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Abstract. In some applications, quality of product or performance of a process is
described by some functional relationships among some variables known as multivariate
linear pro�le in the literature. In this paper, we propose Max-MEWMA and Max-
MCUSUM control charts for simultaneous monitoring of mean vector and covariance
matrix in multivariate multiple linear regression pro�les in Phase II. The proposed control
charts also have the ability to diagnose whether the location or variation of the process
is responsible for out-of-control signal. The performance of the proposed control charts is
compared with that of the existing method through Monte-Carlo simulations. Finally, the
applicability of the proposed control charts is illustrated using a real case of calibration
application in the automotive industry.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Sometimes, quality of a process or product in the indus-
try and non-industry is characterized by a relationship
between two or more variables, which is presented by
a `pro�le' in the literature. In di�erent applications,
simple linear regression, multiple linear or polynomial
regression, or even more complicated models such as
nonlinear regressions are used to model the quality of
processes. The applications of pro�le monitoring in
the literature have been introduced by several authors
such as Kang and Albin [1], Mahmoud and Woodall [2],
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Woodall et al. [3], Wang and Tsung [4], Woodall [5],
Zou et al. [6], and Amiri et al. [7]. A pro�le monitoring
problem consists of two phases, including Phase I
and Phase II. The purpose of Phase I monitoring
is providing an analysis of the preliminary data for
estimating the process parameters. The main purpose
of Phase II pro�le monitoring is designing a control
scheme to detect di�erent out-of-control scenarios in
the process parameters. Monitoring of di�erent types
of linear regression pro�les, such as simple linear,
multiple linear, and polynomial regression pro�les, has
been investigated by many researchers. Kang and
Albin [1], Kim et al. [8], Zou et al. [6], Keshtelia et
al. [9], Noorossana and Ayoubi [10], and Chuang et
al. [11] have studied Phase II monitoring of simple
linear pro�les. Researchers such as Kang and Albin [1],
Mahmoud and Woodall [2], Mahmoud et al. [12], and
Chuang et al. [11] have considered monitoring of simple
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linear pro�les in Phase I. Multiple linear regression
and polynomial pro�les have been studied by Zou et
al. [6], Kazemzadeh et al. [13,14], Amiri et al. [15], and
Wang [16].

In some situations, quality of a process or a
product can be e�ectively characterized by two or more
multiple linear regression pro�les in which response
variables are correlated, referred to as multivariate
multiple linear regression pro�les [17]. Noorossana et
al. [18] proposed three control chart schemes for Phase
II monitoring of multivariate simple linear pro�les.
They also used the term Average Run Length (ARL)
to evaluate the proposed control charts. Noorossana et
al. [19] developed four control charts in Phase I for
monitoring of multivariate multiple linear regression
pro�les. They compared the performance of the
proposed control charts through simulation studies in
terms of probability of a signal. Zhang et al. [20]
developed a new modelling and monitoring framework
for analysis of multiple linear pro�les in Phase I. Their
framework used the regression-adjustment method in
the functional principal component analysis. Eyvazian
et al. [21] suggested four control charts to monitor mul-
tivariate multiple linear regression pro�les in Phase II.
They evaluated the performance of the proposed con-
trol charts through simulation studies in terms of the
ARL criterion. They also used a numerical example
to assess the performance of the developed control
charts. Amiri et al. [17] introduced a diagnosis method
to identify the pro�les and parameters responsible
for out-of-control signal in multivariate multiple linear
regression pro�les in Phase II.

In addition to the problems noted above, prac-
titioners are interested in developing some kinds of
control charts which can monitor mean and variabil-
ity of processes simultaneously. In fact, the quality
engineers want to have a single control chart instead
of two or more. In practice, the control charts for
monitoring both process mean and variability should
be implemented together because assignable causes can
a�ect both of them. In recent years, joint monitoring
of process mean and dispersion in both univariate
and multivariate cases has been considered by some
researchers. Simultaneous monitoring of the mean and
variance in univariate process has been studied by
Khoo et al. [22], Zhang et al. [23], Guh [24], Memar
and Niaki [25], Teh et al. [26], Sheu et al. [27], Haq et
al. [28], and Prajapati and Singh [29]. The simultane-
ous monitoring of multivariate process mean vector and
covariance matrix has also been addressed by several
authors. Chen et al. [30] proposed a control scheme
called Max-EWMA for monitoring both mean and
variance simultaneously. They performed a comparison
analysis and found that their proposed control chart
performed better than the combination of chi-square
and jSj control charts when small shifts occurred in the

process parameters. Cheng and Thaga [31] proposed
Max-MCUSUM control chart to detect any changes
in mean vector and covariance matrix simultaneously.
Zhang et al. [32] proposed a new control chart (ELR
control chart) based on the combination of Generalized
Likelihood Ratio (GLR) test and the Exponentially
Weighted Moving Average (EWMA) control chart for
simultaneous monitoring of mean vector and covari-
ance matrix in the multivariate process. Wang et
al. [33] applied the generalized likelihood ratio test
and the multivariate exponentially weighted moving
covariance control chart to monitor the mean vector
and the covariance matrix of a multivariate normal
process, simultaneously. Other research for simulta-
neous monitoring of multivariate process consists of
Khoo [34], Hawkins and Maboudou-Tchao [35], Ramos
et al. [36], and Pirhooshyaran and Niaki [37]. For
detailed information on simultaneous monitoring of the
process location and dispersion, refer to the review
paper provided by McCracken and Chakraborti [38].

According to the literature, in most of the control
charts proposed for monitoring of multivariate multiple
linear regression pro�les, mean vector and covariance
matrix are monitored with separate control charts. In
addition, these control charts are unable to diagnose
whether the location or the dispersion is responsible
for out-of-control signal. In this paper, we propose
two methods for simultaneous monitoring of mean
vector and covariance matrix in multivariate multiple
linear regression pro�les. Moreover, the proposed
control charts are able to diagnose whether location or
dispersion is responsible for out-of-control signal. The
performance of the proposed control charts is compared
with ELRT control chart proposed by Eyvazian et
al. [21] in Phase II in terms of Average Run Length
(ARL) and Standard Deviation Run Length (SDRL).
The structure of the rest of this paper is as follows:
In Section 2, we express multivariate multiple linear
regression pro�les model. In Section 3, the ELRT
control chart is described. In Section 4, the proposed
control charts are expressed. In Section 5, diagnosing
procedure is explained. In Section 6, the comparison
analysis of the proposed control charts is provided
through an illustrative example. In Section 7, the
application of the proposed control charts is illustrated
by a real dataset. Finally, our concluding remarks and
future research are given in Section 8.

