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Abstract. Train scheduling has been one of the signi�cant issues in the railway industry
in recent years since it has an important role in e�cacy of railway infrastructure. In
this paper, the timetabling problem of a multiple-tracked railway network is discussed.
More speci�cally, a general model is presented here in which a set of operational and
safety requirements is considered. The model handles the trains overtaking in stations
and considers the stations' capacity. The objective function is to minimize the total
travel time. Unfortunately, the problem is NP-hard, and real-sized problems cannot be
solved in an acceptable amount of time. In order to reduce the processing time, we
presented some heuristic rules, which reduce the number of binary variables. These rules
are based on problem's parameters, such as travel time, dwell time, and safety time of
stations, and try to remove the impracticable areas of the solution space. Furthermore, a
Lagrangian Relaxation algorithm model is presented in order to �nd a lower bound. Finally,
comprehensive numerical experiments on the Tehran Metro case are reported. Results show
the e�ciency of the heuristic rules and also the Lagrangian Relaxation method in a way
that the optimum values are obtained for all analyzed problems.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Railway is a fast and economic mode of transportation;
according to the Association of American Railroad's
study, rail companies move more than 40 percent of
the US's total freight [1] and is predicted to expand
the current amount by double till 2020. So, the
railways managers have to expand the infrastructures
or manage the current facilities more e�ciently. The
construction of the new infrastructures is very ex-
pensive and time-consuming, and so the utilization
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e�ciency of the current network facilities by optimized
line planning, network timetabling, crew scheduling,
and maintenance scheduling is very important. One of
the most inuential majors in this list is timetabling,
which has engendered a big �eld of study by itself. In
a general point of view, it can be divided into three
main �elds: mathematical programing, simulation-
based optimization methods, and expert systems. In
the �eld of the mathematical programing, the aim is to
create the global optimal timetable or to reschedule the
existing timetable. This article is focused on creating
new schedule and timetables based on mathematical
programming.

Higgins et al. [2] presented a mathematical model
for a single-track railway with dynamic travel times.
They considered delay and operational costs as the
objective function and proposed a Branch and Bound
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(B&B) to solve the problem. Kroon and Peeters [3]
presented a model based on Periodic Event Scheduling
Problem (PESP) in which all of their parameters,
such as dwell time, headway time, and trip time, are
dynamically considered. Ghoseiri et al. [4] developed
a multi-objective nonlinear model to minimize fuel
consumption and total passenger-time. They found the
Pareto frontier and then used a distance-based method
to �nd the solution. Zhou and Zhong [5] used the
Pareto solution to solve a double-objective model and a
combination of the expected waiting time and the total
travel time as an objective function. A beam search in a
B&B algorithm is proposed to solve the MIP problem.
In another study on multi-objective problems, Ping et
al. [6] proposed a Particle Swarm Optimization (PSO)
for dealing with the total travel time and the variation
of inter departure. Vansteenwegen and Oudheusden [7]
proposed an objective function consisting of di�erent
types of waiting time and the late arrival. Furthermore,
they presented a two-phase algorithm, obtaining an
ideal bu�er time, and then a timetable is created by
using an LP model. Finally, a simulation compares dif-
ferent timetables. Vansteenwegen and Oudheusden [8]
proposed the ideal running time instead of summation
of actual travel and dwell times. Their objective is
based on the delay distribution of trains, the passengers
count, and di�erent types of waiting time and late
arrivals. They built di�erent timetables with a LP
model and a simulation evaluates them. Li et al. [9]
proposed a mixed integer model with a fuzzy multi-
objective function to minimize energy minimization,
carbon emission cost, and total passenger time. The
model considered an improved version of objective
function compared to [4]; in the situation that all
trains are powered by electricity, the proposed model
degenerates to the model proposed in [4].

Zhou and Zhong [10] presented a complicated
B&B algorithm to solve the proposed problem in [5].
They developed three methods for node selection and
proposed some other complicated rules for the branch-
ing process in B&B method. Also, they designed a
Lagrangian Relaxation method and another heuristic
method to �nd a lower bound. Lee and Chen [11]
proposed a heuristic method that provides train path
and timetable simultaneously on mixed single- and
double-track networks. The method has four phases
that iteratively creates and adjusts a timetable. For a
single-line network, Castillo et al. [12] proposed a three-
stage method which decomposes the model to �nd a
solution with the maximum relative time, i.e. the ratio
of travel time to minimum possible travel time, the
minimum sum of the departure time, and the minimum
fuel consumption. In order to solve the problem, they
proposed a bicriteria algorithm to minimize the relative
travel time. Yang et al. [13] proposed a model to
minimize the total passenger trip time, considering the

number of passengers as a stochastic function. They
used the expected value, pessimistic and optimistic
values for the number of passengers and designed a
B&B algorithm to solve the model. Castillo et al. [14]
proposed a bisection method with objective function of
relative travel time and used some heuristic methods to
reduce the number of inactive binary variables in single
track and double track networks. Furthermore, they
proved that the solution of the algorithm is optimal.
Castillo et al. [15] presented a nonlinear model which
considers Alternate Double Single Track (ADST) lines.
Their objective is to minimize the construction cost,
maximum relative travel time of all trains, and the sum
of total relative travel times, such that the obtained
departure times be close to the desired ones. They
linearized the initial model and proposed some binary
reduction.

By the graph approach, Liu and Kozan [16]
modeled the train timetabling problem as a blocking
parallel-machine job shop scheduling problem and in-
troduced an improved Shifting Bottleneck Procedure.
Then, they used an alternative graph to solve the main
problem. Burdett and Kozan [17] introduced a graph
model for parallel rails with linked rails in sidings,
capacitated bu�er, acceleration and deceleration times
which also do not allow unforced idle time. In order to
solve the problem, they used a Constructive Algorithm
(CA), Simulated Annealing (SA), and Local Search
(LS) metaheuristics. Burdett and Kozan [18] addressed
the adjusting of timetables to handle perturbations and
unnecessary multiple overtaking conicts. They used
the disjunctive graph to represent the problem and
used LS and SA to obtain good correction. Burdett
and Kozan [19] considered the timetabling problem as
a jobshop problem and addressed a customized disjunc-
tive graph to construct the timetable. In addition, they
proposed some CA to create feasible solutions. Burdett
and Kozan [20] introduced a disjunctive graph model,
considering trains and sections length, headways and
blocking conditions, nondelay scheduling policy, and
passing loops. They proposed a CA, based on NEH
algorithm for job shop problem, an SA, and LS meth-
ods to create and improve solutions. Caimi et al. [21]
proposed a new model for solving microscopic-scale
train timetabling problems. In their de�ned problem,
stations have multiple lines and gate capacities, and
the arrival and departure times of trains are known.
They proposed a new method for determining large
conict cliques in conict graph and put them in an
ILP model, relaxing strongly the related LP problem.
Liu and Kozan [22] proposed a disjunctive graph, con-
sidering capacitated stations and sidings on single-line
networks, no wait, and blocking properties. A hybrid
algorithm was proposed to construct the feasible train
timetable combined by a LS algorithm, minimizing the
makespan. Furini and Kidd [23] proposed a heuristic
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algorithm using relaxed dynamic programming, based
on the acyclic space-time graph. The algorithm starts
with an ideal timetable and tries to resolve the conicts
between trains. Their model considers single corridor
networks, parallel tracks in the stations, and also the
presence of junctions on the network.

