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Abstract. The main contribution and novelty of this paper is proposing a more e�cient
mathematical model for integrated lot-sizing and scheduling in a multi-product multi-
period capacitated exible ow shop with sequence-dependent setups. A new approach
for modeling the problem has been proposed and its complexity has been compared with
former models. In comparison to the former models, fewer continuous and binary variables
and constraints of the proposed model make it easy to solve. Comparison between the
new model and the former models proves the superiority of the proposed model. Due to
complexity of the problem, three mixed-integer programming based heuristics, all based on
iterative resolutions of reduced-size MIPs and rolling horizon, have been implemented to
solve the model. To evaluate the performance of the proposed model and solution method,
problems of di�erent scales have been studied. The used algorithms search the solution
space for both lot-sizing and scheduling and �nd a combination of production planning
and scheduling that is feasible and close to optimum. Computational results show that
HA2 is superior for this problem and can �nd good quality solution to it in a reasonable
computational time. Also, sensitivity analysis is used to clarify the problem and ensure
suitability of the proposed model.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Every organization needs to provide high quality ser-
vices and low prices. Lack of attention to each of
these parameters weakens the competition ability of
organizations and causes them to lose their life. The
factors inuencing the quality and price of services
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and goods determine the production rate and the time
of services. Companies should ful�ll customer orders
on time and if orders are not ful�lled on time, they
lose a lot of pro�t and for achieving this purpose, lot-
sizing and scheduling are very essential. Lot-sizing
and scheduling are a part of the operative production
planning system. Lot-sizing problem is considered as
an input to scheduling problem and these problems
are closely related to each other. In lot sizing, a
lot shows the quantity of an item produced on a
machine continuously without interruption. The aim
of scheduling is to determine the sequence of operations
that are performed on a machine [1,2].

Production planning and scheduling are the most
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important issues of the production industries, which
have a considerable inuence on the productivity of
the production systems. In traditional scheduling
problems, the production operations are considered
regardless of detailed scheduling decisions. It is very
important to identify that scheduling and lot-sizing are
not independent and they should be integrated and
determined simultaneously. In our paper, we address
joint lot-sizing and scheduling in a multi-product multi-
period capacitated exible ow shop manufacturing
system with sequence-dependent setups. As you know,
exible ow shop is one of the modern manufacturing
systems fairly common in exible manufacturing and
process industry. This problem has many applications
in assembly workshops such as automobile assembly
lines [3], automotive parts manufacturing industry,
assembly lines of household electric appliances, assem-
bling workshop in an auto body plant, tile industry [4],
printed circuit board manufacturing system [5], etc.
For example, automobile assembly lines consist of
determining lot-sizes and sequences of automobiles,
such as buses, trucks, and cars, to be assembled.

Since Wagner and Whithin [6] published their
seminal paper on lot-sizing and scheduling problems in
1958, they have remained an active area of research
for contributors. After presenting this basic paper,
researchers have done a lot of studies to formulate and
provide e�cient solution algorithms for lot-sizing and
scheduling problems.

The models presented for lot-sizing and schedul-
ing are classi�ed into small-bucket and big-bucket prob-
lems [7]. \Big-Bucket" problems have long time periods
in which several products can be manufactured and
\Small-Bucket" problems break the planning horizon
into smaller time periods, which limit the number of
items that can be produced in a single period. Thus,
lot-sizing and scheduling decisions can be made simul-
taneously using these models. The interested reader to
small-bucket problems is referred to Tempelmeier and
Buschkuhl [8] for further information.

Buschk�uhl et al. [9] reviewed the studies over
the past four decades on Multi-Level Capacitated Lot-
Sizing Problems (MLCLSP). Small-bucket problems
for multi-level production environment include Multi-
Level Discrete Lot-Sizing and Scheduling Problem
(MLDLSP) [10], Multi-Level Proportional Lot Sizing
and Scheduling Problem (MLPLSP) [11,12]. MLDLSP
and MLPLSP models enable simultaneous lot-sizing
and scheduling, but limit the number of products
that can be produced in a period. The Multi-Level
Capacitated Lot-Sizing Problem (MLCLSP) is a big-
bucket problem in which several products can be
manufactured in a given period, but it cannot deter-
mine lot-sizes and schedules simultaneously. Fandel
and Stammen-Hegene [1] proposed Multi-Level General
Lot-Sizing and Scheduling Problem (MLGLSP) based

on two-level time structure [13] and tried to integrate
the advantages of MLPLSP and MLCLSP. MLGLSP
enables simultaneous lot-sizing and scheduling for
multi-product multi-level job shop production. Due
to the high computational complexity of the model,
only very-small-size problems with a low number of
products and periods can be solved optimally. Pon-
nambalam and Mohan Reddy [14] proposed a hybrid
search algorithm by combining genetic algorithm and
simulated annealing to minimize the maximum comple-
tion time of tasks and maintenance and overtime costs
for lot-sizing problems and sequence. As mentioned,
Fandel and Stammen-Hegene [1] studied simultaneous
lot-sizing and scheduling problem for multi-product
multi-level production system to minimize sequence-
dependent setup cost, inventory cost, production cost,
and the cost to maintain the condition of setups.
Toledo et al. [15] addressed the Synchronized and
Integrated Two-Level Lot-sizing and Scheduling Prob-
lem (SITLSP). They proposed a mathematical model
to formulate the problem and used an optimization
package to solve a set of instances for this problem
based on the data provided by a soft drink company.