2. Model and Assumptions

Let us assume that for the kth random sample col-
lected over time, we have n observations given as
(x1i; x2i; : : : ; xqi; y1ik; y2ik; : : : ; ypik), i = 1; 2; : : : ; n
where p and q are the numbers of response variables
and explanatory variables, respectively. When the
process is in statistical control, the model that relates



R. Ghashghaei and A. Amiri/Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 2605{2622 2607

the response variables with explanatory variables is a
multivariate multiple linear regression model and is
given as follows [21]:

Yk = XB + Ek; (1)

or equivalently:26664
y11k y12k : : : y1pk
y21k y22k : : : y1pk

...
...

. . .
...

yn1k yn2k : : : ynpk

37775
=

26664
1 x11 : : : x1q
1 x21 : : : x2q
...

...
. . .

...
1 xn1 : : : xnq

37775
26664
�01 �02 : : : �0p
�11 �12 : : : �1p

...
...

. . .
...

�q1 �q1 : : : �qp

37775
+

26664
"11k "12k : : : "1pk
"21k "22k : : : "1pk

...
...

. . .
...

"n1k "n2k : : : "npk

37775 ; (2)

where Yk is an n � p matrix of response variables
for the kth sample, X is an n � (q + 1) matrix of
explanatory variables, B is a (q + 1) � p matrix of
regression parameters, and Ek is an n � p matrix of
error terms. Note that the vector of error terms follows
a p-variate normal distribution with mean vector 0 and
p� p covariance matrix as [21]:

� =

0BBB@
�11 �12 : : : �1p
�21 �22 : : : �2p

...
...

. . .
...

�p1 �p2 : : : �pp

1CCCA ; (3)

where �hj denotes the covariance between error vector
terms of the hth and jth response variables at each
observation. For the kth random sample, the Ordinary
Least Square (OLS) estimator of matrix B is given by:

B̂k = (XT
k Xk)�1 XT

k Yk: (4)

3. Existing work: ELRT control charts for
simultaneous monitoring of mean vector
and covariance matrix in Phase II

In this section, we give a brief review of the proposed
ELRT control chart by Eyvazian et al. [21]. The
likelihood ratio statistic is given as:

ELRTk = n log j�j � n log jESkj+ ECk � np; (5)

k = 1; 2; : : : ;

in which � is covariance matrix of error terms, ECk
and ESk are corresponding exponentially weighted
moving average statistics given by:

ECk = �Ck + (1� �)ECk�1; (6)

ESk = �Sk + (1� �)ESk�1; (7)

where Ck is equal to
nP
i=1

(yik � xiB)��1(yik � xiB)T ,

in which (yik�xiB) is the ith row of matrix (Yk�XB).
Sk in Eq. (7) is computed as:

Sk =
(Yk �X(EB̂k))T (Yk �X(EB̂k))

n
; (8)

where EB̂k is exponentially weighted moving average
statistic of B̂k given by:

EB̂k = �B̂k + (1� �)EB̂k�1: (9)

B̂K in Eq. (9) is the MLE of B for the kth sample,
which is same as the OLS estimator given in Eq. (4).

4. Proposed control charts

In this section, we propose two control charts including
Max-MEWMA and Max-MCUSUM to monitor mean
vector and covariance matrix simultaneously in multi-
variate multiple linear regression pro�les.

4.1. Max-MEWMA control chart
Matrix B̂K is rewritten as a 1� ((q+ 1)p) multivariate
normal random vector denoted by �̂k:

�̂k =(�̂01k; �̂11k; :::; �̂q1k; �̂02k; �̂12k; :::; �̂q2k;

:::; �̂0pk; �̂1pk; :::; �̂qpk); (10)

when the process is in-control, the expected value and
covariance matrix for �̂k are given as follows [21]:

E(�̂k) = (�01; �11; :::; �q1; �02; �12; ::::; �q2;

:::; �0p; �1p; :::; �qp); (11)

��̂k =

0BBB@
�11 �12 ::: �1p
�21 �22 ::: �2p

...
...

. . .
...

�p1 �p2 : : : �pp

1CCCA ; (12)

where (�01; �11; : : : ; �q1; �02; �12; : : : ; �q2; : : : ; �0p; �1p;
: : : ; �qp) is denoted by �. Eyvazian et al. [21] have
shown that �hj is a (q + 1) � (q + 1) matrix equal to
[XTX]�1�hj where �hj denotes the hjth element of
the covariance matrix � in Eq. (3).
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In this method, we extend the proposed method
by Chen et al. [30] for simultaneous monitoring of
mean vector and covariance matrix of the regression
parameters estimators in the multivariate multiple
linear regression pro�les. De�ne:

zk = �(�̂k � �) + (1� �) zk�1; k = 1; 2; :::;
(13)

where z0 is the starting point and it is equal to zero
vector. � is the smoothing parameter satisfying 0 �
� � 1. We have:

�zk =
�

2� � [1� (1� �)2k] ��̂k ; (14)

Tk =
(2� �)

� [1� (1� �)2k]
zTk ��1

�̂
zk � � 2

(q+1)p;�2 : (15)

In Eq. (15), (q+1)p and �2 are respectively the degrees
of freedom and the non-centrality parameter of the non-
central chi-square distribution with:

�2 =
�
(2� �)=�

�
1� (1� �)2k�� (�b � �g)0

��1(�b � �g) � �2
(q+1)p;�2 ; (16)

where �g is good mean (when the process is in-control)
and �b is bad mean (when the process is out-of-
control). We de�ne the statistic for monitoring the
process mean vector as:

Ck = ��1
�
H(q+1)p

�
(2� �)

� [1� (1� �)2k]
zTk ��1

�̂
zk
��
;
(17)

where H(q+1)p(.) is the chi-square distribution function
with (q + 1)p degrees of freedom, �(.) is the standard
normal cumulative distribution function, and ��1 is
the inverse of �(:).