In the category of meta-heuristic methods, Tor-
mos et al. [24] proposed a Genetic Algorithm (GA) for
the PESP that included a guided process to build the
initial population. Jamili et al. [25] proposed a model
to deal with train timetabling in single-rail networks
based on PESP. They also proposed a hybrid algorithm
consisting of SA and PSO. Sha�a et al. [26] proposed a
new robust periodic model based on PESP on a single-
rail network. In their model, station capacity and head-
way constraints were considered. A fuzzy approach
was used to consider the robustness and its trade-o�
with the train delay and the time interval between
departures of trains from the same origin. Also, a SA
was used to solve the problems. In the robust problem
category, Cacchiani and Toth [27] presented a complete
survey on the robust models and their features. Some
new robust research studies are also presented in [28].
Yang et al. [29] proposed a mathematical programming
model, considering total energy consumption and total
traversing time optimization in a railway network with
multiple trains and multiple links in stations. An
integrated GA and simulation are used to obtain an
approximate optimal strategy. Reimann and Leal [30]
proposed a customized Ant Colony Optimization to
minimize the total weighted tardiness in single-track
railways. Xu et al. [31] proposed a Travel Advance
Strategy (TAS) method combined with GA for dealing
with single-track railways. The algorithm searches
for a timetable with the minimal delay ratio, i.e. the
total delay time over the total free-run time. Sun et
al. [32] proposed a model to obtain timetabling on
one-way high speed double-track networks. In order
to solve the model, they proposed an improved GA
and used simulation to analyze the accuracy of the
algorithm. Huang et al. [33] also proposed a GA to
provide the timetable of an urban rail transit system.
The model adjusts the headway to obtain the best
trade-o� between the passenger travel time and energy
consumption with a guaranteed transit capacity.

In a little bit di�erent context, Heydar et al. [34]
proposed a linear formulation of cyclic timetabling
problem for single track railways in which minimization
of cycle length is the objective. Barrena et al. [35]
proposed a train timetabling model which deals with
dynamic demand. Considering dynamic demand for
di�erent routes in di�erent times, they proposed three-
binary models and a branch and cut algorithm to
minimize the total waiting of passengers in stations.

We could not �nd any study representing a linear
mathematical model to obtain timetabling in a network

with parallel unidirectional tracks and limited number
of station's platforms or siding's capacities. In this
way, we propose an approach that models overtaking
decisions at stations/sidings, as opposed to other ap-
proaches which model precedence's (i.e., sequencing)
on single tracks as limited sources. Also, we show that
the problem is NP hard and the real-sized problems
cannot be solved in a reasonable amount of time. In
order to obtain bene�cial solutions in a reasonable
time, we provide some new upper bound and lower
bound rules. By concentrating on these two topics, the
structure of this article is as follows. In Section 2, we
provide the mathematical model. Then, in Section 3,
we propose the upper bound rules; in Section 4, the
lower bound rule is proposed and it is followed by
numerical experiment's result in a real world problem.

2. Problem de�nition

In this section, we de�ne the problem and its assump-
tions, present the notations, and introduce our model.

This study considers a general situation of double
line networks. In all lines and corridors in the network,
there are two parallel tracks, and each track facilitates
unidirectional ow and not bidirectional, i.e. there is no
opposite direction train, which is a common situation
in metro, subway, and high-speed networks; it is of
interest as [36,37] covered some earlier research studies.
Each station or siding can have one or more capacity,
some of which may have no platform for passengers.
Also, in sidings, there is no linked rail between opposite
directions and each direction has its separate sidings.
In addition, overtaking is allowed and trains can only
overtake each other in the siding (passing loops) or in
the stations with more than one platform, i.e. train
routes in stations are not �xed. Moreover, the main
line is the line that connects the stations or siding with
each other. A general view of the siding and main line
is showed in Figure 1.

There may be di�erent types of trains with dif-
ferent speeds and dwell times. The trains may be
freight- or passenger speci�c or any mixture of them.
It is assumed that for each train in each station of the
network, there is minimum and maximum dwell times,
and also travel time between two consecutive stations
or sidings is known. Routes and the dispatching
sequence of trains between stations and sidings are

Figure 1. Main line and siding.
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given. In addition, the travel time between two stations
or sidings is the di�erence between the departure times
of the last station until the arrival time of the current
station. Considering the type of trains and their in-
trinsic nature in metro and high-speed networks, there
is no signi�cant time for acceleration and deceleration
times, but we have considered the minimum travel time
between two stations to include these times. Note that
the considered parameters, e.g. travel time, dispatching
sequence, and dwelling time, are known in any railway
network, and they are the most common features of the
MIP-models for the timetabling problem.

A mathematical model is presented as follows.
In this model, output is the timetable of a railway
network. The most important assumptions of our
model are as follows:

� All parameters of the model are deterministic;

� Each corridor of the network has one line in each
direction;

� The station capacity, which is the number of plat-
forms in the stations, can be any positive integer
number. The same situation exists for sidings;

� Acceleration and deceleration times are considered
in the travel time;

� Number of trains and their routes is given.

2.1. Notation
Throughout the paper, we reserve l to denote line index
in a network, L is the list of all lines, t de�nes train
index, Tl is the list of trains in line l, s is the station
index in each line, and Sl de�nes the total number of
station(s) in line l. Also, q is the next station in line
l, i.e. q = s + 1. Finally, ml denotes the last station
in line l. The major parameters of our problem are as
follows:
SFl;s Minimum headway (safety time)

between two adjacent trains in station
s at line l

SCs Capacity of station s, which is the
number of platform tracks and capacity
of stops

Dt
l;s Minimum dwell time of train t in

station s of line l
�Dt
l;s Maximum dwell time of train t in

station s of line l
T tl;s;q Minimum travel time of train t between

stations s and q(s+ 1) of line l
�T tl;s;q Maximum travel time of train t

between stations s and q(s+ 1) of line l
rl;t;s Earliest start time. Minimum start

time of train t in station s of line l.
M A large positive number

Also, we use these two notations throughout the paper:

	t;t0;q The time interval between the
departure time of train t from station
q and the arrival time of train t0 to this
station

#t;t0;s The time interval between the
departure time of two trains from
station s

For safety reasons, trains are not permitted to
get close to each other in case of collision. Between
departure and arrival of trains in each station or siding,
minimum headway must be satis�ed. Other situations
are: departure of two trains from a station or siding and
arrival of two trains in a station or siding. Stations'
headway is a prede�ned parameter that is inherently
related to geographical and technical characteristics of
each station. In order to identify the decision variables,
�rst, we de�ne the situations where every two trains
may encounter in a station or siding. These situations
are the events that may bring some changes to the
sequence of any two arbitrary trains. With regard
to the situations of the problem, for each two trains,
four di�erent situations can occur. Event 1 de�nes the
situation that train t overtakes train t0 in station s.
In Event 2, train t0 overtakes train t in station s. In
Event 3, train t0 arrives in and departs from station
s after train t. Finally, Event 4 demonstrates the
situation that train t0 arrives in and departs from
station s before train t. In other words, in this event,
train t has overtaken train t0 before station s or is
scheduled before train t0 from the �rst station. Figure 2
shows and clari�es the mentioned situations for trains
t and t0.

By considering these events and situations, the
decision variables are as follows, covering any situation
in a network:
cl;t;s Departure time of the tth train from

station s of line l
sl;t;s Arrival time of the tth train in station

s of line l
xt;t0;s 1 if train t0 overtakes train t in station

s as Events 1 and 2, otherwise 0
x0t;t0;s 1 if train t0 is scheduled after train t in

station s, otherwise 0. This variable
represents the situations of Events 3
and 4.

yt;t0;s 1 if trains t0 and t use station s
simultaneously, otherwise 0.

As the de�nition of decision variables shows,
binary variables will model overtaking decisions in a
double line unidirectional railway network. By this
approach, our decision variables de�ne the sequence of
trains in the network and determine when and which
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Figure 2. The situation of two trains in each event type: (a) Event 1, (b) Event 2, (c) Event 3, and (d) Event 4.

station or siding the trains will overtake each other.
Somehow, this is a di�erent approach compared to the
current models that de�ne precedence and sequencing
on single tracks. With regard to these variables,
constraints of the problem are de�ned as follows:

2.2. Objective function
Our model's aim is to minimize the summation of the
departure time in the last station for all trains, which
is the minimum total travel time as is shown in Eq. (1).

min z =
LX
l=1

TX
t=1

cltml : (1)

This objective function tries to increase the e�-
cacy of the network's infrastructure and also minimize
the travel time. Therefore, it satis�es the criteria of two
main groups in the railway networks, i.e. passengers
and railway owners. It is also a commonly used objec-
tive function in research studies of [3,5,10,12,36,38,39].