Integrated lot-sizing and scheduling in a ca-
pacitated ow shop environment with sequence-
dependent setups has been considered by Moham-
madi et al. [16,17] and Ramezanian et al. [2,18-20].
Mohammadi et al. [16,17] proposed a mathematical
formulation and Mixed-Integer Programming (MIP)-
based solution methods for the problem. Mohammadi
et al. [21] presented an algorithmic approach to solve
large-size instances of the problem. Mohammadi et
al. [22] used a genetic algorithm to solve their model
for simultaneous lot-sizing and scheduling problem in
the permutation ow shop with sequence-dependent
setup. Ramezanian et al. [2] proposed a more e�cient
mathematical model and MIP-based heuristics for the
problem of integrating lot-sizing and scheduling with
sequence-dependent setups in ow shop environment.
Ramezanian et al. [18,19] considered multi-product
and multi-period integrated lot-sizing and scheduling
problem for multi-stage environments with new opera-
tion conditions, machine unavailability, and operation
overlapping, simultaneously. Later, Ramezanian and
Saidi-Mehrabad [20] studied the mentioned problem
with uncertain processing times and uncertain demand
of various products. They implemented a hybrid
simulated annealing and �rey algorithm to solve the
problem.

Mohammadi et al. [16,17,21,22] and Ramezanian
et al. [2,18-20] assumed that there is one machine that
performs all the processing for each stage. Recently,
Mohammadi [23] and Mohammadi and Jafari [24]
ignored this limiting assumption. They assumed that
at least one of the stages must have more than one
machine. This extension transformed the ow shop
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into a exible one. A exible ow shop is one of
the most usual production systems in manufacturing
discrete parts that can be considered as a general-
ization of the ow shop and the parallel machine
environments. This production environment involves
serially arranged work centers where at least one of
the production stages must have parallel machines.
Products have the same sequence of operations in
all stages [21,23]. Mohammadi [23] used the gen-
eralized model proposed by Fandel and Stammen-
Hegene [1] to formulate simultaneous lot-sizing and
scheduling in exible ow shop. In his approach,
every planning period was decomposed into smaller
periods so that in each of the micro-periods, a prod-
uct was manufactured. Due to the large number
of decision variables and constraints, this approach
drastically increased the computational complexity of
the problem. A more e�cient method that was
presented by Mohammadi and Jafari [23] to formulate
the problem came out from developing the model-
ing approach, using an arti�cial setup concept of
Clark [25] and Clark and Clark [26], which assumed
that during every planning period, N (number of
products) setups occurred. But, as it is obvious, this
presumption also increases the computational com-
plexity of the problem. Babaei et al. [27] studied
simultaneous lot-sizing and scheduling in ow shop
with sequence-dependent setup, setup carry over, and
backlogging. They developed a genetic algorithm to
solve the problem. Urrutia et al. [28] investigated
multi-item multi-period multi-resource single-level lot-
sizing and scheduling problems in job-shop environ-
ments with capacity constraints. They proposed a
solution method based on a Lagrangian heuristic that
determined a feasible production plan for a �xed
schedule. Their approach iteratively fed the heuristic
with a sequential improvement. Wolosewicz et al. [29]
presented a new mathematical model for generating a
feasible optimal production plan for a �xed schedule
on the machines considering capacity constraints and
setup decisions. They proposed a novel constructive
heuristic based on Lagrangian relaxation for solving
the problem. Karimi-Nasab et al. [30] considered
lot sizing and scheduling problem with compressible
process times in a job-shop environment. They used
Branch and Cut (B&C) approach to solve the problem
and added some valid inequalities to it. Karimi-
Nasab et al. [31] presented a model formulation for a
multi-level lot sizing problem with exible machines,
which included a job-shop problem. They developed
a Particle Swarm Optimization (PSO) algorithm to
solve the problem. Yan et al. [32] proposed an
iterative genetic algorithm for integrated production
planning and scheduling optimization problem in a
job shop environment. Rohaninejad et al. [33] pre-
sented a multi-stage GLSP formulation for a exi-

ble job-shop problem. They used a hybrid meta-
heuristic based on the combination of a Genetic
Algorithm (GA) and a PSO to solve the problem.
For more details, the interested readers are referred
to the review paper that has been published re-
cently [34].

Schemeleva et al. [35] addressed a stochastic
multi-product lot-sizing and sequencing problem with
two kinds of uncertainties, including defective items
due to the machines' imperfections and random lead
time and sequence-dependent set-up times. Masmoudi
et al. [36] considered a capacitated lot-sizing problem
with energy consideration in ow shop manufacturing
system. They proposed non-linear and linear mixed-
integer programming models to formulate the problem.

We propose a more e�cient Mixed-Integer Pro-
gramming (MIP) model to formulate the problem,
which can simultaneously achieve a production plan
and schedule. In comparison with the models presented
by Mohammadi [23] and Mohammadi and Jafari [24],
presenting a more e�cient mathematical model for
integrated lot-sizing and scheduling in capacitated
exible ow shop production system with sequence-
dependent setups is the main novelty of this paper.
In the literature, MIP-based heuristics are one of the
appropriate approaches that have been suggested for
solving dynamic lot-sizing and scheduling problem.
As a result, less complexity of the proposed model
results in more e�ectiveness of the solution methods.
Also, three MIP-based heuristics, all based on iterative
resolutions of reduced-size MIPs and rolling horizon,
have been implemented to solve the problem.