For monitoring process variability, we de�ne:

Wk =
nX
i=1

(yik � xiB)��1(yik � xiB)T ; (18)

such that Wk is the chi-square distribution with np
degrees of freedom.

gk = (1� �)gk�1 + ���1 fHnp(Wk)g ; (19)

where g0 is the starting point and it is equal to zero.�
is the smoothing parameter, 0 � � � 1. We have
E(gk) = 0 and V ar(gk) = �

2�� [1� (1� �)2k].
The statistic for monitoring the process variability

is de�ned as:

Sk =

s
2� �

�(1� (1� �)2k)
gk: (20)

Combining Ck and Sk de�nes a statistic for a single

control chart as:

Mk = max fjCkj ; jSkjg k = 1; 2; ::: (21)

Since Mk is the maximum jCkj and jSkj, which are
based on two Multivariate Exponentially Weighted
Moving Average (MEWMA) statistics, it is natural to
name the control chart, based on Mk, Max{MEWMA
control chart Chen et al.[30]. A large value of Mk
means that the process mean vector and/or covariance
matrix has shifted away from � and �, respectively.
Because Mk is non-negative, the initial state of the
Max{MEWMA control chart is based only on an upper
control limit (h). If Mk > h, the control chart triggers
an out-of-control alarm, where h > 0 is chosen to
achieve a speci�ed in-control ARL.

4.2. Max-MCUSUM control chart
In this section we explain the structure of Max{
MCUSUM control chart to use it for monitoring mul-
tivariate multiple linear regression pro�les in Phase II.
The cumulative sum (CUSUM) procedure for monitor-
ing mean vector of multivariate quality characteristics
signals when the value of Sk becomes greater than L.

Sk = max
�

0; Sk�1 + log
fb(xk)
fg(xk)

�
> L; (22)

where fg and fb are probability density functions cor-
responding to quality characteristics under in-control
and out-of-control conditions, respectively, and L is
a constant that determines the Upper Control Limit
(UCL) of the statistic in Eq. (22). In this section, we
extend the method proposed by Cheng and Thaga [31].

We assume that �k comes from a multivariate
normal distribution with either a good mean, �g, for
in-control process or bad mean, �b (�b=�g + � ), for
out-of-control process. Note that the covariance matrix
of error terms, �, is assumed known. For a multivariate
normal distribution, the CUSUM chart is developed
through the likelihood ratio given as:

fb(xk)
fg(xk)

=

(2�)�p=2
�����1
�̂k

����1=2
exp(�0:5(�̂k��b)��1

�̂k
(�̂k��b)0)

(2�)�p=2
�����1
�̂k

����1=2
exp(�0:5(�̂k��g)��1

�̂k
(�̂k��g)0)

: (23)

Taking natural logarithms (see Appendix A), we ob-
tain:

log
fb(xk)
fg(xk)

=(�b � �g)��1
�̂k
�̂0k � 0:5(�b + �g)

��1
�̂k

(�b � �g)0: (24)
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Replacing Eq. (24) into Eq. (22), CUSUM statistic for
the multivariate normal process is obtained. Note that
both sides of Eq. (24) are divided by a constant value.
CUSUM statistic for monitoring the multivariate mul-
tiple linear regression pro�le is given as follows:

Sk = max(Sk�1 + a�̂k � w; 0); (25)

where:

a =
(�b � �g)��1

�̂kq
(�b � �g)��1

�̂k
(�b � �g)0

; (26)

and:

w = 0:5
(�b � �g)��1

�̂k
(�b � �g)0q

(�b � �g)��1
�̂k

(�b � �g)0
: (27)

De�ne the non-centrality parameter as:

D =
q

(�b � �g)��1
�̂k

(�b � �g)0; (28)

and:

Zk = a(�̂k � �g)0: (29)

The CUSUM control chart for detecting a shift in
the multivariate multiple pro�les regression coe�cients
vector is written as:

Uk = max (0; Uk�1 + Zk � 0:5D): (30)

By using the likelihood ratio test technique above
and assuming the good state and bad state, Healy [39]
developed a CUSUM chart for the process standard
deviation. When the process is in a good state, �̂
is distributed as multivariate normal with good mean,
�g and covariance matrix, ��̂. In the case of shift in
variability, we assume that the covariance matrix shifts
to b��̂ for b > 0 and mean vector does not change.

The likelihood ratio for process standard devia-
tion is given in Eq. (31) as shown in Box I. Taking
natural logarithms (see Appendix B), we obtain:

log
fb(xk)
fg(xk)

=
�1
2

log b+ 0:5(�̂k � �g)

��1
�̂k

(�̂k � �g)0(1� 1
b

): (32)

The CUSUM control chart for detecting a shift in the
covariance matrix of a multivariate multiple regression
pro�le is written as:

Sk = max (Sk�1+(�̂k��g )��1
�̂k

(�̂k � �g)0��; 0);
(33)

� = log(b)
�

b
b� 1

�
: (34)

To design a single multivariate CUSUM control chart
for simultaneous monitoring of mean vector and co-
variance matrix in the multivariate multiple linear
regression pro�les in Phase II, we use the following
transformation:

Yk = ��1
h
H(q+1)p

n
(�̂k � �g)��1

�̂k
(�̂k � �g)0

oi
; (35)

where H(q+1)p(�) is the chi-square distribution function
with (q + 1)p degrees of freedom, �(�) is the standard
normal cumulative distribution function, and ��1 is
the inverse of �(�).

For monitoring the process variability, we de�ne:

Vk = max (0; Yk � � + Vk�1): (36)

Combining Uk and Vk de�nes a statistic for multivari-
ate single control chart as:

Mk = max (Uk; Vk): (37)

The proposed control chart is called Maximum Mul-
tivariate CUSUM (Max-MCUSUM) control chart, be-
cause the maximum CUSUM statistic is applied. Since
Mk is non-negative, the initial state of the Max-
MCUSUM control chart is based only on an upper
control limit (L). If Mk > L, the control chart triggers
an out-of-control alarm, where L > 0 is chosen to
achieve a speci�ed in-control ARL.

