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Abstract. This paper considers a stochastic location-allocation problem for a capacitated
bike sharing system (S-L&A-CBSS), in which bike demand is uncertain. To tackle this
uncertainty, a Sample Average Approximation (SAA) method is used. Because this
problem is an NP-hard problem, a hybrid greedy/evolutionary algorithm based on Genetic
Algorithm (GA) and Particle Swarm Optimization (PSO), namely greedy GA-PSO, is
embedded in the SAA method in order to solve the given large-sized problems. The
performance of the proposed hybrid algorithm is tested by a number of numerical examples
and used for empirical test based on Tehran business zone. Furthermore, the associated
results show its e�ciency in comparison to an exact solution method in solving small-sized
problems. Finally, the conclusion is provided.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

In recent years, bike sharing systems have received
great focus as a sustainable, economically cost-
e�ective, and healthy transportation alternative by
researchers and urban transport planners to reduce air
pollution, intensive tra�c jams, and carbon emissions.
Vogel et al. [1] and Bordagaray et al. [2] analyzed data
from bike sharing station to explore activity patterns
within these systems. Ando et al. [3] analyzed the
possibility of extension and the necessary conditions
for bicycle rental system in a local city of Japan. A
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journey advisor application was presented by Yoon et
al. [4] for serving travelers to navigate the city using
the existing bike sharing system. Lathia et al. [5]
used data analysis and mining techniques to consider
the e�ects of the user-access policy modi�cation on
London's bicycle hire scheme. Bordagaray et al. [6]
proposed a methodology to model the quality perceived
by public-bicycle-system users in order to identify
the important variables and their signi�cance for the
overall evaluation. Through executing a pilot project
at the University of Tennessee, Knoxville campus, Ji et
al. [7] presented the operational notions and system
necessities of a completely automated electric bike
sharing system. Jappinen et al. [8] modeled a shared
bike system and measured its e�ect on public transport
travel times. They concluded that bicycle sharing
systems can complete the traditional public transport
system, and they could increase the competitiveness
and attractiveness of urban sustainable transportation.
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In 2014, e�ect of bike sharing system on car use was
considered by Fishman et al. [9].

Lin and Yang [10] expressed that station locations
and capacities have a special and strategic role in
the success of bike sharing system; therefore, some
scholarly studies have been dedicated to this mat-
ter. Lin and Yang [10] developed a model to �nd
station locations and traveler paths to travel from
origins to destinations by riding bikes rented from
bike sharing system. Then, Lin et al. [11] extended
the previous research by adding a decision variable
related to the bicycle stock level at station. In the
last two mentioned papers, authors used expected
demand value to tackle demand uncertainty. Romero et
al. [12] presented a methodology for optimizing station
locations with minimum social cost. In their approach,
interactions between private and public transportation
systems are considered. Garcia-Palomares et al. [13]
determined demand and its characteristics, station
locations, and their capacity through a GIS-based
method and location-allocation models.

On the other hand, considering that demand
uncertainty is an important subject to consider in
transportation modeling [14], as shown in Table 1,
demand is considered as an uncertain parameter in
some urban transportation studies. Urban public
transportation, like other transportation systems, is

facing uncertain demands; therefore, it is necessary to
consider demand uncertainty in bike sharing systems
as a part of the urban transportation.

To the best of the authors' knowledge, there
is no study to consider a bike sharing system with
stochastic demands using a hybrid evolutionary algo-
rithm in stochastic optimization as a soft-computing
approach. Hence, in these systems, strategic decisions,
such as location and capacity, are made usually under
stochastic environment; therefore, addressing this issue
can be an interesting subject deserving to be studied
more. One of the well{known methods which deals
with stochastic nature of optimization problems is the
Sample Average Approximation (SAA).