2.3. Travel time constraints
The constraints below ensure that the running time of
a train does not violate a given limit of time, which also
de�nes the speed limitation on the line. Furthermore,
they do not allow the running time to drop below
a speci�c amount of time de�ned by the desire of
passengers. For all t 2 Tl, 8l 2 L, and 8s 2 Sl, the
constraints are as follows:

sl;t;s+1 � clts + T t
l;s;q; (2)

sl;t;s+1 � clts + �T tl;s;q: (3)

2.4. Dwell time constraints
The following constraints ensure that the dwell time
of a train does not violate a given limit of time. The
upper and lower bounds must be gathered as real values
for each station and train. Moreover, for trains that
have not been scheduled to stop at a given station,
both bounds are set to zero for that station. For all
t 2 Tl;8l 2 L; and 8s 2 Sl, the constraints are as
follows:

clts � slts +Dt
l;s; (4)

clts � slts + �Dt
l;s: (5)

2.5. Overtaking constraints
The constraints below aim to de�ne the sequence of
trains in each corridor and station and also to deter-
mine the arrival and departure times of trains. Using
the de�ned binary variables, the related constraints
of each event have been de�ned. In Events 3 and 4,
Constraints (6) and (7) ensure that the arrival and
departure times of train t0 be greater than train t if
train t0 is scheduled after train t, and vice versa. Also,
in this situation, Constraint (8) does not allow trains to
overtake each other except in the stations. Constraints
(9) and (10) ensure that the arrival time of train t0
be greater than that of train t and its departure be
lower than that of train t if train t0 is scheduled for the
overtaking of train t. They act the same as description
of Events 1 and 2. Constraint (11) acts similarly to
Constraint (8) and does not allow, in Events 1 and 2
trains, to overtake each other except in the stations.
Constraint (12) ensures that in each station and for
each pair of trains t and t0, exactly one even t can occur.
In order to simplify the notation, we used �l;s(t; t0) to
represent SFl;s�(1�x0t;t0;s)M . For all l 2 L; 8t; t0 2 Tl,
and 8s 2 Sl, the constraints are as follows:

slt0s � slts + �0l;s(t; t0); 8t 6= t0; (6)

clt0s � clts + �0l;s(t; t0); 8t 6= t0; (7)

slt0s � slts + �0l;s(t; t0); s > 1; 8 t 6= t0; (8)

slt0s � slts + �l;s(t; t0); 8t 6= t0; (9)

clts � clt0s + �l;s(t; t0); 8t 6= t0; (10)

slts � slt0s + �l;s(t; t0); s > 1; 8t 6= t0; (11)

x0t0;t;s+x0t;t0;s+xt;t0;s+xt0;t;s = 1; 8t 6= t0: (12)
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2.6. Station capacity constraints
This set of constraints is proposed to guarantee the
maximum capacity constraint of each station or siding.
Constraint (13) assures that in a station with one
capacity, only one train stops in station at any time
(Events 3 and 4). Thus, the arrival time of one train
must be greater than that of another one which results
in the condition that more than one train cannot be
stopped at one moment in the station:

slts � clt0s + �0l;s (t0; t) ;

slt0s � clts+�0l;s (t; t0) ; SCs=1; 8t > t0; (13)�
xt1;t2;s + xt2;t1;s

�
+ (xt1;t3;s + xt3;t1;s) + : : :

+
�
xt1;tSCs+1;s + xtSCs+1;t1;s

�
+ : : :

+
�
xtSCs ;tSCs+1;s + xtSCs+1;tSCs ;s

�
� �(SCs + 1)

2

�
� 1;

8><>:8l 2 L8t1; t2 : : : tSCs+1 2 Tl
8s 2 Sl and SCs > 1

(14)

Constraint (14) considers the capacity constraint
of station s with capacity of SCs for the overtaking of
events (Events 1 and 2). In stations whose capacity is
one, Constraint (13) does not allow for any overtaking,
i.e. the constraint is (xt;t0;s + xt0;t;s) � 0 for all of t 6=
t0 2 Tl and 8s 2 Sl in line l. In stations with one more
capacity, the constraint considers all pair combinations

of three trains (because
�
SCs + 1

2

�
= 3) as:�

xt;t0;s + xt0;t;s
�

+ (xt;t00;s + xt00;t;s)

+(xt0;t00;s + xt00;t0;s) � 2;

for all t 6= t0 6= t00 2 Tl and 8s 2 Sl in line l. This
constraint ensures that at most one train can overtake
another train at each time, i.e. only two trains can stop
in station s each time. To further illustrate the issue,
consider the situation that in station s, which has two
platforms, train t is scheduled to overtake train t0, i.e.
xt0;t;s = 1 and (xt;t0;s + xt0;t;s) = 1 and train t00 is
entering station s. Three situations may occur:

1. Assume that train t00 is scheduled to depart from
station s after train t0. In this situation, there is no
additional overtaking and train t00 may incur some
delay;

2. Assume that without regarding the station capac-
ity, train t00 is scheduled to overtake train t in
station s.

If train t00 overtakes train t, i.e. xt;t00;s = 1
and (xt;t00;s + xt00;t;s) = 1 train t00 arrives later
than trains t and t0 and must depart before them.
In another words, train t00 also has to overtake
train t0, meaning that xt0;t00;s = 1 and (xt00;t0;s +
xt0;t00;s) = 1. So, (xt;t0;s + xt0;t;s) + (xt;t00;s + xt00;t;s)
+(xt0;t00;s+xt00;t0;s) = 3, and considering the RHS of
the constraint, the situation is not allowed and the
assumption is not true. So, Constraint (14) does
not allow for exceeding the capacity of the station;

3. Assume that train t00 is scheduled to overtake train
t0 in station s and train t departs from the station
before arrival of train t00.

If trains t00 and t overtake train t0 in station s,
i.e. xt0;t00;s = 1, (xt00;t0;s + xt0;t00;s) = 1, xt0;t;s = 1,
and (xt;t0;s + xt0;t;s) = 1, the constraint is satis�ed.

With a similar approach to the station with
capacity of SCs, there are (SCs+1)SCs

2 pairs of variables;
on the right-hand side, the number of pairs minus one
is replaced. This set does not allow for violation in
stations' capacity with a larger capacity. Furthermore,
Constraints (15) to (17) consider the station capacity
when the two trains are scheduled with Event 3 or 4:

slt0s � clts + SF l;s � (1� x0t;t0;s)M
�Myt;t0;s; SCs � 2; 8t > t0; (15)

TX
t0;t6=t0

(yt;t0;s + yt0;t;s + xt;t0;s + xt0;t;s)

� SCs � 1; SCs � 2; (16)

yt;t0;s � x0t;t0;s; SCs � 2; 8t > t0: (17)

As mentioned, yt;t0;s is the auxiliary variable to
consider the station capacity in the mentioned events.
Constraints (15) and (17) ensure that the auxiliary
variables can take value when Events 3 and 4 occur.
For instance, in Event 3 where train t is scheduled
before train t0, i.e. x0t;t0;s = 1; yt;t0;s can take value one.
Regarding Constraint (15), if yt;t0;s takes 1, slt0s will
be greater than M ; this means that the trains can stop
simultaneously in station s. The same situations can
be assumed for Event 4. Also, Constraint (16) ensures
that the number of trains that can stop in each station
will not be more than its capacity.