5. Diagnosing procedure

In a diagnosing procedure for Max-MEWMA control
chart, the following algorithm is proposed to determine
the source and the direction of the shift:

- Case 1: Mk = jCkj > UCL and jSkj � UCL. It
indicates that only the process mean experiences a
shift. If Ck > 0, the shift is increasing and it is
decreasing if Ck < 0,

fb(xk)
fg(xk)

=
(2�)�p=2

���b��̂k ����1=2
exp(�0:5(�̂k � �g)(b��̂k)�1(�̂k � �b)0)

(2�)�p=2
�����̂k ����1=2

exp(�0:5(�̂k � �g)��1
�̂k

(�̂k � �g)0)
: (31)

Box I
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- Case 2: jCkj � UCL and Mk = jSkj > UCL. It
shows that only the process variability experiences
a shift. If Sk > 0, the shift is increasing and it is a
decreasing one if Sk < 0,

- Case 3: Both jCkj and jSkj are larger than UCL.
Simultaneous change occurs in the process mean
and variance. The change direction in mean and
variance of the process is determined by the methods
explained in Cases 1 and 2.

The same procedure is used for Max-MCUSUM
control chart to diagnose whether the mean vector
or covariance matrix is responsible for out-of-control
signal and direction of the shift.

6. Performance evaluation

In this section, we present a numerical example based
on simulation study in order to investigate the per-
formance of the proposed control charts in detecting
di�erent out-of-control scenarios. Di�erent approaches
can be used for calculating the ARL, e.g. Monte Carlo
simulations, Integral equations, and Markov chains
approximations. In this paper, Monte Carlo simulation
is used in order to calculate the ARL and SDRL in both
proposed control charts and the existing ELRT control
chart. The results of simulation study in terms of two
criteria, including the ARL and SDRL, are obtained
by 10000 replicates. Without loss of generality, in
the entire MEWMA statistic, the value of smoothing
parameter, �, is set equal to 0.2 as generally used in the
literature. The underlying multivariate multiple linear
regression pro�le model considered in this paper is:

y1 = 3 + 2x1 + x2 + "1;

y2 = 2 + x1 + x2 + "2:

The pairs of observations (2,1), (4,2), (6,3), and (8,2)
are considered as the values for explanatory variables
x1 and x2. The vector of error terms ("1; "2) follows
a bivariate normal random variable with mean vector
zero and known covariance matrix:

� =
�

�2
1 ��1�2

��1�2 �2
2

�
;

where �2
1 = 1 and �2

2 = 1 based on [21]. To
investigate the e�ect of correlation between pro�les,
di�erent values of �, namely, � = 0:1 and � = 0:5, are
used in our simulation studies for individual shifts. For
simultaneous shifts, the correlation between response
variables is set equal to 0.5.

For ELRT control chart, the upper control limit
is set equal to 3.79 to give an in-control ARL of
approximately 200. In the Max-MEWMA control
chart, the upper control limit is set equal to 2.94

and the upper control limit for Max-MCUSUM control
chart equals 3.88, which gives an in-control ARL of 200.
In the Max-MCUSUM control chart, the magnitude of
the shift in process variability (b) is equal to 1.2 and �b
is considered equal to the smallest intercept and slope
parameters after shift, i.e.:

�b = (3:2; 2:025; 1:025; 2:2; 1:025; 1:025):

Several di�erent types of the intercept, slope, and stan-
dard deviation shifts are considered in the simulation
study. The ARL and SDRL values for di�erent shifts
in the �01 in units of �1 are summarized in Table 1.
The results show that the Max-CUSUM control chart
scheme performs better than the other methods under
� = 0:1. Moreover, Max-MEWMA control chart is
better than other control charts under � = 0:5 when
shifts in the intercept are large. Similar results are
obtained for sustained shifts in the intercept of the
second pro�le.

The ARL and SDRL values for di�erent shifts in
�11 in units of �1 are also given in Table 2. Similar
to the results of Table 1, for � = 0:1, the Max-
CUSUM control chart scheme performs better than the
other methods and the Max-MEWMA control chart is
superior to the ELRT control chart under large shifts
in the slope. For � = 0:5, except in �1 = 0:025 and
0.05, the performance of Max-MEWMA control chart is
better than that of Max-MCUSUM and ELRT control
charts. According to the ARL and SDRL results, the
performance of the ELRT and Max-MEWMA control
chart schemes improves as the value of � increases and
the performance of Max-MCUSUM control chart for
large shifts in �11 decreases. Also, similar results are
obtained for the sustained shifts in �12, i.e., the slope
of the second pro�le.

Table 3 shows the out-of-control simulated ARL
and SDRL values for shifts in variance of the error
term in the �rst pro�le from �1 to 
�1. The results
show that the performance of Max-MEWMA control
chart is uniformly better than that of ELRT and Max-
MCUSUM control charts and the performance of ELRT
control chart is superior to that of Max-MCUSUM
control chart. Increasing the value of � leads to better
performance in all of the control charts. The results for
shift in �2 are similar to those for shift in �1. Hence,
the results are not reported in this paper.

Tables 4 to 6 show the simultaneous shifts in the
intercept of pro�les, shifts in the slope of pro�les, and
shifts in the standard deviations of pro�les, respec-
tively. As shown in Tables 4 and 5, for simultaneous
shifts in the regression coe�cients of pro�les, Max-
MCUSUM control chart outperforms the other control
charts. In addition, when the magnitude of shifts in
the intercept and slope increases, the performance of
Max-MEWMA relative to ELRT control chart in terms
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Table 1. The simulated out-of-control ARL and SDRL values under the intercept shifts from �01 to �01+ �0�1 (in-control
ARL = 200).

� = 0:1
�0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ELRT
ARL 90.32 28.61 13.65 8.64 6.23 4.81 3.87 3.22 2.75 2.45

SDRL 79.66 19.79 6.83 3.43 2.15 1.49 1.17 0.95 0.81 0.68

Max-MEWMA
ARL 133.5 36.41 14.19 8.06 5.66 4.40 3.65 3.10 2.73 2.39

SDRL 134.1 30.42 8.78 3.80 2.04 1.33 1.01 0.79 0.67 0.58

Max-MCUSAM
ARL 71.39 23.78 11.92 7.46 5.48 4.29 3.52 2.97 2.59 2.30

SDRL 65.89 19.00 7.85 4.00 2.55 1.78 1.30 1.00 0.79 0.65

� = 0:5
�0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ELRT
ARL 75.91 21.93 10.91 6.99 5.12 3.98 3.20 2.74 2.27 1.96

SDRL 64.46 14.42 4.84 2.47 1.64 1.21 0.93 0.76 0.64 0.55

Max-MEWMA
ARL 112.8 25.79 10.51 6.46 4.66 3.71 3.08 2.67 2.24 1.94

SDRL 111.2 20.22 5.69 2.59 1.49 1.01 0.77 0.65 0.57 0.48

Max-MCUSAM
ARL 58.80 24.50 12.85 8.40 5.99 4.52 3.57 2.89 2.45 2.13

SDRL 54.39 20.05 8.65 4.81 2.91 1.97 1.33 0.97 0.74 0.60

Table 2. The simulated out-of-control ARL and SDRL values under the intercept shifts from �11 to �11+ �1�1 (in-control
ARL = 200).