Ahmed et al. [21] developed a solution strategy
based on sample average approximation for stochastic
programs with integer recourse. The sample aver-
age approximation method was used by Kleywegt
et al. [22] to optimize stochastic discrete optimiza-
tion problems. Wei and Real� [23] used the SAA
method with bounding techniques and used it for
solving stochastic mixed integer nonlinear program-
ming problems. By combining the sample average
approximation with dual decomposition, Sch�utz et
al. [24] proposed a method for solving stochastic
supply chain design problem. Contreras et al. [25]
integrated the sample average approximation method

Table 1. Summary of some studies for transportation problem with uncertain demands.

Authors Objective Solution method Problem

Chen and Yang [15] Minimizing the total
travel time

Genetic algorithm Transportation network
design problem

Ukkusuri et al. [16] Minimizing the total
travel time

Genetic algorithm Tra�c network
design problem

Hua et al. [17] Minimizing the total system
cost of the worst case

Sensitivity analysis combining
with the methods of

sequence average algorithm

Urban tra�c network
design problem

Saez et al. [18] Minimizing waiting
and in-vehicle ride times

Genetic algorithm Bus scheduling problem

Huang et al. [19] Minimizing the total cost
of the transit system

Genetic algorithm Bus frequencies problem

Liu et al. [14]
Minimizing the

performance of the
overall tra�c network

Genetic algorithm Transportation network
design problem

Cao et al. [20] Minimizing total travel
time and cost

Genetic algorithm
combined with the

Frank-Wolfe algorithm

Transportation network
design problem
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with a Benders decomposition algorithm by Monte{
Carlo simulation{based algorithm and used it to
solve stochastic uncapacitated hub location problems.
Through integrating PSO algorithm within the sam-
ple average approximation method, Aydin and Mu-
rat [26] generated a new hybrid algorithm for solving
the capacitated reliable facility location problems e�-
ciently. The mentioned studies con�rm that most of
network designs apply new soft{computing methods
to solve applicable problems more e�ciently under

more realistic conditions such as stochastic environ-
ment.

Since using SAA requires solving the problem
repeatedly and based on NP-hardness problem, the
exact methods are not suitable for this purpose. Meta-
heuristic algorithms are used in transportation prob-
lems frequently, and some of them are presented in
Table 2; therefore, these algorithms can be used here
as well.

The outline of this paper is as follows: In Sec-

Table 2. Summary of some studies for transportation problem using evolutionary algorithms.

Authors Objective Solution method Problem

Mohtashami et al. [27]

Minimizing the make-
span, transportation

cost, and the number of
truck trips

NSGA-II
MOPSO

Cross-docking
scheduling problem

Martinez-Salazar et al. [28]

Minimizing the total
operation cost
Balancing of

workloads

SSPMO*
NSGA-II

Transportation
location routing

problem

Cao et al. [29]
Minimizing

transportation costs and
unsatis�ed demands

Di�erential evolution
algorithm

Vehicle routing problem

Lot� and
Tavakkoli-Moghaddam [30]

Total variable and
�xed cost

Genetic algorithm using
priority-based encoding

Fixed charge
transportation problem

Bolat et al. [31] Minimizing the
average journey time

Particle swarm optimization Car-call allocation problem

Yaghini et al. [32] Minimizing the
total cost

Hybrid algorithm
of simplex method and

simulated annealing
metaheuristic

Network design problem

Lin et al. [33]
Minimizing operating

cost
Maximizing customer satisfaction

Simulated annealing algorithm Vehicle routing problem

Yu et al. [34]

Maximizing service
quality

Minimizing operational
costs

Parallel genetic algorithm Bus route headway problem

Ghoseiri and
Nadjari [35]

Minimizing the costs Multi-objective ant
colony optimization

Multi-objective
shortest path problem

Musa et al. [36] Minimizing the total
transportation cost

Ant colony optimization
Transportation

problem of cross-
docking network

*Scatter tabu search procedure for non-linear multi-objective optimization.
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tion 2, two mathematical models for a bike sharing sys-
tem with the aforementioned properties are developed.
In Section 3, a greedy hybrid evolutionary algorithm is
presented in a sample average approximation procedure
structure. Usefulness of soft{computing approach for
the mentioned bike sharing system is discussed as well.
In Section 4, some illustrative examples are considered,
followed by a conclusion in the last section.