These constraints with continuous time variables
handle the station capacity in each of the four events,
and it is a new formulation in the literature. The cur-
rent papers mostly consider time slotting approach, e.g.
[40], which considers a time horizon for the network's
operation time and discretizes it into some timestamps,
and they also propose some constraints to consider the
station capacity. A similar slot-based scheduling was



3330 A. Oroojlooyjadid and K. Eshghi/Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 3324{3344

used by Dessouky et al. [41] in an integrated bi-level
station layout design and scheduling model.

2.7. Departure time constraint
It is necessary that some trains may have a prede�ned
departure time for some stations. It may occur in the
�rst station of the corridor. For all l 2 L;8t 2 Tl, and
8s 2 Sl, the constraint is as in Eq. (18):

clts � rlts: (18)

Compared to the current models of train
timetabling problem in the literature, our model has
some advantageous points. The �rst feature of our
model is to de�ne event base decision variables and
constraints. These variables make it possible to use
them in decompositions or relaxation algorithms so
that each sub-problem consists of a decision making
problem related to each event. Constraint (12) which
integrates the decision variables allows the occurrence
of only one event and creates a suitable situation for
decomposition. In this situation a di�cult problem
can be decomposed to some simpler sub-problems and
increases the possibility of solving real size problems.

On the other hand, as another bene�t of the
model, planning of the station capacity is simulta-
neously possible in our timetabling model. Con-
straints (14) and (16) make it possible to consider
the capacity of stations and sidings. Most of models
in the literature decompose the problem into two
separate problems. One to de�ne and solve a general
timetable and another to deal with the complex sta-
tion capacity planning problem [2,5,10,12,14,37,42-44].
The station capacity planning problem needs special
attentions, so some research studies and algorithms
in recent years have been dedicated to this �eld of
study [21,45-51]. Based on this point of view, the
proposed model integrates the two models and provides
an integrated answer. Moreover, the new de�nition of
decision variables classi�es the solution space and gives
the possibility of de�ning and removing the areas of
solution space that are not rationally as part of the
optimal solution area. A comprehensive investigation
of this topic will be as follows.

2.8. Complexity analysis
Although the problem is generally considered as a NP-
hard one, almost every paper considers a di�erent
version of the problem. For this reason, we give a
NP-hardness proof for the speci�c problem considered.
Our proof will show that our problem is a reduction
of FFsjrJPCj In order to show the complexity of the
problem, we used a reduction from a exible owshop
model. Our proposed model is a complicated version
of a exible ow-shop model with capacitated bu�er
and some limitations on the job assignment to ma-
chines. According to the de�nition of ow-shop prob-
lem by [52], there are m machines in series and each job

passes each machine in the same route. If the number
of identical machines in at least one stage be greater
than 1, the problem is classi�ed as a Flexible Flow Shop
problem (FFs). Moreover, when machine M in a spe-
ci�c stage is not capable of processing alljobs, Mj de-
�nes this machine eligibility constraint. Finally, if there
is a limited bu�er between the two machines in a way
that when the bu�er is full, the machine is not allowed
to release a new job and the block constraint obligates
the completed job to remain in the previous machine.

To further illustrate the issue, consider the trains
as jobs and the stations as machines in which each
job (train) must pass through machines (stations); as
Zhou and Zhong [10] and Burdett and Kozan [20]
have proposed. Based on the de�nition of ow-shop
problem by Pinedo [52], this problem can be classi�ed
as ow-shop problem with block constraint. Moreover,
the number of platforms in each station or siding
de�nes the capacity of the station or siding that may
be greater than one, so the problem is classi�ed as
a exible ow-shop problem or multi-stage parallel
machine problem [20]. On the other hand, some express
trains are scheduled to not stop in some stations
and the stations also have some speci�c platforms
for non-stopping trains. This situation de�nes the
machine's eligibility constraint. Furthermore, there are
intrinsically some limitations on the start time of each
train. Thus, the problem can be shown as FFsjMJ ; rJ ;
blockj according to the notation of [52]. Since the
problem of FFsjjPCj is NP-hard [53], our problem
is NP-hard. Therefore, it is not possible to solve
large-scale problems in a poly-nominal time and some
policies should be conducted to reduce the complexity
of the problem.

3. Upper bound rules

In this section, we de�ne some rules to e�ciently limit
the number of binary variables and also create e�cient
upper bounds. Binary variables, which increase the
complexity of the problem, are used to identify the se-
quencing and overtaking's details of trains. Therefore,
decreasing the number of binary variables decreases
the number of decisions and make the problem easier
to solve. There exist some studies in order to limit
the number of unnecessary overtaking cases. Burdett
and Kozan [18] introduced some algorithms to identify
and correct some conicts such as multiple overtaking
and compound moves. In their article, they restricted
trains to multiple overtakings, and there is no point
in restricting the general situations of overtaking.
In the following, we propose some general rules to
restrict undesirable overtaking among the trains in a
network. We use trains' parameters in order to de�ne
usefulness or undesirability of overtaking among every
two trains.
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In each railway network, some trains have the
same characteristics such as travel and dwell times. It
is clear that the study of this group of trains can lead
to rules that may relax the binary decision variables
among the similar trains. For example, in a German
railway network, there are eight types of train, such
as Intercity Express (ICE), Regional Bahn (RB) and
S-Bahn (S), and most trains in each group have the
same parameters in the network. Consider two trains
A and B in a group with exactly the same speed and
dwell time parameters in all network stations. The
idea is that overtaking each of these two trains from
each other is not bene�cial. Consider the timetable
in which train A is scheduled to overtake train B
in station s. Because the dwell and travel times of
the two trains are identical, train B has to delay at
the station, and as a result, the objective function
increases. By this idea, we try to expand the simple
rule to the whole of the trains, and we will obtain the
rules that �x unnecessary overtaking binary variables
considering the general situations. In a word, we want
to obtain the situations among every two trains where
occurrence of Events 1 and 2 may result in a delay
in the timetable. We consider two random trains and
the objective functions of the two timetables in order
to �nd the situations and related rules that overtaking
is not bene�cial. We compare the objective functions
of the timetable in which trains go ahead without
overtaking with those of the timetable in which one
train overtakes another. In these investigations, we
assume that there is no deliberate delay. The results
of the investigations can be used in the reduction of
binary variables and the CPU time.

Now, assume two trains t0 and t, which are now
in stations s and q (= s + 1), consecutively, as shown
in Figure 3, in which station q has two platforms. In
Figure 3, the two horizontal lines show the scheduling
of the related stations. Points k and w de�ne the arrival
and departure times of train t in station q, respectively.
The time interval between R and K represents travel
time of train t between two consecutive stations s and q.
Also, the time interval between K and W de�nes the
dwell time of train t in station q.