� = 0:1
�1

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

ELRT
ARL 131.34 57.29 27.17 15.95 11.00 8.25 6.62 5.46 4.64 4.01

SDRL 124.46 47.44 19.06 8.49 4.97 3.15 2.34 1.78 1.43 1.21

Max-MEWMA
ARL 168.8 84.15 33.80 17.01 10.58 7.74 6.07 5.00 4.27 3.75

SDRL 169.7 80.72 28.42 11.20 5.7 3.46 2.33 1.68 1.28 1.04

Max-MCUSAM
ARL 108.41 46.12 23.42 14.23 9.81 7.33 5.88 4.94 4.22 3.67

SDRL 100.65 40.05 18.84 10.08 5.98 3.97 2.84 2.19 1.71 1.37

� = 0:5
�1

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

ELRT
ARL 115.23 45.04 21.43 12.67 8.85 6.77 5.45 4.50 3.84 3.29

SDRL 105.10 35.76 13.60 6.10 3.51 2.41 1.78 1.38 1.15 0.96

Max-MEWMA
ARL 161.31 62.82 20.20 12.56 8.24 6.14 4.98 4.15 3.59 3.17

SDRL 160.62 58.04 18.64 7.51 3.84 2.35 1.66 1.22 0.98 0.81

Max-MCUSAM
ARL 86.44 41.29 23.61 15.38 10.90 8.28 6.50 5.26 4.36 3.71

SDRL 81.93 36.17 19.12 11.27 7.03 4.68 3.33 2.41 1.84 1.42
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Table 3. The simulated out-of-control ARL and SDRL values under the shifts from �1 to 
�1 (in-control ARL = 200).

� = 0:1



1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

ELRT
ARL 43.62 13.97 7.69 5.14 3.92 3.14 2.67 2.31 2.04 1.83

SDRL 36.24 9.17 4.32 2.73 1.98 1.59 1.34 1.13 1.00 0.87

Max-MEWMA
ARL 41.58 13.18 6.93 4.80 3.69 3.07 2.60 2.28 2.06 1.88

SDRL 37.29 9.55 4.23 2.55 1.85 1.46 1.18 1.02 0.91 0.83

Max-MCUSAM
ARL 136.8 45.67 17.15 9.15 6.02 4.61 3.61 3.05 2.68 2.39

SDRL 130.7 41.12 14.98 7.34 4.28 2.63 1.89 1.53 1.19 1.05

� = 0:5



1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

ELRT
ARL 39.56 12.65 6.79 4.68 3.53 2.82 2.43 2.14 1.89 1.69

SDRL 31.80 7.96 3.72 2.42 1.76 1.39 1.20 1.03 0.92 0.79

Max-MEWMA
ARL 39.23 12.18 6.48 4.45 3.41 2.77 2.39 2.12 1.91 1.73

SDRL 36.12 8.84 3.92 2.39 1.65 1.31 1.09 0.95 0.86 0.77

Max-MCUSAM
ARL 99.42 36.26 14.78 7.98 5.38 4.04 3.27 2.78 2.41 2.18

SDRL 96.04 33.16 11.88 5.67 3.51 2.40 1.87 1.54 1.28 1.14

Table 4. The simulated out-of-control ARL and SDRL values under simultaneous shifts from �01 to �01 + �0�1 in the �rst
pro�le and �02 to �02 + �0�2 in the second pro�le with � = 0:5 (in-control ARL = 200).

�0

0.2 0.4 0.6 0.8 1
�0 Control chart ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

ELRT 75.55 66.70 28.96 19.89 13.27 6.62 8.20 3.12 5.80 1.91
0.2 Max-MEWMA 111.0 106.8 37.08 30.74 13.55 8.24 7.62 3.36 5.25 1.81

Max-MCUSAM 24.38 19.91 13.00 8.86 8.50 4.93 6.21 3.08 4.52 2.11

ELRT 29.35 20.51 22.46 14.49 13.31 6.74 8.65 3.47 6.19 2.07
0.4 Max-MEWMA 37.10 31.63 25.92 20.04 13.55 8.11 8.20 3.82 5.64 2.04

Max-MCUSAM 13.19 9.03 8.53 4.96 6.23 3.10 5.01 2.26 4.10 1.63

ELRT 13.44 6.78 13.32 6.61 10.95 4.83 8.19 3.13 6.20 2.07
0.6 Max-MEWMA 13.54 8.22 13.62 8.44 10.62 5.79 7.54 3.28 5.63 1.99

Max-MCUSAM 8.58 5.03 6.21 3.03 4.90 2.16 4.12 1.66 3.49 1.27

ELRT 8.24 3.16 8.68 3.46 8.14 3.16 6.98 2.53 5.78 1.93
0.8 Max-MEWMA 7.61 3.31 8.06 3.67 7.64 3.40 6.44 2.56 5.30 1.83

Max-MCUSAM 6.19 2.80 4.91 2.15 4.11 1.64 3.53 1.28 3.05 1.04

ELRT 5.82 1.91 6.19 2.05 6.29 2.18 5.76 1.91 5.10 1.60
1 Max-MEWMA 5.26 1.80 5.66 2.07 5.70 2.09 5.27 1.83 4.67 1.50

Max-MCUSAM 4.49 2.06 4.09 1.68 3.52 1.29 3.07 1.05 2.75 0.88
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Table 5. The simulated out-of-control ARL and SDRL values under simultaneous shifts from �11 to �11 + �1�1 in the �rst
pro�le and �12 to �12 + �1�2 in the second pro�le with � = 0:5 (in-control ARL = 200).