2. Model formulation

2.1. Problem description
To de�ne the problem, consider the following scenario:
Assume that a group of travelers is going to travel
from a set of origins (o) to a set of destinations (g)
using a bike sharing system consisting of a set of bike
stations (S) with limited capacity. Passengers walk
from their origins to the nearest bike stations and
receive a bicycle, and then ride it to another station
close to their destinations; after delivering the bike,
they walk to the �nal destination. Each station has
a speci�ed covering radius, and if the stations serve
passengers out of their covering radius, a penalty cost
is imposed on the bike sharing system. Some demands
may not be satis�ed since the bike sharing system is
capacitated, while bike shortage in stations is allowable
with paying shortage penalty cost.

The success of bike sharing systems depends on
some decisions about station locations, capacities, and
traveling paths which should be made by the system
planner. There are candidate locations where some of
them should be selected for establishing bike stations.
Also, their capacities and traveling paths should be
de�ned. These decisions are made so that the total
cost of the bike sharing system, consisting of traveling,
station and lane construction, shortage and holding
costs, should be minimized.

In order to ensure that a suitable model for the
mentioned purpose is provided, it is required to make
real{life circumstances available. Due to the uncer-
tainty of travelers' demands, the location{allocation of
the bike sharing system should be considered under
uncertain environment. In most of studies, expected
value of uncertain demand is considered during the
modeling of the bike sharing system [10,11,37], but in
this study, we try to consider uncertainty nature of
demands.

2.2. Mathematical model for the stochastic
BSS location{allocation problem

Unlike classical models, such as [10,11], in the pre-
sented mathematical model, the bike sharing system
is designed with considering bike station capacities,
inventory decisions, and allowable shortage. More-
over, demands are taken as stochastic and a hybrid
metaheuristic algorithm embedded with the stochastic

nature is developed for optimizing the model. Indices,
parameters, decision variables, and the model are
presented as follows:

Indices
o 2 O Origins
g 2 G Destinations
s; n 2 S Potential pick-up/drop-o� stations
i 2 I Scenario

Input parameters
Rogi ith scenario of yearly mean of travel

demand from origin o to destination d
N Number of days per year (used to

compute daily demand)
h Annual bike holding cost
r Bikes replenishment period at bike

stations (in days)
m Bike shortage cost.
dos Distance from origin o to station n
dsn Distance from station s to station n
dng Distance from station n to destination

g
fs Fixed cost of locating a station at s
Esn Construction cost of a bike lane from

station s to n; it is equal to 0 if there
already exists a bike lane between
stations s and n

Cos 1 if a bike station located at candidate
site s cannot cover demand at origin o,
0 otherwise

C 0ng 1 if a station located at candidate site
n cannot cover demand at destination
g, 0 otherwise

u1 Unit traveling cost on links from
origins to bike stations per person

u2 Unit traveling cost by bike on links
from pick-up station to drop{o� station
per person

u3 Unit traveling cost on links from bike
stations to destinations per person

k Unit penalty cost for uncovered
demands at origins and destinations

a Cost for adding a bike dock to a station
Us Upper bound of capacity of station s
Pi Probability that demand under

scenario i is realized;

Decision variables
Xs 1 if bike station s is opened, 0 otherwise
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Bosngi 1 if the demand from origin o to
destination g under scenario i travels
by bike through stations s and n,
respectively, 0 otherwise
Number of bikes at station s under
scenario

Lsni 1 if a bike lane is required to be
connected between bike stations s and
n under scenario i, 0 otherwise

Based on the above{mentioned notations, the
mathematical model is formulated as follows:

MinZ =
X
s2S

(fsXs) + Pi

(X
s2S

aXsvsi

+
X
s2S

X
n2S

EsnLsni+
X
s2S

h
2
vsi

+ u1
X
o2O

X
s2S

dos
X
n2S

X
g2G

BosngiRogi

+ u2
X
s2S

X
n2S

dsn
X
o2O

X
g2G

BosngiRogi

+ u3
X
n2S

X
g2G

dng
X
o2O

X
s2S

BosngiRogi

+ k

0@X
o2O

X
s2S

Cos
X
n2S

X
g2G

BosngiRogi

+
X
g2G

X
n2S

C 0ng
X
s2S

X
o2O

BosngiRogi

1A
+ N

X
s2S

mAsi

)
; (1)

subject to:X
s2S

X
n2S 6=s

Bosngi = 1; 8o 2 O; 8g 2 G; 8i 2 I; (2)

2Lsni � Xs +Xn; 8s2S; 8n2S 6= s; 8i2I; (3)

Lssi = 0; 8s 2 S; (4)

Bosngi � Lsni
8o 2 O; 8s 2 S; 8n 2 S 6= s; 8g 2 G; 8i 2 I; (5)

vsi � UsXs; 8s 2 S; 8i 2 I; (6)

Asi � r
N

X
o2O

X
g2G

X
n2S

BosngiRogi � vsi;

8s 2 S;8i 2 I; (7)

Bosngi = f0; 1g ;
8o 2 O; 8s 2 S; 8n 2 S 6= s; 8g 2 G; 8i 2 I; (8)

Xs = f0; 1g ; 8s 2 S; (9)

Lsni = f0; 1g ; 8s 2 S; 8n 2 S; 8i 2 I; (10)

vsi � 0; 8s 2 S;8i 2 I; (11)

Asi � 0; 8s 2 S; 8i 2 I: (12)

In objective function (Eq. (1)), the total cost is
calculated. The �rst three terms are related to strategic
decisions costs. The �rst one includes construction cost
of active stations and their assigned bike docks; the
second one calculates lane construction costs; in the
third one, bike holding costs are calculated. Other
remaining terms of objective function are related to
the operational decisions. Terms 4-6 contain traveling
costs between origins to stations, pair of stations, and
stations to destinations, respectively. The next term
includes the total penalty cost for demands assigned to
stations which are not inside their covering radius. The
total penalty cost of missed demands is calculated in
the last term.

Constraint (2) guarantees that a pair of origin
and destination should be connected through only one
path. Constraints (3) and (4) assure that a lane can be
constructed only between di�erent established stations.
Constraint (5) guarantees that only an established lane
can be assigned to a path. Constraint (6) limits allo-
cated capacity of each active station to its upper bound.
Constraints (7) and (12) determine the shortage in the
case of higher allocated demands than each station
capacity. Constraints (8)-(12) de�ne variable types.

By increasing the problem dimensions, the num-
ber of variables and constraints will increase nonlin-
early. For a model with n1 origins, n2 destinations,
and m candidate bike station locations, the model will
have 2m + m2 (n1 � n2 + 1) variables and 2n1 � n2 �
m(m � 1) + m2 constraints. As a result, a model for
the usual problem may not be solved by commercial
optimization software in a reasonable computational
time; therefore, a hybrid meta-heuristic algorithm is
proposed in this paper to solve the problem. Moreover,
in some cases, there are some stochastic parameters
without a known distribution function; therefore, a
sampling plan equipped by a hybrid algorithm is
presented in the next section.
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3. The proposed SAA method equipped by a
hybrid greedy genetic-PSO algorithm

In real cases, there are usually unlimited scenarios for
bike demands in each station, and they have stochastic
nature while they do not have a known distribution
function. Because there are unlimited scenarios, it is
not possible to calculate expected value of demands,
and so a sampling plan should be employed to consider
some possible scenarios. By considering the previous
studies, the SAA method approximates the best num-
ber of needed scenarios and it is selected for dealing
with the location-allocation modeling of stochastic bike
sharing. Due to Np-hardness of the model and a large
number of calculations in the SAA method, we need to
use an evolutionary algorithm for this purpose. In the
following, we describe the SAA method, and then the
hybrid evolutionary algorithm, used inside the SAA, is
presented briey.