At �rst, we de�ne two time intervals in order to

Figure 3. The situation of trains t and t0 in stations s
and q.

characterize di�erent situations. We de�ne 	t;t0;q as
the time interval between the departure time of train
t from station q and the arrival time of train t0 to
this station, i.e. 	t;t0;q = Stl0q � Ctlq. Also, #t;t0;s is
the time interval between the departure times of two
trains from station s, i.e. #t;t0;s = Clt0s � Clts. If
	t;t0;q be greater than zero, the overtaking of train t0
from train t in station q is not recommended, because
overtaking will result in a delay for train t. So, the
timetable without overtaking is selected for the station
and trains. Moreover, without loss of generality, we can
assume that #t;t0;s is greater than zero. The mentioned
condition can be written as follows:

If 0 < 	t;t0;q and 0 < #t;t0;s then xt;t0;s = 0:

In some situations, this rule does not give the op-
timal solution, although it �xes lots of binary variables.
To investigate further, we analyze the situation where
the mentioned condition is not satis�ed, i.e. two trains
are simultaneously in the station and one train can
overtake another, meaning that 	t;t0;q is lower than
zero. This condition is met when the time interval
between the arrival and departure of two trains in
station q is lower than the required station safety time.
The �rst derived condition is:

 tt0q � 0 � Slt0q � Cltq + SFl;q; (19)

Clt0s+T t
0
l;s;q � Slt0q � (Clts+T tl:s;q+Dt

l;q)+SFl;q;
(20)

� Clt0s�Clts � T tl;s;q�T t0l;s;q+Dt
l;q+SFl;q: (21)

In Eq. (20), it is obvious that the departure time
of train t from station q is equal to its departure time
from station s plus its travel time between the two
stations and its dwell time in station q, i.e. Cltq =
Clts + T tl;s;q +Dt

l;q. Also, as another fact, the arrival
time of train t0 to station q is greater than its departure
time from station s and the travel time between the two
stations, i.e. Slt0q � Clt0s + T t

0
l;s;q. On the other hand,

it is obvious that #t;t0;s is greater than dwell time of
train t0 in station s plus safety time of this station, i.e.,
Dt0

l;s + SF l;s � Clt0s � Clts. Thus, we can write:

Dt0
l;s + SF l;s � Ct0s � Cts
� T tl;s;q � T t0l;s;q +Dt

l;q + SFl;q: (22)

The derived condition in Eq. (22) describes the
situation where the two trains are simultaneously in
station q, so that overtaking may be bene�cial, and we
will investigate it later on. On the other hand, if the
condition in Eq. (22) is not met (like the situation that
is shown in Figure 3), overtaking train t0 from train t
in station q results at least in Dt0

l;s +SF l;s� (T tl;s;q �
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T t
0
l;s;q+Dt

l;q+SF l;q) obligatory delay for train t. This
situation causes the increasing of objective function
and a grasp vision Constraint (23) can be added to
the problem under the following conditions:

8 2 L; 8s; q 2 Sl; 8t 6= t0 2 Tl;
Dt0

l;s + SF l;s > T tl;s;q � T t0l;s;q +Dt
l;q + SFl;q;

and the constraint is as follows that forbids overtaking
two trains in station s:

xt;t0;s � 0: (23)

In a speci�c condition, the added constraint
brings the optimal solution as follows:

Proposition 1: Suppose that there is a railway
network with three stations and no opposite direction
trains. Furthermore, there are two consecutive trains,
t and t0, that in the �rst station, train t precedes train
t0. Train t will �nish its path �rst if #t;t0;1 is greater
than 	t;t0;2, i.e. the time interval between the departure
times of the two trains in the �rst station (#t;t0;1) is
greater than the time interval between the arrival time
of train t0 to the second station and the departure time
of train t from the second station (	t;t0;2).

Proof: As described in the proposition, there are
three stations and the only station where overtaking is
possible is the second station. Moreover, as described
in the proposition, the condition in Eq. (22) is not
satis�ed. If train t0 overtakes train t in the second
station, as shown in Eq. (22), the objective function at
least increases by Dt0

l;s + SF l;s � (T tl;s;q � (T t
0
l;s;q +

Dt
l;q + SFl;q). So, the optimal route is the current

route where train t ends its route �rst.
On the other hand, we consider the situation

that the condition in Eq. (22) is met, i.e. 	t;t0;q < 0
and 0 < #t;t0;s; in a word, Dt0

l;s + SF l;s � T tl;s;q �
T t
0
l;s;q +Dt

l;q +SFl;q. In this situation, train t0 arrives
in station q before train t departs from the station.
In order to simplify the investigation and also make
the equations more clear, we try to classify di�erent
circumstances and then check their conditions. As

the �rst classi�cation factor, we consider the relation
between 	t;t0;q and SFl;q. In the situation where
Eq. (22) is valid, we consider the condition that j	t;t0;qj
is lower than the station's safety time, i.e. 	t;t0;q <
SF l;q, so train t0 will be delayed until the safety time
is met. With regard to this condition, two di�erent
situations in which the safety time can/cannot be
satis�ed will be discussed. In order to obtain the
relation between 	t;t0;q and SFl;q more clearly, we use
equation  t;t0;q = Clt0s + T t

0
l;s;q � Clts � T tl;s;q which

describes the time interval between the arrival times of
the two trains to station q, and according to inequality,
Dt0

l;s + SF l;s � Ct0s � Cts is written as  t;t0;q =
SFl;s+Dt0

l;s+T t
0
l;s;q�T tl;s;q. So, the �rst classi�cation

can be written as SFl;s+Dt0
l;s+T t

0
l;s;q�T tl;s;q � SFl;q

or SFl;s +Dt0
l;s + T t

0
l;s;q � T tl;s;q > SFl;q.

Moreover, as the second classi�cation factor, we
consider the situation where train t0 overtakes train t
in station q which causes scheduled delays for train t.
In another situation where there is not any scheduled
delay for train t, the time interval in which train t
stops in station q is greater than the required safety
time for train t0 to enter station q (SF l;q) plus its
dwell time in that station (Dt0

l;q) plus another required
safety time (SF l;q) after train t0 departs from station
q. So, SFl;q +Dt0

l;q +SFl;q � Dt
l;q and SFl;q +Dt0

l;q +
SFl;q < Dt

l;q are the two classi�cations. According to
these two classi�cations, four di�erent conditions are
obtained, and their characteristics and assumptions are
summarized in Eq. (24). Also, one example from each
of them is shown in Figure 4. For all l 2 L; 8t 6=
t0 2 Tl, and 8s; q 2 Sl; the conditions are calculated as
shown in Box I.

Similar to Proposition 1, for each condition,
we try to �nd the situations where overtaking is
not bene�cial. So, we should compare the objective
functions of the two timetables that, �rstly, train t0
overtakes train t and, secondly, the situation where
no overtaking occurs. In these comparisons, the aim
is to �nd the relation of the parameters in a way that
overtaking by a grasp view results in increasing of the
objective function.

Therefore, we obtain the objective function of
the timetable in which train t arrives in and departs

Dt0
l;s+SF l;s � T tl;s;q�T t0l;s;q+Dt

l;q+SFl;q

8>>>><>>>>:
SFl;s+Dt0

l;s+T
t0
l;s;q�T tl;s;q�SFl;q

(
Dt0

l;q+2SFl;q�Dt
l;q(1)

Dt0
l;q+2SFl;q>Dt

l;q(2)

SFl;s+Dt0
l;s+T

t0
l;s;q�T tl;s;q�SFl;q

(
Dt0

l;q+2SFl;q�Dt
l;q(3)

Dt0
l;q+2SFl;q � Dt

l;q(4)
(24)

Box I
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Figure 4. Four conditions in obtaining upper-bound (a), (b), (c), and (d), respectively, de�ne the �rst, second, third, and
fourth de�ned conditions.

from stations �rst. We will use this amount in each
of the four conditions in order to make comparisons.
Then, we calculate the objective function in each of the
mentioned classi�ed conditions in a way that train t0
overtakes train t in station q. These objective functions
will be used in the mentioned comparison in order to
obtain some heuristic rules. In the following three
equations, we calculate the objective function of the
no-overtaking situation.

Cltq = Clts + T tl;s;q +Dt
l;q; (25)

Clt0q = Clts + (Clt0s � Clts) + T t
0
l;s;q

+
�
T tl;s;q � T t0l;s;q +Dt

l;q + SFl;q

� �Clt0s � Clts��+Dt0
l;q; (26)

Cltq + Clt0q = 2Clts + 2T tl;s;q + 2Dt
l;q

+ SFl;q +Dt0
l;q: (27)

Eqs. (25) and (26) respectively show the departure
times of trains t and t0 from station q, and Eq. (27) is
the summation of the two departure times. In Eq. (25),
Cltq = Clts + T tl;s;q +Dt

l;q de�nes the departure time
of train t from station q without any delay. In Eq. (26),
the departure time of train t0 consists of the departure
time from station s, the travel time between the two
stations, the amount of time that train t0 must be
delayed until train t departs from station q, i.e. T tl;s;q�
T t
0
l;s;q + Dt

l;q + SFl;q � (Clt0s � Clts) and its dwell
time in station q. The scheduled delay amount was
obtained in Eq. (22). As shown in Eq. (27), the result

is Cltq +Clt0q = 2Clts + 2T tl;s;q + 2Dt
l;q +SFl;q +Dt0

l;q
and will be used later for the comparisons.