�1

0.025 0.05 0.075 0.1 0.125
�1 Control chart ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

ELRT 118.0 107.7 57.80 48.81 26.81 18.47 14.93 8.18 10.09 4.35
0.025 Max-MEWMA 157.1 155.1 84.01 79.32 32.85 26.54 15.72 10.22 9.65 5.03

Max-MCUSAM 41.87 36.73 23.92 19.53 15.44 11.16 10.93 6.92 8.32 4.81

ELRT 57.42 48.06 44.77 34.76 26.46 17.98 16.23 8.98 10.90 4.96
0.05 Max-MEWMA 86.09 82.31 63.55 59.56 33.73 28.31 17.35 11.86 10.60 5.77

Max-MCUSAM 24.03 19.37 15.37 11.35 10.98 7.06 8.32 4.75 6.79 3.42

ELRT 26.43 17.88 26.74 18.42 21.24 12.83 15.22 8.11 10.88 4.84
0.075 Max-MEWMA 33.16 27.69 33.33 27.32 24.09 18.45 15.82 10.30 10.59 5.58

Max-MCUSAM 15.55 11.11 10.99 7.20 8.35 4.82 6.76 3.47 5.68 2.67

ELRT 15.14 8.31 16.23 8.99 15.09 8.11 12.53 6.02 10.07 4.35
0.1 Max-MEWMA 15.70 10.34 17.24 11.54 15.82 10.35 12.58 7.36 9.66 4.83

Max-MCUSAM 11.02 7.09 8.22 4.62 6.83 3.58 5.66 2.63 4.92 2.15

ELRT 10.11 4.28 11.12 5.05 10.93 4.92 10.13 4.27 8.83 3.50
0.125 Max-MEWMA 9.76 5.07 10.55 5.69 10.43 5.82 9.58 4.79 8.32 3.86

Max-MCUSAM 8.37 4.82 6.82 3.57 5.69 2.67 4.87 2.14 4.29 1.76

Table 6. The simulated out-of-control ARL and SDRL values under simultaneous shifts from �1 to 
0�1 and �2 to 
1�2

with � = 0:5 (in-control ARL=200).


0

1.1 1.2 1.3 1.4 1.5

1 Control chart ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

ELRT 66.31 60.10 34.11 27.42 18.90 13.38 12.27 7.91 8.80 5.21
1.1 Max-MEWMA 46.19 43.11 23.04 18.93 13.98 10.33 9.63 6.32 7.22 4.38

Max-MCUSAM 106.2 101.7 72.87 70.24 44.51 40.83 27.45 24.04 17.70 14.55

ELRT 33.98 27.24 23.63 17.94 15.55 10.70 10.97 6.87 8.18 4.65
1.2 Max-MEWMA 24.04 20.12 14.72 10.80 10.41 7.01 7.74 4.74 6.22 3.57

Max-MCUSAM 72.11 67.51 48.30 44.42 30.87 26.78 20.33 17.53 13.72 10.96

ELRT 18.87 13.47 15.48 10.41 12.02 7.60 9.38 5.58 7.33 4.11
1.3 Max-MEWMA 14.02 10.22 10.42 6.84 8.03 4.91 6.47 3.66 5.34 2.80

Max-MCUSAM 44.64 41.57 31.11 27.15 21.12 17.93 15.00 11.94 10.92 8.11

ELRT 12.11 7.61 10.81 6.55 9.19 5.38 7.54 4.19 6.42 3.43
1.4 Max-MEWMA 9.75 6.35 7.81 4.74 6.51 3.56 5.44 2.86 4.68 2.30

Max-MCUSAM 27.72 24.26 20.16 16.92 15.04 11.87 11.47 8.45 8.96 6.34

ELRT 8.68 5.17 8.16 4.6 9 7.27 4.06 6.38 3.46 5.54 2.91
1.5 Max-MEWMA 7.22 4.33 6.16 3.45 5.36 2.74 4.72 2.38 4.18 2.02

Max-MCUSAM 17.47 14.33 13.95 10.75 11.00 8.08 9.07 6.44 7.44 4.81
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Table 7. The simulated out-of-control ARL and SDRL values under simultaneous shifts from �11 to �11 + �1�1 and �1 to

0�1 with � = 0:5 (in-control ARL = 200).


0

0.2 0.4 0.6 0.8 1.0

0 Control chart ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

ELRT 48.17 39.33 14.52 8.91 7.65 3.81 5.08 2.31 3.73 1.61
1.1 Max-MEWMA 58.93 54.63 15.03 10.70 7.49 4.09 4.96 2.37 3.70 1.57

Max-MCUSAM 49.49 45.43 19.77 15.69 10.56 7.41 6.61 3.99 4.75 2.56

ELRT 27.05 20.61 8.60 4.72 4.90 2.41 3.37 1.61 2.57 1.20
1.2 Max-MEWMA 29.71 26.03 8.69 5.55 4.78 2.48 3.35 1.56 2.65 1.18

Max-MCUSAM 41.43 37.72 14.24 11.25 7.11 4.71 4.55 2.62 3.26 1.78

ELRT 16.60 11.36 5.76 2.98 3.38 1.65 2.42 1.18 1.93 0.92
1.3 Max-MEWMA 16.88 13.08 5.56 3.09 3.34 1.60 2.45 1.12 1.99 0.88

Max-MCUSAM 32.13 28.50 9.29 6.50 4.77 2.94 3.17 1.73 2.42 1.25

ELRT 11.28 6.91 4.21 2.10 2.59 1.27 1.91 0.92 1.58 0.72
1.4 Max-MEWMA 11.05 7.66 4.06 2.07 2.58 1.17 1.97 0.86 1.61 0.70

Max-MCUSAM 23.80 20.42 6.41 4.15 3.45 1.96 2.45 1.29 1.95 0.99

ELRT 8.30 4.72 3.31 1.65 2.11 1.03 1.62 0.73 1.37 0.58
1.5 Max-MEWMA 7.94 4.93 3.24 1.54 2.14 0.94 1.68 0.73 1.41 0.59

Max-MCUSAM 17.08 14.02 4.77 2.97 2.75 1.49 2.00 1.05 1.65 0.81

of ARL and SDRL improves. According to Table 6,
the Max-MEWMA control chart performs better than
the two other control charts in detecting simultaneous
shifts in both standard deviations.

Table 7 shows the out-of-control ARL and SDRL
under simultaneous shifts in the intercept and standard
deviation of the �rst pro�le. The results show that
under small shifts in the standard deviation, ELRT
control chart has better performance than the other
control charts. When the magnitude of shifts in
standard deviation increases, the performance of Max-
MEWMA control chart improves relative to the other
control charts.