SAA is a stochastic method based on a sam-
pling used broadly for solving stochastic optimiza-
tion problems with an unmanageably large number
of samples [21-26]. In this method, the objective
function problem is divided into two stages. In the
�rst stage, there are strategic variables; in the second
stage, there are stochastic variables. N samples are
selected randomly; the second stage is repeated for N
samples. Because N scenarios are not large, there is no
need for much computation. The model is solved M
times for di�erent N samples in each iteration to �nd
the best value of the needed scenarios. The average of
objective function values in M iterations will obtain
the lower bound of the problem. Then, one of the
strategic variables' values in the mentioned iterations
is selected; for di�erent N samples in each iteration
to �nd the best value of the needed scenarios. The
average of objective function values in M iterations
will obtain the lower bound of the problem. Then,
one of the strategic variables' values in the mentioned
iterations is selected; to understand how favorable
this answer is, the model is solved just once for
N 0 (N � N 0) samples again in the second stage, while
the strategic variables are �xed based on the selected
solution from the previous stage, and the obtained
value from this phase can be an upper bound for the
problem [21]. Thus, we can say that in this method,
the calculations are done only with N scenarios, but
the results are reliable because they are repeated for
M iterations. As mentioned before, each optimization
of the SAA method should be done by a hybrid
metaheuristic algorithm. However, the proposed SAA
sampling plan equipped by the hybrid greedy GA-
PSO algorithm is mentioned in the following pseudo-
code:

1. Set initial sample sizes N and N 0 and set the
number of iterations M ;

2. For m = 1; : : : 0;M , do steps (a) through (d):

(a) Generate a sample of size N ;
(b) Solve the SAA problem by the greedy GA PSO

and save the optimal objective V̂ mN and the
solution vector of bike station locations L̂mN ;

(c) Generate a sample of size N 0;
(d) Fix the bike station location variable based on

L̂mN and solve the SAA problem by the greedy
GA PSO for N 0 samples and save the optimal
objective V̂ mN .

3. Estimate optimality gap as follows:

gm = V̂ mN 0 �

0BBB@
MP
m�1

V̂ mN

M

1CCCA :

4. Select the best solution.

The proposed hybrid algorithm inside the SAA
sampling method is depicted with more details in
Figure 1; Figure 2 explains the procedure in summary.
In the next subsection, more details about solution
representation, used operators, and main stages of the
algorithm are described.

3.1. The proposed algorithms for the
optimization stage of the solution method

As mentioned before, in each iteration of the SAA
scheme, we need to optimize a problem, so a hybrid
algorithm is developed. It consists of two phases. In
the �rst one, location decisions are made by the genetic
algorithm, and the lane construction and path decisions
are made by a greedy search, while in the second
stage, the decisions of bike capacities of station are
made by the PSO algorithm according to the previous
stage decisions. In the following, more details of the
mentioned stages are provided:

a) The �rst phase of the algorithm: In the �rst
phase, Genetic Algorithm (GA) is used. Its solution
contains three parts. The �rst one determines sta-
tion locations called the location sub-chromosome
Figure 3. The second and third ones de�ne demand
nodes allocation and lane construction decisions,
respectively. During the genetic algorithm oper-
ators of crossover, mutation, insertion, swap and
inversion are used for diversifying and intensifying
new solutions as the �rst part of the solution (as
depicted in Figures 4-8), while other parts are
determined by a greedy search algorithm.

Di�erent percentages (i.e. 70, 40, 10, 60,
and 10%) of the old generation cases are selected
randomly for the crossover, mutation, swap, rever-
sion, and insertion operators, respectively; after
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Figure 1. Detailed owchart of the greedy GA{PSO algorithm during the sampling scheme for S{L&A{CBSS problem.
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Figure 2. Summarized owchart of the greedy GA{PSO algorithm during the sampling scheme for S{L&A{CBSS
problem.

Figure 3. Schematic representation of the location
sub-chromosome for S{L&A{CBSS problem.

Figure 4. Reversion operator procedure for the greedy
GA-PSO.

Figure 5. Insertion operator procedure for the greedy
GA-PSO.

Figure 6. Swap operator procedure for the greedy
GA-PSO.