This paper has the following structure. Section 2
provides a detailed description of the new mathemat-
ical model, underlying assumptions, and comparison
with the former models (provided by Mohammadi [23]
and Mohammadi and Jafari [24]). Section 3 provides
heuristic approaches to solve the considered problem.
Section 4 reports the numerical experiments and, �-
nally, Section 5 discusses the concluding remarks and
recommendations for future research.

2. Problem formulation

The main novelty of this paper is proposing a more
e�cient mathematical model for the problem of inte-
grating lot-sizing and scheduling in capacitated exible
ow shop environments. This section contains the
description of the proposed MIP model with more
details and the comparison between the new model and
two former models.

2.1. Assumptions
Our assumptions are similar to those of Moham-
madi [23] and Mohammadi and Jafari [24]. The main
assumptions are listed as follows:
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� Lot-sizing and scheduling are performed simultane-
ously;

� Several products can be produced in serially ar-
ranged stages;

� At least one stage has parallel machines and ma-
chines in each stage are identical in all characteris-
tics such as production rates, setup times, and costs;

� At stages with more than one machine, each product
is produced entirely on one machine;

� Machines in stage m can only process the interme-
diary products of the m'th level that are required
for production of the product type of level m+ 1;

� Each machine is constrained in capacity;
� Setting up of a certain item incurs a setup time and

relevant setup cost and it is sequence-dependent.
Setup follows the so-called triangular inequalities,
i.e. it is never faster to change over from one product
to another by means of a third product;

� Setup costs have the form Wijm = fw:Sijm where
fw is opportunity cost per unit of setup time;

� The setting up of a machine must be completed in
a period;

� The required resources and parts must be ready for
production;

� External demands for the �nal products are known
and deterministic, and are satis�ed at the end of
each period;

� There are no lead times between the di�erent pro-
duction stages for transportation or cooling of the
products;

� Shortages are not permitted;
� A component cannot be produced in a period until

the production of its required components is �n-
ished. In other words, production in a production
stage can only be started if all amounts of the
required items from the previous production stage
are available; this is called vertical interaction;

� At the beginning of the planning horizon, machines
are set up for a de�ned product;

� At any time, each machine can process at most one
job;

� At any time, each job can be processed on at most
one machinel;

2.2. Former models
Here, to shorten the length of the paper, we avoid pre-
senting the details of the former models and interested
readers can refer to Mohammadi [23] and Mohammadi
and Jafari [24].

In the mathematical model presented by Mo-
hammadi [23], the two-level time structure [1,13] has

been used to formulate the mentioned problem. The
planning horizon is divided into T macro-periods with
the same length so that in each of the micro-periods,
a product is manufactured. For each machine, each
macro-period, t, consists of 3N micro-periods (N is
the number of products). As it is obvious, due to
the large number of decision variables and constraints,
this approach drastically increases the computational
complexity of the model. A more e�cient method
that was presented by Mohammadi and Jafari [24]
uses arti�cial setup concept to formulate this problem
similar to those of Clark [25] and Clark and Clark
[26]. There must be precisely N (number of prod-
ucts) setups in each period on each machine, even
if a setup is just from a product to itself. But,
as it is obvious, this presumption also increases the
complexity of the problem. Also, by introducing the
shadow products, the number of variables increases
(N2:T:

PM
m=1 nm). Note that these assumptions are

not needed in the new model proposed in this pa-
per.

MIP-based heuristics are one of the appropriate
approaches that have been suggested in the literature
for solving dynamic lot-sizing and scheduling problem.
As a result, less complexity of the proposed model
results in more e�ectiveness of the solution methods.
Therefore, in this paper, a new approach is proposed
to formulate lot-sizing and scheduling problem in a
multi-stage production environment with parallel ma-
chines, which considerably reduces the complexity of
the model.

2.3. New model
In this subsection, MIP model is proposed for lot sizing
and scheduling problem in a multi-product, multi-
period production system in a exible ow shop with
capacity constraint and sequence-dependent setup. Si-
multaneous lot-sizing and scheduling problem in a
exible M -stage ow shop involves determining the
production quantity and sequence of n jobs in the
series systems that have more than one machine for
processing at least in one stage. Jobs are subject
to predecessor constraints that restrict them to have
a certain process plan in all stages of operation.
Therefore, a product contains M operations, one for
each stage of production, and facilities (machines) have
capacity constraints.

In order to formulate the model, the following
data has been used:

Indices
i; j Indices of product types
m Stage index
l Machine index
t Planning period index
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Parameters
T Planning horizon (in terms of the

number of planning periods) (set of
periods)

N Number of di�erent products (set of
product types)

M Number of stages (set of stages)
nm Number of parallel machines in stage

m
Cmt Processing time (capacity) available

for each machine at stage m in period
t (in time units)

djt External demand for the j'th product
at the end of period t

bjm Required capacity of machine at stage
m to produce one unit of product j (in
time units)

Pjmt Production cost per unit of �nished
product j processed on machine at
stage m in period t

hjm Holding cost per unit of �nished
product j at stage m

Sijm Sequence-dependent setup time of
switching from product i to j on
machine at stage m

wijm Sequence-dependent setup cost of
switching from product i to j on
machine at stage m

Ij0 Inventory of product j at the beginning
of planning horizon

BigM A large real number

Decision variables
Xjmt Quantity of product j produced at

stage m in period t
Ijmt Inventory of �nished product j at stage

m in period t
SOmljt Starting time of product j on machine

l at stage m in period t
COmljt Completion time for product j on

machine l at stage m in period t
Zjmt A binary variable that is equal to 1 if

Xjmt > 0, 0 otherwise

Qmljt A binary variable that is equal to 1 if
job j is assigned to process on machine
l at stage m in period t, 0 otherwise

Ymlijt A binary variable that is equal to 1 if
job j is processed immediately after
job i on machine l at stage m in period
t, 0 otherwise

Mixed-integer programming model

In this subsection, the proposed MIP model is pre-
sented with more details:

MinTC =
NX
j=1

MX
m=1

TX
t=1

pjmt:Xjmt

+
NX
j=1

MX
m=1

TX
t=1

hjm:Ijmt

+
NX
i=1

NX
j=1

MX
m=1

nmX
l=1

TX
t=1

wijm:Ymlijt; (1)

s.t.