6.1. Evaluating diagnosing procedure
For all scenarios of the shifts in Tables 8 and 9,
the diagnosing procedures of the schemes are also
implemented. In Tables 8 and 9, there are three
rows named U, V, and UV for each control chart
that represent the mean shifts, variance shifts, and
simultaneous shifts, respectively. Table 8 shows the
performance of diagnosing procedures (in percent)
under individual shifts in the regression parameters
when the value of � is equal to 0.5 and signal is
triggered by both the proposed control charts. The
results show that the diagnosing procedure in Max-

MEWMA control chart under small and medium shifts
in the intercept, slope, and standard deviation per-
forms excellently while this procedure does not perform
well in diagnosing large shifts in the intercept, slope,
and standard deviation. Also, Table 8 shows that Max-
MCUSUM control chart performs well in diagnosing
under medium and large shifts in standard deviation
while Max-MCUSUM control chart performs satisfac-
torily in diagnosing small and medium shifts in the
intercept and slope. Table 9 shows the performance of
the diagnosing procedure in Max-MEWMA and Max-
MCUSUM under simultaneous shifts in the regression
parameters. The results show that the diagnosing
procedure in Max-MEWMA control chart performs
well in simultaneous small and medium shifts in �01 and
�02 as well as �11 and �12. However, Max-MEWMA
diagnosing procedure does not perform satisfactorily
under simultaneous large shifts in standard deviation.
Finally, the diagnosing procedure under all simultane-
ous shifts in the Max-MCUSUM control chart shows
excellent performance.

7. A real case study

In this section, we illustrate how the proposed control
chart can be applied to the calibration case at the
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Table 8. The results (accuracy percent) of individual shifts in the intercept, slope, and the standard deviation of the �rst
pro�les (� = 0:5).

Intercept shifts from �01 to �01 + �0�1 in the �rst pro�le
Proposed control

chart
�0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Max-MEWMA
U 75.24% 91.34% 92.55% 87.95% 77.49% 61.81% 43.71 % 37.31% 23.85% 16.96%
V 22.49% 5.40% 2.80% 2.64% 3.35% 4.30% 5.27% 6.58% 7.52% 9.73%
UV 2.27% 3.26% 4.65% 9.41% 19.16% 33.89% 51.01% 56.11% 68.63% 73.31%

Max-MCUSAM
U 99.61% 99.38% 97.94% 93.46% 81.51% 54.24% 43.43% 33.46% 24. 00% 17.12%
V 0.32% 0.46% 1.49% 3.95% 10.29% 19.11% 29.24% 30.80 % 33.23% 37.75%
UV 0.06% 0.16% 0.57% 2.59% 8.20% 16.65% 27.34% 35.74 % 42.76% 45.12%

Standard deviation shifts from � to 
�1

Proposed control
chart


 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Max-MEWMA
U 38.00% 13.29% 5.19% 1.86% 0.59% 0.19% 0.08% 0.06% 0% 0%
V 58.90% 80.54% 84.64% 82.13% 74.66% 61.88% 47.78% 34.16% 24.31% 16.74%
UV 3.10% 6.17% 10.17% 16.01% 24.75% 37.94% 52.15% 65.77% 75.69% 83.26%

Max-MCUSAM
U 96.16% 64.11% 17.15% 4.54% 1.65% 0.6% 0.25% 0.05% 0.05% 0%
V 3.66% 34.23% 78.43% 89.85% 91.85% 91.74% 90.39% 88.31% 85.52% 81.41%
UV 0.18% 1.66% 4.42% 5.61% 6.50% 7.66% 9.36% 11.64% 14.42% 18.59%

Slope shifts from �11 to �11 + �1�1 in the �rst pro�le
Proposed control

chart
�1 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0 .2 0.225 0.25

Max-MEWMA
U 65.49% 84.62% 91.76% 92.49% 90.86% 87.14% 80.40% 71.64% 59.34% 47.14%
V 32.57% 12.71% 4.94% 3.31% 2.88% 2.21% 2.66% 3.20% 3.91% 4.89%
UV 1.94% 2.66% 3.30% 4.20% 6.26% 10.65% 16.94% 25.16 % 36.75% 47.98%

Max-MCUSAM
U 99.55% 99.55% 99.45% 98.36% 96.49% 92.03% 84.79% 72 .69% 59.90% 45.06%
V 0.4% 0.34% 0.46% 1.06% 2.26% 5.09% 8.84% 15.16% 21.43% 28.50%
UV 0.05% 0.11% 0.09% 0.57% 1.25% 2.89% 6.38% 12.15% 18.68% 26.44%

Figure 1. Di�erent connection types of fastening twins
(hard, semihard, and soft).

automotive industrial group discussed by Ayoubi et al.
[40]. In this case, three di�erent connection types of
fastening twins, which are hard, semihard, and soft, are
used. Figure 1 illustrates these connection types. Fixed
values of torque are set to be measured by torqometer

Figure 2. Torqometer for measurement of torque screws.

(see Figure 2) on the three connection types. Mag-
nitudes of torque measured on the three types of
connection are correlated because of the measurements
by the same torqometer. Hence, it can be modeled
using three-variate simple linear pro�les. Table 10
shows 10 samples obtained from the process, all of
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Table 9. The results (accuracy percent) of simultaneous shifts in the intercept, slope, and the standard deviation of the
�rst and second pro�les (� = 0:5).

Intercept shifts from �01 to �01 + �0�1 in the �rst pro�le and
�02 to �02 + �0�2 in the second pro�le

Proposed control
chart

�0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Max-MEWMA
U 75.75% 91.34% 92.04% 87.45% 77.99% 63.54% 43.40% 37.36% 24.46% 17.19%
V 21.91% 5.40% 2.67% 2.39% 3.34% 3.69% 4.75% 5.96% 6.65% 9.94%
UV 2.34% 3.26% 5.29% 10.16% 18.68% 32.77% 51.86% 56.67% 68.89% 72.87%

Max-MCUSAM
U 99.79% 99.94% 99.86% 99.46% 98.81% 96.96% 92.55% 85.56% 76. 36% 68.73%
V 0.13% 0% 0% 0.05% 0.01% 0.01% 0% 0.01% 0.03% 0%
UV 0.09% 0.06% 0.14% 0.49% 1.18% 3.02% 7.45% 14.42% 23.61% 31.27%