Figure 7. Mutation operator procedure for the greedy
GA-PSO.

producing new solutions by the mentioned op-
erations, the best solutions are selected for the
new generation. All possible paths for all pairs
of origin and destination through active stations
are considered, and then the shortest path is
selected in the path sub-chromosomes (Figure 9)



E. Ali-Askari et al./Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 2567{2580 2575

Figure 8. Crossover operator procedure for the greedy GA-PSO.

Figure 9. Schematic representation of the path sub-chromosomes related to the best routs for the S-L&A-CBSS problem.

Figure 10. Schematic representation of the constructed
lanes sub-chromosome for the S-L&A-CBSS problem.

and necessary bike lanes will be activated based on
the allocation structure shown in the constructed
lanes sub-chromosome (Figure 10). After that, for
de�ning station capacities and calculating objective
function's value of each chromosome, the second
phase should be followed;

b) The second phase of the algorithm: The
chromosome de�ned in the �rst phase is used as an
input of the second phase of the algorithm. Then,
capacities of active stations are chosen based on
the input chromosome to minimize the total cost.
For this purpose, with respect to the relatively
continuous demand variable nature, a PSO-based
algorithm is used for �nding the optimum active
station capacities in this phase. Each particle

Figure 11. Particles for the second phase of the greedy
GA-PSO in the S-L&A-CBSS problem.

represents active station capacities. As an example,
a particle with capacities of three active stations is
depicted in Figure 11.

4. Illustrative examples

In this section, we will present some data instances with
di�erent dimensions for location-allocation problem of
bike sharing system with stochastic demands to demon-
strate the characteristics of the proposed algorithm
performance compared to the exact method.

4.1. Data settings
Some instances have been generated randomly to eval-
uate the performance of algorithm as well as model
validity. As an example, for the smallest example
with 3 origins, 3 destinations, and 6 candidate locations
for establishing bike stations, we generated di�erent
demand scenarios of each origin-destination pair based
on a uniform distribution between 0.8 and 1.2 mul-
tiplied by a basic demand table (Table 3). The rest
of the parameters of S-L&A-CBSS problem instances
are presented in Tables 4 and 5. Other instances with
di�erent dimensions are generated based on the same
procedure.
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Table 3. Basic table of the bike demands between origins
and destinations for the �rst instance.

g1 g2 g3

o1 14050 28940 30070
o2 29800 9977 25910
o3 31020 44990 49260

Table 4. Fixed construction cost of stations for the �rst
instance.

Stations fs
s1 5005480
s2 2894000
s3 5285200
s4 4100000
s5 5001900
s6 4936100

Table 5. Other parameter values for the S-L&A-CBSS
problem instances.

Parameters Value Parameters Value
N 365 Cos 300 meter
h 200 per year C0gn 300 meter
r 1 day u1 0.2 per meter
m 50 per demand u2 0.04 per meter
dos U(100, 2600) u3 0.2 per meter
dsn U(150, 2700) p 300 per demand
dng U(5, 2700) a 1000 per bike
Esn 300 per meter Us 200 docks

For assessing this algorithm in real case dimen-
sions, a part of Tehran business zone is selected.
Origin and destination nodes were selected close to the
public and important centers such as shopping centers,
governmental o�ces, museums, public library, bus and
metro stations, etc.

4.2. The proposed algorithm and exact method
results

In this section, the proposed algorithm and exact
method were used to assess the e�ciency of the
proposed algorithm. We carried out the test on all
examples by GAMS 24.1.2 software and we tested
their di�erent MIP solvers for solving examples; the
result shows that the BARON solver has more e�-
cient performance; therefore, the results obtained by
this solver are selected as a measure for considering
the proposed algorithm performance. The proposed
evolutionary algorithm was implemented in MATLAB
R2013a software. All examples were implemented on a
PC under Windows 7 (64 bit) with Intel(R) Core(TM)
i7, 2670QMCPU @ 2.20GHz and 6 GB RAM. Table 6
presents the solution quality of the test results of

Figure 12. Objective function values calculated by the
greedy GA-PSO algorithm and the exact method.