IjM(t�1) +XjMt = IjMt + djt 8j; t; (2)

Ijm(t�1) +Xjmt = Ijmt +Xj(m+1)t;

8j; t;m = 1; :::;M � 1; (3)

Xjmt � bigM:Zjmt 8m; j; t; (4)

nmX
l=1

Qmljt = Zjmt 8m; j; t; (5)

COmljt � Cmt 8m; l; j; t; (6)

nmX
l=1

COmljt:Qmljt =
nmX
l=1

SOmljt:Qmljt

+
nmX
l=1

bjm:Xjmt:Qmljt 8m; j; t; (7)

nmX
l=1

SOmljt:Qmljt �
nmX
l=1

CO(m�1)ljt:Q(m�1)ljt

8j; t;m = 2; :::;M; (8)

SOmljt:Qmljt � COmlit:Qmlit + Sijm:Ymlijt

� bigM:(1� Ymlijt) 8m; l; i; j; t; i 6= j; (9)

NX
i=1

NX
j=1
i 6=j

Ymlijt �
NX
j=1

Qmljt � 1 8m; j; t; (10)

NX
i=1
i 6=j

Ymlijt � Qmljt 8m; l; j; t; (11)

NX
i=1
i 6=j

Ymljit � Qmljt 8m; l; j; t; (12)
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Ijm0 = 0 8m; j; (13)

Xjmt; Ijmt; SOmljt; COmljt � 0 8m; l; j; t; (14)

Ymlijt; Zjmt = f0; 1g: (15)

The objective function (Constraint 1) is to minimize
the sum of the production cost, holding cost, and
sequence-dependent setup costs. Constraint (2) en-
sures the demand supply for each product in each
period. Constraint (3) is the usual ow balance
constraints and shows that in a network, the total in-
ows to each node are equal to out-ows from that
node. Constraint (4) shows the relationship between
the productions planned and the binary variable indi-
cating that product j at stage m in period t is produced
or not. This constraint states that if Xjmt > 0, variable
Zjmt takes the value 1 automatically. Constraint (5)
determines the assigning of products to the machines
at each stage of production. Constraint (6) represents
the capacity constraints of machines during periods.
Constraint (7) shows the relationship between the start
time and completion time of process for products that
are manufactured in each period. Constraint (9) forces
to start the processing of each product only when its
precedent product has been completed on the same
machine at the stage of production in addition to
its setup time. Constraints (10)-(12) determine the
sequence of products in a hybrid ow shop production

environment. According to the Constraints (11) and
(12), job sequence includes product j if it is produced
in period t and assigned to machine l at stage m.
Constraint (13) indicates that at the beginning of
planning horizon, there is no on-hand inventory. Con-
straints (14) and (15) represent the types of decision
variables.

Values for coe�cients and parameters of the
model can be easily obtained from actual data of
a plant or can be estimated through historical data
acquisition.

2.4. Comparison between new and former
models

Herew, the proposed model is compared with the
models of Mohammadi [23] and Mohammadi and
Jafari [24]. Table 1 shows the comparison between
former models and the new model. A number of binary
variables, number of continuous variables, and number
of constraints have been used in this comparison.
Table 2 shows numerical examples that compare former
and proposed models in speci�c problem sizes with
(N;M;nm; T ) = (5, 3, 2, 6) and (N;M;nm; T ) =
(25, 5, 3, 12). According to Table 2, the number
of continuous and binary variables and the number
of constraints for the proposed model are remarkably
less than those for Mohammadi and Jafari [24]. It
should be noted that the proposed modeling approach
has resulted in a nonlinear model. To reduce the

Table 1. A comparison between former models and the proposed model.

Criterion Mohammadi's
model [20]

Mohammadi &
Jafari's model [24]

Proposed model

Number of
binary variables

3N2T (N + 2)
PN
m=1 nm N3T

PM
m=1 nm NT

�
M + (1 +N)

PM
m=1 nm

�
Number of

continuous variables
NT

�
M + 6N

PM
m=1 nm

�
NT

�
M + 2N

PM
m=1 nm

�
2NT

�
M +

PM
m=1 nm

�

Number of
constraints

9N3T
PM�1
m=1 (nmnm+1

+NT
�

3N3 � 6N2 + 9N + 3
�

PM
m=1 nm +N(1�N2 + 2N)PM
m=1 nm + 2NMT

N3T
PM�1
m=1 (nmnm+1)

+
�
3N2T +N2 + T � 2N + 1

�PM
m=1 nm +NM(1 + 2T )

NT (2 +N)
PM
m=1 nm

+NM(1 + 6T )�NT

Table 2. A comparison between former models and the proposed model for two di�erent problem sizes.