On the other hand, we have to calculate the objec-
tive function of the timetable where overtaking occurs
for each of the mentioned conditions. Regarding the
�rst set of assumptions in Eq. (24), the departure time
of the two trains is calculated in the situation where
train t0 overtakes train t in station q. The departure
times of trains t, t0 are shown in Eqs. (28) and (29),
respectively, and the objective function is as Eq. (30).
In order to clarify the origin of the equations, the
elements of each departure time are described below:

Departure time of train t = its arrival time to
station q + safety time of station q + dwell time of
train t0 in station q + safety time of station;

Departure time of train t0 = its departure time
from station s + travel time among two stations s and
q + obligatory delay to insure the safety time of station
q + dwell time of train t0 in station q.

Cltq =
�
Clts + T tl;s;q

�
+ SFl;q +Dt0

l;q + SFl;q; (28)

Clt0q =
�
Clts +

�
Clt0s � Clts��+

�
T t
0
l;s;q + SFl;q

� (Clt0s + T t
0
l;s;q � Clts � T tl;s;q��; (29)

Cltq + Clt0q = 2Clts + 2T tl;s;q + 3SFl;q + 2Dt0
l;q: (30)

By comparing Eqs. (27) and (30), Eq. (32) shows
the relation of parameters in which overtaking is
not recommended and the objective function of the
timetable with overtaking is greater than the one
without overtaking. Eq. (31) shows the details of the
comparison:
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2Clts+2T tl;s;q + 2Dt
l;q + SFl;q +Dt0

l;q

� 2Clts + 2T tl;s;q + 3SFl;q + 2Dt0
l;q; (31)

2Dt
l;q � Dt0

l;q + 2SFl;q: (32)

Thus, in the circumstance where the set of as-
sumptions of the �rst condition is true and inequal-
ity (32) is valid, we can propose that overtaking
is not a good decision and we recommend adding
Constraint (33) to the problem under the following
conditions:

8t 6= t0 2 Tl; 8l 2 L; 8s; q 2 Sl;
Dt0

l;s + SF l;s � T tl;s;q � T t0l;s;q +Dt
l;q + SFl;q;

SFl;s +Dt0
l;s + T t

0
l;s;q � T tl;s;q � SFl;q;

2SFl;q +Dt0
l;q � Dt

l;q;

2Dt
l;q � 2SFl;q +Dt0

l;q;

and the constraint is in the following which forbids the
overtaking of two trains in station s:

xt;t0;s � 0: (33)

By a similar approach, the derived equation in
condition (2) is Dt0

l;q 6 0, 0 � Dt0
l;q + SFl;q in

Condition (3), and Dt
l;q � Dt0

l;q in Condition (4).
Related constraints are described in Eqs. (34) to (36),
respectively. For all l 2 L, 8t 6= t0 2 Tl, 8s; q 2 Sl and
in the condition where the parameter of the problem
satis�es Dt0

l;s + SF l;s � T tl;s;q � T t0l;s;q +Dt
l;q + SFl;q

the constraints are as follows:

xt;t0;s � 0; SFl;s +Dt0
l;s + T t

0
l;s;q � T tl;s;q � SFl;q;

2SFl;q +Dt0
l;q < Dt

l;q; Dj
l;q � 0; (34)

xt;t0;s � 0; SFl;s +Dt0
l;s + T t

0
l;s;q � T tl;s;q > SFl;q;

2SFl;q +Dt0
l;q � Dt

l;q; 0 � Dt0
l;q + SFl;q; (35)

xt;t0;s � 0; SFl;s +Dt0
l;s + T t

0
l;s;q � T tl;s;q > SFl;q;

2SFl;q +Dt0
l;q < Dt

l;q; Dt
l;q � Dt0

l;q: (36)

As stated before, these rules are able to �x
some binary variables. Thus, by the reduction of
binary variables, a solution in a shorter time can be
obtained; however, there is no guarantee about its
optimality and it can act as an upper bound for the
problem. In addition, if we consider the trains in a

group and that they have the same travel and dwell
times, phrase T l;i;s;s+1 � T l;j;s;s+1 will relax and the
mentioned conditions for each constraint will simplify.
Furthermore, the dwell times for most of the stations
in a network are equal and can be relaxed from some of
the constraints. Only in the stations where there is a
crossing point of two or more lines, dwell time is slightly
di�erent from those of other stations. In addition,
the safety time, which is based on the geographical
speci�cations of a station and the line, is usually equal
for stations. Thus, the mentioned constraints are
simpli�ed for most trains and stations so that they are
able to decrease the complexity of the problem.

4. Lower bound

In this section, we present a Lagrangian Relaxation
(LR) lower bound algorithm to estimate a powerful
lower bound of the objective function. The Lagrangian
Relaxation algorithm is one of the most e�cient algo-
rithms, obtaining lower bound. In this algorithm, com-
plex constraints are relaxed from the set of constraints
and are added to the objective function with a penalty
multiplier. Selecting the relaxed constraints with a
non-zero integrality gap and updating the multiplier of
relaxed constraint are of high importance [54]. Here,
the overtaking constraints and capacity-related con-
straints increase the complexity of the problem. The bi-
nary decision variables are the elements which increase
the complexity of the constraints. Constraint (12)
binds all the binary decision variables, and it seems
that it is the most di�cult constraint in the current
set. Thus, Constraint (12), which integrates the events
together, is the best candidate, satis�es the mentioned
criteria, and should be selected so that the problem
can be e�ciently relaxed. Considering the selected
constraint, the objective function of LR model is as
follows:

min z=
LX
l=1

TX
t=1

cltm +
X
l2LE

X
t2Tl

X
t02Tl;t6=t0

X
s2Sl

ukl;t;t0;s(x
00
t;t0;s+x0t;t0;s+xt;t0;s+xt0;t;s�1); (37)

where ukl;t;t0;s represents the Lagrangian multipliers and
the sub-gradient method updates them because of its
e�cacy [55-57]. Other constraints, except Constraint
(12), are embedded in the LR model. The multipliers
are initially interpreted as the price (marginal cost) of
the relaxed constraint in a feasible solution. Because
the constraint is in the equality form, the multipliers
are always zero in a feasible solution. The multipliers
are iteratively adjusted using the result of the model in
a way that helps to improve the amount of the lower
bound. Therefore, in each step, the amount of x00t;t0;s +
x0t;t0;s + xt;t0;s + xt0;t;s � 1 is calculated and called as
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l;t;t0;s, and it is used to update the multipliers. Eqs.
(38) to (40) demonstrate this process as a sub-gradient
method:

l;t;t0;s = x00t;t0;s + x0t;t0;s + xt;t0;s + xt0;t;s � 1 (38)

Step Sizek

�� (UB�Objectivek)P
l2LE

P
t2Tl

P
t02Tl;t 6=t0

P
s2Sl(2

l;t;t0;s)
;
(39)

uk+1
l;t;t0;s = ukl;t;t0;s + l;t;t0;s � Step Sizek; (40)

where k is the iteration index used in the LR model,
UB is the objective function of a feasible solution,
\Objectivek" is the amount of the objective function
of the LR model in iteration k, and � is a parameter
by an initial value as 2. Eq. (38) de�nes the amount in
which the relaxed constraint is not satis�ed. Eq. (39)
calculates the amount of the step-size parameter in
iteration k and Eq. (40) updates the amount of La-
grangian multipliers for the next iteration. Using these
parameters, the LR iteratively updates the parameters
to obtain the optimal solution. The related procedure
is shown in Figure 5.

