluation process and this will be our
future research work.
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