N = 5, M = 3, nm = 2, T = 6 N = 25, M = 5, nm = 3, T = 12
Mohammadi &

Jafari's
model [24]

Proposed
model

Di�erence
Mohammadi &

Jafari's
model [24]

Proposed
model

Di�erence

Number of binary variables 4,500 1,170 3,330 2,812,500 118,500 2,694,000
Number of continuous variables 1,890 540 1,350 226,500 12,000 214,500

Number of constraints 9,027 1,785 7,242 7,099,445 130,325 6,969,120
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computational complexity, the model should be lin-
earized; the linearization method is presented as fol-
lows.

As it is obvious, Constraint sets (7)-(9) are non-
linear terms that greatly increase the computational
complexity for solving the problem. This constraint is
modi�ed in order to analyze it more easily. In more
details, by removing the nonlinear Constraints (7)-(9),
the set of simple linear Constraints (16)-(18) is replaced
and Constraints (19)-(28) are added to the proposed
model. Products SOmljt � Qmljt, COmljt � Qmljt,
and Xjmt � Qmljt can be replaced with additional
continuous variables SQmljt, CQmljt, and XQmljt,
respectively. The following constraints must be added
to force SQmljt, CQmljt, andXQmljt to take the values
of SOmljt�Qmljt, COmljt�Qmljt, and Xjmt�Qmljt,
respectively [37]:

nmX
l=1

CQmljt =
nmX
l=1

SQmljt +
nmX
l=1

bjm:XQmljt

8m; j; t; (16)

nmX
l=1

SQmljt�
nmX
l=1

CQ(m�1)ljt 8j; t;m=2; :::;M; (17)

SQmljt � CQmlit + Sijm:Ymlijt �BigM:(1� Ymlijt)
8m; l; i; j; t; i 6= j; (18)

SQmljt � U:Qmljt 8m; l; j; t; (19)

SQmljt � SOmljt 8m; l; j; t; (20)

SQmljt � SOmljt � U:(1�Qmljt) 8m; l; j; t; (21)

CQmljt � U 0:Qmljt 8m; l; j; t; (22)

CQmljt � COmljt 8m; l; j; t; (23)

CQmljt � COmljt � U 0:(1�Qmljt) 8m; l; j; t; (24)

XQmljt � U 00:Qmljt 8m; l; j; t; (25)

XQmljt � Xjmt 8m; l; j; t; (26)

XQmljt � Xjmt � U 00:(1�Qmljt) 8m; l; j; t; (27)

XQmljt; SQmljt; CQmljt � 0 8m; l; j; t; (28)

where the values of U , U 0, and U" are the upper bounds
of variables SOmljt, COmljt, and Xjmt. The numbers
of additional continuous variables and constraints are
added to the model equal to 3N:T:

PM
m=1 nm and

9N:T:
PM
m=1 nm, respectively.

In Table 2, benchmark test on the complexity (in
terms of the number of binary variables, continuous
variables, and constraints) of the proposed linearized
model with respect to the former models is conducted.
Table 3 shows numerical examples that compare for-
mer and proposed models in speci�c problem sizes
with (N;M;nm; T ) = (5; 3; 2; 6) and (N;M;nm; T ) =
(25; 5; 3; 12). As can be observed from Table 4,
even with the addition of some continuous variables
and a number of constraints to the linearization, the
complexity of the proposed model is signi�cantly less
than that of the second modeling approach proposed
by Mohammadi and Jafari [24].

Tables 1-4 show that the new model is superior to
the former models. The new model reduces the compu-
tational complexity and, furthermore, determines the
starting and completion times of each product on each
machine in each period of planning. Thus, it can be
useful for considering the scheduling objectives in the
planning.

Table 3. A comparison between former models and the proposed linearized model.

Criterion Mohammadi's
model [20]

Mohammadi &
Jafari's

model [24]
Proposed model

Number of
binary variables

3N2T (N + 2)
PN
m=1 nm N3T

PM
m=1 nm NT

�
M + (1 +N)

PM
m=1 nm

�
Number of
continuous
variables

NT
�
M + 6N

PM
m=1 nm

�
NT

�
M + 2N

PM
m=1 nm

�
NT

�
2M + 5

PM
m=1 nm

�

Number of
constraints

9N3T
PM�1
m=1 (nmnm+1)

+NT
�
3N3 � 6N2 + 9N + 3

�PM
m=1 nm

+N(1�N2 + 2N)
PM
m=1 nm + 2NMT

N3T
PM�1
m=1 (nmnm+1)

+
�
3N2T +N2 + T � 2N + 1

�PM
m=1 nm +NM(1 + 2T )

NT
PM
m=1 nm(11 +N)

+NM(1 + 6T )�NT
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Table 4. A comparison between former models and the proposed linearized model for two di�erent problem sizes.

N = 5, M = 3, nm = 2, T = 6 N = 25, M = 5, nm = 3, T = 12
Mohammadi &

Jafari's
model [24]

Proposed
model

Di�erence
Mohammadi &

Jafari's
model [24]

Proposed
model

Di�erence

Number of binary variables 4,500 1,170 3,330 2,812,500 118,500 2,694,000

Number of continuous variables 1,890 990 900 226,500 22,500 204,000

Number of constraints 9,027 3,405 5,622 7,099,445 170,825 6,928,620

3. Development of heuristic algorithms based
on rolling horizon

Solving the single-stage multi-item multi-period CLSP
with sequence-dependent setups is equivalent to solv-
ing multiple dependent Travelling Salesman Problems
(TSPs) [38]. Hence, like the TSP, the CLSP belongs
to the so called NP-hard problems. That means it is
very di�cult to optimally solve large instances of the
problem. The introduction of multi-stage production
with parallel machines makes the problem even more
complicated. Therefore, it is necessary to �nd rea-
sonable heuristic methods for medium and large-size
instances [23].