At the �rst step, in order to de�ne UB, which is
used in Eq. (39), we �nd a feasible solution in which
trains go through the stations with a lexicographical
order and without any overtaking. The objective
function of this solution multiplied by 1.05 de�nes UB.
Moreover, we get the objective function of the problem
with relaxed binary variables. The objective function
of this Relaxed Mixed Integer Problem (RMIP) will be
used as a benchmark for calculating the improvement of
the LR model. After the �rst iteration, the parameters
and multipliers will update and the next iteration will
start until one of these conditions is met:

� max
l; t; t0; s

�
uk+1
l;t;t0;s � ukl;t;t0;s

�
< 0:005;

� Number of iterations exceeds 100.

Moreover, in each step, if the objective function

of LR model does not increase, the amount of � will be
halved, which helps it to increase the lower bound.

5. Experimental results

In order to demonstrate the computational e�ciency
of the mathematical programming model and the
proposed upper and lower bounds' rules, a series of
numerical experiments are illustrated. The following
case study is based on the real parameters of Tehran
Metro line 5 between Tehran and Golshahr with 12
stations and 40 kilometers length, in which its general
view is magni�ed in Figure 6. The actual Tehran-
Golshahr line is a double-tracked line, in which every
11-minute trains run from Tehran to Golshahr, and
vice versa. There are some express trains that stop
only in three stations and have no dwell time in other
stations. The travel time for the express trains is about
32 minutes and it is 52 minutes for other trains.

Each station has at least one platform in which
the loading and unloading of passengers occur. Except
for the �rst and last stations, the main line of each
station has no platform for passengers to board or
alight from trains. Trains can overtake each other in
the sidings or in the stations.

There are di�erent headways in the network in a
day. The network headway in peak hours alters and
the minimum amount of the departure time between
two trains reaches 480 seconds. Regarding the com-
plexity of timetabling in the peak-hours, we consider
the related parameters of the peak-hours to obtain a
timetable.

The computational time of train timetabling algo-
rithms can be a�ected by a number of siding and sta-
tion's capacities, number of trains, number of stations
and sidings, and the variability of trains' parameters.
In the following numerical experiments, we focus on the
impact of the variability of station capacity, trains and
number of trains, since these factors mainly inuence
the structure of a train timetable and the resulting
number of possible solutions.

Figure 5. Lagrangian relaxation algorithm procedure.
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Figure 6. General view of the Tehran Metro and Line 5.

However, the real-world problem used in this
study only o�ers two types of trains, and a �xed
number of trains that creates a simple problem to solve.
To allow a comprehensive and systematic assessment,
we construct random instances to evaluate the perfor-
mance of the proposed algorithm. In this way, we in-
creased the capacity of some middle stations. The sta-
tions were chosen randomly and the number of facilities
increased randomly up to three. As another factor for
increasing the complexity of the problem, we increased
the variability of the travel time for some trains in a
way that we increased the travel time up to 100% for
all stations for 50% of randomly selected trains.

In the following experiments, consciousness and
authenticity of the model, the e�ectiveness of the
heuristic upper bound rules, and the quality of the pro-
posed Lagrangian Relaxation method are investigated.
In these investigations, �ve problems with di�erent
number of trains have been solved with the proposed
models. We have used GAMS workstation and CPLEX
solver to solve the problems on a PC equipped with 3
GHz sixteen cores processor and 18 GB of RAM.

Figure 7 illustrates the resulting optimal
timetable for nine trains for the case of Tehran-
Golshahr line. As shown in the Atmosfer station, three
trains 3, 4, and 5 are in the station simultaneously; in
stations Vardavard and Garmdareh, train 3 overtakes
trains 5 and 4, and the other general constraints of
the problem are satis�ed.

Figure 7. Time-distance graph for 12 trains and six last
stations.

5.1. Performance of upper-bound rules
In order to analyze the �ve introduced upper-bound
rules, we solved each problem by GAMS using the
CPLEX solver, as an e�cient and exact solver, and the
optimal solutions were gathered as a benchmark. The
optimal solutions are shown in Table 1. The quality of
the rules is measured by percentage gap between the
obtained upper bound and the corresponding optimal
value. In addition, improvement in CPU time is
the second most important criterion for analyzing the
obtained rules.

In order to analyze the e�ectiveness of upper-
bound rules, the obtained constraints (Constraints
(23), (33)-(36)) are embedded in the problem. This
problem is named as Upper-Bound Rule Problem
(UBRP) in the results and hereafter. The objective
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Table 1. The comparison result of CPLEX and UBRP.

Number of trains
6 7 8 9 10 11 12

Optimal solution (CPLEX) Objective 63343 67683 70399 75133 78480 83410 86845
CPU time 4.02 24.38 79.3 254.75 4526.35 92314 4000084

UBRP Objective 63343 67683 70399 75133 78480 83410 86845
CPU time 2.25 9.58 43.23 127.3 1234 5796.75 84276

Optimality gap 0 0 0 0 0 0 |
Improvement in CPU Time 44% 61% 45% 50% 73% 94% 79%

function and CPU time of UBRP is also shown in
Table 1. As shown in Table 1, in all discussed problems,
when �ve upper-bound rules are added to the set of
constraints, the objective function of the problem is
equal to the optimal solution, which is obtained by
the CPLEX solver. Thus, there is no optimality gap
between the solutions. This shows that no area of
optimal solution space is removed by these rules. On
the other hand, the results show that the CPU time
is considerably reduced. This reduction in CPU time
is the result of reduction in the number of branchings
and also increasing the speed at which UBRP closes the
opened nodes in the Branch and Bound tree. For more
explanation on Branch and Bound, see [52]. These are
the bene�ts of the proposed rules which are described
as follows:

I. Reduction in the number of branchings on the
nodes. In order to clarify, consider a node that
the CPLEX solver branches on to create the two
new sub-problems. The branching is on the value
of variable xt;t0;s whose value is �xed in the UBRP.
Therefore, in UBRP, the branching on this variable
does not occur. If the value of variable xt;t0;s in
CPLEX solver is integer, the node in the UBRP is
also feasible, and compared to the CPLEX solver,
the tree size from that node is halved. Also, the
node is infeasible in UBRP if the value of xt;t0;s
is not integer, and so the tree does not expand
more. Thus, by �xing binary variables, the number
of branching decreases, and as a result, the CPU
time decreases.

II. Reduction of time required to fathom the opened
nodes. Fixing the binary variables decreases the
required time to fathom the opened nodes. After
a node opens, regarding the rules, the node is
infeasible or some of their binary variables are
known. Thus, in UBRP, the nodes are fathomed
in shorter time compared to CPLEX. This process
increases the speed of Branch and Bound algorithm
and more nodes can be investigated in less time.

For more investigation, three diagrams of \num-
ber of opened nodes versus duality gap", \CPU time
versus duality gap", and \CPU time versus number
of opened nodes" are shown in Figures 8, 9, and 10,
respectively. The duality gap in these �gures refers to
the gap between the upper and lower bounds, which
can be obtained at each step of Branch and Bound
algorithm.

As shown in Figure 8, in all problems with
optimality gap equal to zero, the number of opened
nodes in UBRP is lower than the CPLEX solver (as
bene�t I). Also, as shown in Figure 9, the duality
in UBRP converges to zero quicker than in CPLEX.
This is because more nodes are opened and fathomed
as bene�t II in shorter time, as mentioned earlier.
As mentioned in bene�t II, �xing binary variables in-
creases the speed at which the nodes are fathomed, i.e.
a higher number of nodes are fathomed at equal time.
For more investigations, we proposed a measurement
criterion as �= CPU time/Opened nodes that measures
the speed at which the opened nodes close. This
criterion measures the impact of the proposed rules on
the node fathoming speed. The amount of � for each
problem is shown in Table 2.