Figure 13. Gaps between lower and upper bounds
achieved by the greedy GA-PSO algorithm and the exact
method.

the proposed algorithm and the exact method. For
considering stochastic nature of the problem, we set
M = 10, N = 20, and N 0 = 2000 in the hybrid
SAA-based algorithm. The �nal results are reported in
Table 6 for all of the instances. The lower and upper
bounds are calculated according to the number of N or
N 0 scenarios. The mentioned bounds are reported in
the table for each instance. The gap column shows that
gaps between lower and upper bounds are divided into
the upper bounds multiplied by 100. The comparison
of the results con�rms that the proposed algorithm
behaves similarly to the exact solution method in small-
sized instances, while the exact method is ine�cient in
�nding the lower and upper bounds of the problem by
increasing the problem size, as illustrated in Figures 12
and 13. By comparing the results achieved by both
methods, it is clear that the proposed algorithm is more
e�cient than the exact method for the S-L&A-CBSS
problem.

The computational times of the proposed algo-
rithm and the exact method have been compared, and
the results are depicted in Figure 14. It con�rms that
by increasing the size of S-L&A-CBSS problem, the
proposed algorithm is more e�cient than exact solution
approaches. As presented in Figure 14, the compu-
tational time increases with an increasing number of
problem dimensions while this increase is linear in the
proposed algorithm and is nearly exponential for the
exact method; therefore, for solving location-allocation
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Table 6. Comparison of results for the SAA based greedy GA-PSO algorithm and exact solution in both solution quality
and computational time for the S-L&A-CBSS problem in di�erent instances.

Exp.a
No. of
origins

No. of
destination

No. of
potential
stations

N=N 0 Method
Objective value e+7

M

1 2 3 4 5 6 7 8 9 10

#1 3 3 6

N
SAA-GA-PSO 3.53 3.51 3.52 3.53 3.53 3.54 3.53 3.52 3.53 3.53

Exact 3.53 3.51 3.52 3.53 3.53 3.56 3.53 3.52 3.53 3.53

N 0 SAA-GA-PSO 3.53 3.53 3.53 3.53 3.53 3.53 3.53 3.53 3.53 3.53

Exact 3.53 3.53 3.53 3.53 3.53 3.55 3.53 3.53 3.53 3.53

#2 4 4 8

N
SAA-GA-PSO 9.32 9.38 9.34 9.33 9.34 9.35 9.30 9.35 9.38 9.34

Exact 9.37 9.35 9.37 9.37 9.35 9.34 9.32 9.32 9.34 9.33

N 0 SAA-GA-PSO 9.35 9.35 9.35 9.35 9.35 9.35 9.35 9. 35 9.35 9.35

Exact 9.35 9.35 9.35 9.35 9.35 9.35 9.35 9.35 9.35 9.35

#3 5 5 10

N
SAA-GA-PSO 1.30 1.30 1.30 1.30 1.30 1.30 1.29 1.30 1.30 1.30

Exact 1.31 1.32 1.32 1.30 1.31 1.31 1.31 1.31 1.32 1.31

N 0 SAA-GA-PSO 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30

Exact 1.31 1.31 1.32 1.30 1.31 1.31 1.31 1.31 1.31 1.31

#4 6 6 12

N
SAA-GA-PSO 1.80 1.80 1.81 1.79 1.80 1.81 1.79 1.80 1.80 1.79

Exact 1.81 1.81 1.82 1.80 1.80 1.81 1.81 1.81 1.81 1.80

N 0 SAA-GA-PSO 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80

Exact 1.81 1.81 1.81 1.81 1.81 1.81 1.81 1.81 1.81 1.81

#5 7 7 13

N
SAA-GA-PSO 2.27 2.28 2.28 2.28 2.28 2.28 2.27 2.28 2.28 2.27

Exact 5.46 5.31 3.36 3.37 5.48 2.29 5.46 3.37 5.50 2.27

N 0 SAA-GA-PSO 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28

Exact 3.90 3.95 2.43 2.43 3.90 2.28 3.90 2.43 3.89 2.27

#6 20 18 30

N
SAA-GA-PSO 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74

Exact { { { { { { { { { {

N 0 SAA-GA-PSO 1.74 1.75 1.74 1.74 1.75 1.74 1.74 1.74 1.74 1.74

Exact { { { { { { { { { {

Exp.a No. of
origins

No. of
destinations

No. of
potential
stations

SAA-GA-PSO Exact

U bound L bound Gap% Time
(s)