Similar to Mohammadi [23] and Mohammadi and
Jafari [24], rolling-horizon heuristics have been used to
solve this problem.

3.1. Idea
Since manufacturing environments are dynamic, the
quantities of production should be continually updated
in response to disturbances such as delay in the delivery
of raw materials, equipment failure, demand changes,
etc. Rolling-horizon heuristic is one of the appropriate
approaches that have been suggested in the literature
for solving dynamic lot-sizing and scheduling problem,
where demands are gradually revealed during the plan-
ning horizon. While the estimation of the demands
of the early periods is more precise, the demands of
the later periods are approximate. If in the integrated
production planning and scheduling problem there is a
subset of early periods that includes detailed scheduling
decisions, and the late planning periods only include
high-level decisions (i.e., production quantities), or
relaxation formulation and aggregation modeling are
used for these periods, the computational complexity
will decrease. Production quantities for earlier periods
are exact and can be used directly for the production
process, while the quantities obtained for late peri-
ods (as rolling periods) are updated. As mentioned
before, production quantities are continually updated;
therefore, using the approximate solutions for the late
periods a�ects the quality of �nal solution signi�cantly.

Using rolling horizon heuristics for large-size MIP
problems greatly reduces the computational complex-

ity by substituting most of the binary variables and
constraints with continuous variables and constraints.
Therefore, this approach is still useful when all param-
eters are completely known. This approach initially
decomposes the model into a set of smaller MIP models,
each with a more tractable and smaller number of
binary variables, and the decision variables are then
iteratively determined [2,18-20,23-26,39].

According to the presented framework by Merce
and Fontan [39], each iterative procedure decomposes
the planning horizon into three parts. For a speci�ed
iteration k:

� The �rst section (initial section) consists of (k � 1)
periods. In this section, according to the previous
iterations of the algorithm, the decision variables
have been partially or completely frozen based on
the selected freezing strategy;

� The second section (central section) only includes
the kth planning period. In this section, the whole
problem is considered. In this section, all binary
variables that are associated with this planning
period are accounted in the model as binary forms;

� The third section (ending section) includes the
remaining periods (from period k + 1 to period
T ), which is simpli�ed according to the chosen
simpli�cation strategy. Considering the degree of
complexity reduction in the �nal section according
to the selected simpli�cation method, the larger-size
problems are solved at reasonable computational
times.

At the end of each iteration, k, one period
is rolled for entering all sections of the algorithm
into the new iteration. The mentioned procedure is
terminated when iteration T is carried out and the
planning horizon comes to an end. The last iteration
of the algorithm determines all decision variables in
the overall planning horizon. Figure 1 demonstrates
the MIP-based iterative procedure based on rolling
horizon.

3.2. Heuristic algorithms
In this paper, three heuristics based on the iterative
framework mentioned above are used to solve the
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Figure 1. Illustration of the iterative procedure.

studied problem. These three MIP-based heuristics are
based on iterative resolutions of reduced-size MIPs and
rolling horizon. The steps of heuristic Algorithm 1 are
as follows:

� Heuristic Algorithm 1 (HA1)
- Initial section: All decision variables and con-

straints are frozen over the beginning section.
- Central section: Consists of one period, the whole

problem is considered.
- Ending section: Binary variables are relaxed for

the ending section.
The simpli�cation strategy chosen for the end-

ing section ignores setup mechanisms from period
k + 1 to period T . In each iteration, the only
binary variables involved in the model are related to
the central section; thus, the computational e�ort
required for solving the problem is considerably
reduced and, hence, it permits to solve larger
instances of the problem. The solution procedure
initially decomposes the model into a succession of T
smaller MIPs, each with a smaller number of binary
variables. We should note that the beginning section
does not exist for the �rst iteration.

� Heuristic Algorithm 2 (HA2). The only di�er-
ence between heuristics HA1 and HA2 is in their
corresponding freezing policies in the initial section.
In Heuristic Algorithm 2, only binary variables
related to the initial section are frozen. Both the
central and the ending sections for this heuristic are
similar to those for the Heuristic Algorithm 1 (HA1).

� Heuristic Algorithm 3 (HA3). As mentio-
ned above, the whole problem is considered
for the central section. Thus, each iteration
of the former heuristics (HA1 and HA2) has
N:
�
M + (1 +N):

PM
m=1 nm

�
binary variables in its

central section. By increasing the size of the problem
(product, machine, and stage number), the time
taken to solve the MIP model in the central section
tends to explode exponentially and a faster solution

approach is needed to make decisions by solving a
succession of smaller MIPs. An approach that can
be used to solve larger instances of the problem in
the central section is �x-and-relax method [40].

In Heuristic Algorithm 3 (HA3), the search space
is limited by �x-and-relax method. This procedure
involves solving a series of partially relaxed MIP
models. For each MIP model, the number of binary
variables is small enough to be quickly and optimally
solved by exact solution methods such as branch-and-
bound, branch-and-cut, etc. As the series progresses,
binary variables are permanently set at their obtained
solution values and the number of relaxed variables is
reduced. Speed is a major advantage of �x-and-relax
method [23,19].

The �x-and-relax procedure performed in period
(iteration) k related to the central section contains the
following steps:

- Step 1. To identify the product sequence at stage 1,
solve the simpli�ed MIP model using partial linear
programming relaxation, where the values of Y1lijk
are constrained to be 0 or 1.