As shown in Table 2, criterion � is reduced for all
problems. In all problems, in order to reach a given
duality gap, UBRP opens fewer nodes in a shorter
period of time (except the problem with 12 trains
stopped in 400000 seconds, and results of CPLEX are
not known). The reason for this is as described in
bene�t I, showing that the proposed rules reduce the
number of branching.

In order to clarify the improvement, consider the
problem with nine trains. In this problem, in order
to reach the duality gap about 0.5%, CPLEX opened
305000 nodes in 206 seconds; however, the UBRP
opened 160000 nodes (48% of opened nodes in CPLEX)
in 107 seconds (equal to 51% of CPLEX CPU time).
From another view point, in the problem with eleven
trains, UBRP opened 3057644 nodes after about 3775
seconds of solving process and the gap is about 0.99%
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Figure 8. Number of opened nodes versus duality gap for the optimal solution and UBRP.

Table 2. The amount of � and number of binary variables for each problem.

Number of trains
6 7 8 9 10 11 12

CPLEX

CPU time (second) 4.02 24.38 79.3 254.75 4526.4 92314 400084
Number of opened nodes 13864 34226 133384 400422 3097165 9672652 13630809
CPU time/ opened nodes (�) 0.0019 0.0015 0.0016 0.0166 0.0481 0.0095 0.0294
Number of discrete variables 1212 1659 2176 2763 3420 4147 4944

UBRP

CPU time (second) 2.25 9.58 43.23 127.3 1234 5796.75 84276.3
Number of opened nodes 6356 18956 76532 204396 1835564 4890725 30505371
CPU time/ opened nodes (�) 0.0004 0.0005 0.0006 0.0006 0.0007 0.0012 0.0028
Number of discrete variables 1138 1552 2044 2568 3181 3833 4568

Improvement
percentage in �

82% 67% 64% 96% 99% 88% 91%

versus 6008691 opened nodes (is equal 51% of UBRP)
in 52923 seconds (is equal 7.1%, i.e., 1 to 14 of CPLEX)
and 0.98% gap in CPLEX.

On the other hand, in an equal period of time,
UBRP opens more nodes because of improvement in �.
Figure 11 shows \CPU time versus number of opened

nodes". As shown, in all problems except the problem
with eight trains, in an equal period of time, UBRP
opens more nodes and creates a smaller duality gap
in that period of time. For example, in the problem
with ten trains, after about 1290 seconds of solving
process, UBRP opened 719791 nodes and the gap is
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Figure 9. CPU time versus duality gap in the optimal solution and UBRP.

about 0.74% versus 151211 opened nodes (equal to 21%
of UBRP) and 1.13% gap in CPLEX (1.52 times greater
than UBRP).

In sum, we can conclude that UBRP opens more
nodes in an equal period of time while achieving a
better duality gap and also the required number of the
opened nodes to obtain the optimal solution is lower
than CPLEX.

Last but not least, the number of discrete vari-
ables in CPLEX and UBRP is shown Figure 11.

Figure 11 also shows the trend of discrete vari-
ables in UBRP and CPLEX. It is obvious that the
two trends go ahead, while the di�erence between the
numbers of discrete variables increases. In other words,
by increasing the number of trains, the number of
relaxed discrete variables increases and that engenders
the reduction of CPU time. Regarding the �gure, the
improvements in CPU time can be explained more
clearly.

5.2. Lower bound results
In order to investigate the results of Lagrangian Relax-

ation algorithm for a lower-bound, we used the same
problem, which is described in the last section. The
measurement criteria are the duality gap among the
optimal value, the lower bound, and the CPU time. In
order to obtain UB, a feasible solution is obtained as
the mentioned procedure. Our algorithm starts with
the result of the Relaxed Mixed Integer Programing
(RMIP) model as a base for LR comparison and tries to
improve it. Maximum number of the iterations in our
investigation is set to 25. In our investigations, there is
only a little amount of improvement after iteration 15
and the algorithm tries to prove the optimality of the
solution.

Results of LR model in Table 3 show that it has
achieved the optimal value of problem and their values
are the same as those reported by CPLEX in Table 1.
The achievement stipulates the idea that the relaxed
constraint has been correctly selected.

To investigate further the quality of the algo-
rithm, the trend of the lower bound in iterations of
the LR model for problems on 6 and 7 trains is shown
in Figure 12.
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Figure 10. CPU time versus number of opened nodes in the optimal solution and UBRP.

Table 3. Results of LR model.

Number of trains

5 6 7

LR model

Best bound 59078 63343 67683

Number of iteration 6 7 22

CPU time > 3:35 > 4:02 > 24:38

Considering the fact that the selected relaxed
constraint is in the form of equation and binds all the
de�ned events together, it seems to be a very powerful
constraint. As Figure 12 shows, the LR algorithm
iteratively improves the lower bound until it gets the
optimal solution. In addition, because the relaxed
constraint is in an equality form, there is no uctuation
in the sign of l;t;t0;s, which results in a straightforward
trend of improvement without uctuation.

Nonetheless, the CPU time as another quality
measurement criterion has not improved. In order to
improve the CPU time, we de�ned another model using
Constraint (16), which is a Special Ordered Set (SOS)

Figure 11. Number of discrete variables versus number
of trains for CPLEX and UBRP.

of constraints and it considers the platforms capacity.
The same experimental analysis was performed on
that model. The result showed a uctuation without
any improving trend. Also, as another model, we
relaxed Constraints (2) and (3). The idea was from
the problem of Seoul metropolitan Railway network
that [37] relaxed the constraint which connects the
stations to each other. The result of their analysis
was hopeful and encouraging; nevertheless, the model
of the connecting constraints relaxed (Constraints (2)
and (3)) does not result in an admirable solution in our
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Figure 12. Trend of the Lagrangian relaxation lower bound: (a) For 5 trains; and (b) for 6 trains.

case. The result again showed a uctuation without
any improved trend.

6. Conclusion

In this study, a new MIP model for the railway
scheduling problem is proposed that utilizes events of
the railway networks. The general speci�cations and
restrictions of railway networks are considered and also
the station capacity constraints are embedded in the
timetabling problem simultaneously. The model is
NP-hard and is reduced to a ow-shop problem with
block, machine assignment restriction, and start-time
restrictions. Therefore, solving large-scale problems in
an acceptable amount of time is not possible.

In order to reduce CPU time, some upper-bound
rules based on the analysis of model's parameters have
been presented. These rules consider the relation
among the parameters of the model and try to elim-
inate some events which is not rationally wise to do.
The results have added �ve constraints to the master
problem, and experimental results testify that CPU
time has been reduced up to 94% and the optimal
solution also has been achieved. Furthermore, the
analysis of the opened nodes shows that the rules can
fathom more nodes in shorter time, which is indicative
of its e�ciency. These rules can be used on any other
models by mapping the related variables.

By relaxing the constraint which ensures that
only one of the events occurs each time, a Lagrangian
Relaxation algorithm is proposed. In order to up-
date the Lagrangian multipliers, we used the step-size
method. Numerical analysis revealed the accuracy and
e�ciency of the proposed algorithm in a way that the
optimal solution was achieved in all of the samples
after about 20 iterations. Although the solving time
of LR model is higher than the main problem, it
induces some hope to improve the processing time by
focusing more on the proposed Lagrangian Relaxation
algorithm.

Our on-going research has focused on heuristic
methods in order to �nd upper bounds. With regard to
the new de�nition of decision variables, further research

can be done on implementation of a decomposition
method as Dantzig-Wolfe algorithm, benders decom-
position or branch and price. Also, integrating the
proposed rule in this article by a pricing algorithm will
be worthwhile to use them in a Bisection algorithm.
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