U bound L bound Gap% Time
(s)

#1 3 3 6 3.53E+07 3.53E+07 0.0016 933 3.53E+07 3.53E+07 0.0015 69

#2 4 4 8 9.35E+07 9.34E+07 0.0003 1999 9.35E+07 9.35E+07 0.0001 170

#3 5 5 10 1.30E+08 1.30E+08 0.0002 3829 1.31E+08 1.31E+08 0.0002 2162

#4 6 6 12 1.80E+08 1.80E+08 0.0013 5858 1.81E+08 1.81E+08 0.0013 11274

#5 7 7 13 2.28E+08 2.28E+08 0.0007 6719 3.14E+08 4.19E+08 -0.3343 12388

#6 20 18 30 1.74E+09 1.74E+09 0.0008 19905 { { { {
aExp.: Example.
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Figure 14. The di�erence between the computational
times of the greedy GA-PSO algorithm and the exact
method.

problems of bike sharing system with usual sizes, the
exact method loses its e�ectiveness in practice, and
then it is needed to be replaced with another algorithm
such as the hybrid greedy GA-PSO algorithm.

5. Sensitivity analysis

We performed the sensitivity analysis on the greedy
GA-PSO algorithm with respect to the number of sce-
narios (N) and iterations (M). Moreover, a sensitivity
analysis was performed to evaluate the e�ect of the
bike shortage cost on the model behavior. Figure 15
presents change of the gap by increasing of number of
scenarios (N) in di�erent levels of M . As illustrated in
the mentioned �gure, the gap is decreased by increasing
N . However, the decreasing slope is higher for small
values of M .

To evaluate the model performance, another sen-
sitivity analysis was performed. The most important
factor in the model was the bike shortage cost, while
customers cannot receive the bike sharing system ser-
vice due to the shortage. By increasing the shortage
cost, we expected to have a more sensitive behavior
of the model to the customer demands. By di�erent
experiments with di�erent shortage cost values, we
observed that the model tends to have a higher gap
between lower and upper bounds with increasing the

Figure 15. E�ect of the number of scenarios on the gap
between lower and upper bounds.

Figure 16. E�ect of the shortage cost on the gap
between lower and upper bounds.

shortage cost as depicted in Figure 16. Due to the
increasing demand sensitivity while it has stochastic
nature, the results can be con�rmed. The mentioned
experiment can show reasonable behavior of the pro-
posed model.

6. Summary and concluding remarks

Using the bike sharing system in cooperation with other
public transportation systems is an alternative trans-
portation paradigm that would reduce air pollution,
intensive tra�c jams, and carbon emissions. However,
the success of such systems depends on �nding the
optimum locations for the bike stations in under real-
world environment in which there are demand uncer-
tainties. In this paper, a location-allocation model,
which includes capacity decisions, was presented and
the SAA method was used to tackle uncertainties of the
problem. Because of the NP-hardness of the problem,
the exact methods were not practical for the real-sized
problems; therefore, a hybrid greedy/evolutionary al-
gorithm based on genetic algorithm and particle swarm
optimization was developed. Di�erent analyses con-
�rmed the validity of the proposed model as well as
the e�ciency of the hybrid algorithm. The model can
be extended by considering di�erent stochastic demand
patterns for bikes and docks simultaneously in which
bike stations in di�erent times of days will be faced with
di�erent demand patterns. Moreover, the eet balance
of the BSS in uncertain environment and using large-
scale optimization techniques can be another direction
for the future study. Finally, due to possibility for
the bike-sharing problems to face many objectives,
considering the problem in such an environment will
be an interesting subject for more studies.
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