- Step 2. For m = 2; :::;M , solve the partial linear
programming relaxation with Y1lijk �xed at their
0 or 1 solution values obtained from Step 1, Y2lijk
to Y(M�1)lijk �xed at their 0 or 1 solution values
from the previous applications of Step 2, and YMlijk
constrained to be 0 or 1 while the remaining Y -
variables may vary continuously between 0 and 1.

Each cycle of Steps 1 and 2 of the mentioned �x-
and-relax method involves solving M problems with
just N2:

PM
m=1 nm binary variables. Due to Constraint

sets (10) to (12), less than N � 1 binary variables in
each problem are equal to 1. In other words, more
than N:

�
N:
PM
m=1 nm � 1

�
of N2:

PM
m=1 nm binary

variables in each problem will newly be 0 due to those
constraints. Thus, the application of the cyclic �x-and-
relax approach involves the solution to M and T MIPs
with N2:

PM
m=1 nm binary variables.
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Table 5. A comparison between HA1, HA2, and HA3.

HA1 HA2 HA3

Number of iterations T T M:T
Number of binary

variables in each iteration
N
�
M + (1 +N)

PM
m=1

�
N
�
M + (1 +N)

PM
m=1 nm

�
N2PM

m=1 nm

As mentioned earlier, in each MIP of heuristics
HA1 and HA2, there exists N:(M+ (1+N):

PM
m=1 nm)

binary variables and in each MIP of heuristic HA3,
there exists N2:

PM
m=1 nm binary variables. Therefore,

Heuristic Algorithm 3 (HA3) is able to solve instances
with larger sizes. A comparison between heuristics has
been shown in Table 5.

4. Computational results

In previous sections, the new modeling for integrated
lot-sizing and scheduling problem in a exible ow shop
environment has been formulated successfully, and the
comparison of this model with the former models points
out the higher e�ciency of the proposed model. Due
to the inherent complexity of the considered problem,
small-size problems can be solved exactly by using
optimization approaches such as \branch and bound,"
\branch and cut," etc. Therefore, the presented rolling-
horizon heuristics have been used to solve this problem.
This section provides the computational experiments
used to evaluate the performance of the heuristics in
�nding good-quality solutions.

To evaluate and compare the performance of
the heuristics, 20 problems with di�erent sizes were
selected. Similar to Mohammadi [23] and Mohammadi
and Jafari [24], the required parameters are extracted
from the following uniform distribution:

bjm � U(1:5; 2); djt � U(0; 180);

hjm � U(0:2; 0:4); pjmt � U(1:5; 2);

wijm � U(35; 70); Sijm � U(35; 70)

and Cmt � U(a; b); a = 200N + 100(m� 1);

b = 200N + 200(m� 1):

Cmt is calculated in a way to satisfy demands of each
period on a just-in-time basis with average setups.
For every problem size, �ve instances were randomly
generated using the uniform distributions mentioned
above, and the average results were recorded as a
performance criterion for the heuristics. The number
of jobs, machines, stages, and periods have profound
inuence on computational complexity of the problem.

The proposed model and lower MIP-based heuris-
tics are coded in GAMS IDE (version 23.6.5) software

Figure 2. Comparative results obtained by the heuristics
for the test problems.

and solved using GLPK GAMS module. All tests are
conducted on an Intel corei2 laptop at 2.1 GHz with
2GB of RAM.

The average results obtained from solving the
20 mentioned problems have been listed in Table 6.
Table 6 compares the objective function values and
the run times spent for solving the problems by the
heuristic methods. The \O.V." column indicates the
objective values (total costs) resulting from the speci-
�ed heuristic method. The lower objective value shows
better performance of the solution methods. Figure 2
shows comparative results obtained by the heuristics
for the test problems.

As can be seen from Table 6, all three heuristics
can solve all 20 test problems in less than 3600 seconds.
As it is expected, Heuristic Algorithm 1 solves the
problem faster than both solution methods HA2 and
HA3. Also, HA1 can obtain the minimum makespan
for small-size instances. Both algorithms HA1 and HA2
can reach a good quality solution in reasonable time
and the objective values obtained by HA1 and HA2 are
close to each other, also better than HA3 results. The
computational time required to solve problems with
HA1 is smaller than that with both HA2 and HA3
heuristics. For small and medium-size test problems,
HA3 algorithm has relatively the same results with
other methods. But, its results will be worse as the
problem size increases.

As can be seen from Table 6 and Figure 2, the
mean objective value for the heuristic HA2 is less than
that obtained by the other heuristics HA1 and HA3.
Thus, HA2 has a better performance for this problem.
But, the HA2 needs more computational time to solve
these test problems compared to HA1. Thus, HA2 is
superior for the mentioned problem.

On average, the results obtained by heuristic HA2
are 10.54% and 17.96% better than the results of other
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Table 6. Comparative results obtained by the heuristics.

Prob.
no.

Size
(N:M:nm:T )

Heuristic algorithm 1 Heuristic algorithm 2 Heuristic algorithm 3
O.V. CPU time (s) O.V. CPU time (s) O.V. CPU time (s)

1 3� 3� 2� 3 1759.2� 0.23 2121.6 0.25 3107.8 1.09
2 5�3� 2� 3 3370.2 0.34 3370.2 0.33 3370.2 1.05
3 3�5� 2� 3 1229.6 0.44 2087.9 0.39 2948.4 1.99
4 3�3� 2� 5 4089.0 0.46 4083.1 0.46 4083.1 1.79
5 5�5� 2� 5 10328.6 0.98 10281.3 0.64 10281.3 3.19
6 7�5� 2� 5 13792.0 1.37 13717.1 1.32 13717.1 3.15
7 5�7� 2� 5 14415.2 0.76 14415.2 0.78 14333.7 4.20
8 5�5� 2� 7 14752.6 1.32 14473.5 1.14 14181.0 4.42
9 7�7� 2� 7 27023.5 3.93 26794.0 2.76 26727.6 10.20
10 10� 5� 2� 5 20344.5 2.51 19585.1 2.30 20344.5 9.02
11 5� 10� 2� 5 19633.8 1.22 19633.8 1.19 19633.8 6.94
12 5� 5� 2� 10 19985.5 2.11 19622.3 1.60 19622.3 6.86
13 10� 7� 2� 7 38490.6 8.78 35993.0 8.05 38289.3 37.52
14 7� 10� 2� 7 37643.7 4.80 37626.6 6.08 37600.4 24.65
15 7� 7� 2� 10 37511.4 7.28 37061.4 8.28 36814.5 22.97
16 10� 10� 2� 10 80029.8 14.22 80029.8 15.21 80029.8 547.53
17 15� 10� 2� 10 139984.3 34.12 139984.3 37.65 138316.4 1437.56
18 10� 15� 2� 10 143168.9 27.16 143168.9 27.11 143148.6 1875.00
19 10� 10� 2� 15 142698.4 32.06 132698.4 34.00 169843.5 2153.36
20 15� 15� 2� 15 420215.2 195.57 320215.2 191. 89 473957.8 3600.00

Average 59523.30 16.98 53848.14 17.07 63517.57 487.62

* Bold items show the minimum makespan obtained by the solution methods.

heuristics HA2 and HA3, respectively:�
59523:30� 53848:14

53848:14

�
� 100 = 10:54%;�

63517:57� 53848:14
53848:14

�
� 100 = 17:96%:

� Sensitivity analysis. Here, sensitivity analysis is
used to clarify the problem and ensure the suitability
of the proposed model. A sensitivity analysis is a
technique used to determine how di�erent values
of an independent variable will a�ect a particular
dependent variable under a given set of assumptions.

For sensitivity analysis, a problem instance
with the size (N:M:nm:T = 10:5:2:12) is considered.
In other words, in a exible ow shop production
system with 5 stages so that at every stage there are
two identical parallel machines, we want to deter-
mine lot-size and sequence of 10 di�erent products
in a planning horizon with 12 periods. Data for
the mentioned problem is generated randomly using
a uniform distribution described in the previous
section. With a change in the original value of
available capacity for machines, we evaluate the
impact of this parameter on the objective function

Table 7. The impact of change in available capacity (%)
on the objective function.

Change in
available

capacity (%)

Ptoduction
cost

Inventory
cost

Total
cost

{50.00% 33033.37 3825.18 47869.67
{37.50% 32866.31 3844.36 47666.11
{25.00% 32697.14 3914.09 47510.28
{12.50% 32593.10 3921.65 47379.12
0.00% 32472.33 3971.30 47267.74
12.50% 32342.88 4047.95 47171.79
25.00% 32210.42 4132.19 47079.42
37.50% 32090.35 4211.47 46998.61
50.00% 31990.38 4276.69 46930.52

value. The parameter of available capacity increases
and decreases by 50% of its original value. Heuristic
method 2 (HA2) is used to solve the described
problem and the obtained results are summarized
in Table 7. As can be seen from Table 7, the total
cost and production cost increase by increasing the
available capacity while inventory cost decreases.
As it is known, the possibility of more production
in periods with lower production costs is attained
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by increasing the available capacity, which results
in a decrease in production cost. Obviously, the
inventory level will increase because of this increase
in production amounts in the period under con-
sideration, which in turn could increase inventory
cost. The resultant reduced production cost and
increasing inventory cost lead to reduction in total
cost. If the available capacity is reduced to less than
50% of the current capacity, the algorithm is not
possible to reach a feasible solution, because it is
not possible to satisfy demand of the customers with
this new capacity.

5. Conclusion

In this paper, integrated lot-sizing and scheduling
problem in a multi-product, multi-period production
system in a exible ow shop with capacity constraint
and sequence-dependent setup is addressed. The main
contribution of the paper is presenting and testing a
more e�cient mathematical model to formulate the
problem. In comparison to the models presented by
Mohammadi [23] and Mohammadi and Jafari [24],
the proposed model in this paper provides a more
e�cient formulation with remarkably less complexity
(in terms of the number of binary variables, continuous
variables, and constraints) for the problem. Due to
the computational complexity of the problem, three
heuristic methods based on mathematical modeling
were used for solving the problem. In the same limited
computational time, the numerical experiments showed
that HA2 was superior for these problem instances.
Because of the simplicity of the heuristic, it can be
easily applied to the real production systems and large-
size problems. A general review of the results shows
that:
� All three solution methods can solve all the test

problems in less than 3600 s;
� The computational time required to solve problems

with HA1 is smaller than those with both HA2 and
HA3 heuristics;

� The mean objective value obtained by HA2 is better
than the results of both HA1 and HA3. Therefore,
HA2 is superior for the mentioned problem.

One straightforward area for future research is
the development of the proposed model to include
real conditions of manufacturing environments, such
as limited intermediate bu�er space, lot transporta-
tion constraints, etc. Considering the uncertainty
in production system is one of the interesting ar-
eas for research. Also, considering the development
of meta-heuristic approaches for solving combinato-
rial optimization problems, the application of meta-
heuristic approaches can be another area for future
research.
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