Standard deviation shifts from �1 to 
�1 and �2 to 
�2

Proposed control
chart


 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Max-MEWMA
U 22.04% 4.51% 0.98% 0.16% 0.04% 0.01% 0% 0% 0% 0%
V 73.60% 89.02% 88.50% 82.04% 67.14% 47.66% 28.08% 13.85% 6.75% 3.30%
UV 4.36% 6.46% 10.53% 17.80% 32.82% 52.32% 71.92% 86.15% 93.25% 96.70%

Max-MCUSAM
U 89.38% 29.64% 7.35% 2.59% 1.09% 0.66% 0.4 % 0.21% 0.08% 0.03%
V 10.10% 66.50% 87.05% 89.75% 89.25% 87.99% 84.00% 80.53% 77.08% 74.06%
UV 0.53% 3.86% 5.60% 7.66% 9.66% 11.35% 15.60% 19.26 % 22.85% 25.91%

Slope shifts from �11 to �11+�1�1

in the �rst pro�le and �12 to �12+ �1�2 in the second pro�le
Proposed control

chart
�1 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

U 65.46% 83.85% 91.43% 92.61% 90.76% 87.06% 80.71% 71.38% 59.7 8% 48.13%
Max-MEWMA V 32.62% 13.43% 4.91% 2.99% 2.62% 2.69% 3.04% 3.00% 4.3 9% 4.56%

UV 1.91% 2.73% 3.66% 4.40% 6.61% 10.25% 16.25% 25.62 % 35.88% 47.31%

U 99.81% 99.96% 99.94% 99.96% 99.68% 99.52% 98.94% 97.58% 96. 295 92.74%
Max-MCUSAM V 0.13% 0.03% 0.04% 0.01% 0.01% 0.04% 0.01% 0.01% 0% 0.01%

UV 0.06% 0.01% 0.03% 0.03% 0.031% 0.044% 1.05% 2.14% 3.71% 7.25%

which are in-control. Ayoubi et al. [41] used Jarque-
Bera test to check normality assumption. The p-values
of the Jarque-Bera tests for the �rst, second, and third
pro�les are 0.0813, 0.0497, and 0.0545, respectively.
Considering con�dence level of 0.95, the �rst and third
pro�les have no violations of the normality assumption.
The con�dence p-value of the normality test for the
second pro�le is very close to the signi�cant level of
0.05. Hence, they considered that the second pro�le
error term also followed normal distribution roughly.

Ayoubi et al. [41] also used Pearson-correlation
test to investigate correlation between pro�les. They
showed that the Pearson-correlation value was 0.9613
for the correlation between the measurements on hard
and semihard connections with the p-value of 0:1592�

10�27. Between the hard and soft connections, corre-
lation value is 0.9675 and the test p-value is equal to
0:0027� 10�27. Finally, semihard and soft connections
have the correlation value of 0.9965 with the Pearson
test p-value of zero. High magnitudes of correlation
and p-values that are less than the signi�cant level of
0.05 demonstrate that the correlations are signi�cantly
di�erent from zero.

Another assumption for adequacy of regression
equations is equality of error term variances in dif-
ferent levels of explanatory variable. To check this
assumption, the relationship between the residuals
and values of explanatory variable for three pro-
�les are depicted as scatter plots in Figure 3 (a)-
(c). As shown in the �gures, the variances of error
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Table 10. Data of torqometer calibration case study at Irankhodro Corporation [40]

Actual torque Hard Semihard Soft Hard Semihard Soft Hard Semihard Soft
First sample Second sample Third sample

20 20.83 19.77 19.56 20.25 20.416 19.41 20.89 20.599 19.40
25 25.09 22.046 21.89 24.28 23.02 21.44 25.47 22.92 21.623
30 30.9 25.64 26.954 32.5 26.72 25.616 31.7 25.86 26.057
35 34.65 32.23 32.58 35.1 32.22 32.51 36.71 32.11 31.84
40 40.38 39.78 39.35 40.13 39.58 40.04 40.5 39.95 39.91

Fourth sample Fifth sample Sixth sample
20 21.16 20.40 19.42 20.07 20.36 19.30 20.66 20.49 19.25
25 25.34 22.835 21.38 26.11 22.35 21.56 25.43 23.04 22.22
30 30.50 25.90 26.09 29.99 26.93 25.51 32.73 25.73 26.65
35 33.8 32.30 32.60 36.90 32.10 32.74 34.30 32.00 32.65
40 40.20 39.16 40.80 41.10 39.68 40.34 40.20 39.33 40.20

Seventh sample Eighth sample Ninth sample
20 21.40 20.76 19.33 20.99 20.66 19.12 20.73 20.58 19.85
25 25.38 22.93 22.33 25.40 22.59 22.49 26.17 23.10 21.95
30 31.80 26.47 26.58 30.43 26.50 26.91 31.32 25.88 25.73
35 35.00 32.20 32.33 36.70 32.30 31.90 35.80 32.44 32.60
40 40.93 39.98 39.25 40.84 39.15 39.87 40.33 39.29 39.99

Tenth sample
20 20.30 20.49 19.48
25 26.39 22.70 21.42
30 32.58 25.93 25.79
35 35.10 32.10 32.23
40 40.20 39.73 40.02

terms in each pro�le are equal in di�erent levels of
explanatory variable. In other words, there is no
signi�cant di�erence among variances of error terms
in each pro�le under di�erent levels of explanatory
variable.

Finally, to check for independency of response
variables of each pro�le over time, we use run chart
and plot the mean of residuals in each pro�le for
each sample versus time. The results are illustrated
in Figure 4 (a)-(c) for the �rst, second, and third
equations, respectively. As it is clear from the �gures,
the mean of residuals is independent over time for
all equations of multivariate simple linear regression
pro�le. In other words, there is no autocorrelation
between pro�les over time.

An in-control model �tted with the stable data
with �xed x values of 20, 25, 30, 35, and 40 is as follows:

y1 = 1:0696 + 0:9881x+ "1;

y2 = �0:3758 + 0:9534x+ "2;

y3 = �3:0574 + 1:0340x+ "3;

where ("1; "2; "3 ) is a multivariate normal random
vector with mean vector zero and covariance matrix
of:

�̂ =

0@ 0:8514 �0:5728 �0:4667
�0:5728 4:0003 3:6758
�0:4667 3:6758 3:6971

1A :

We compute the in-control Max-MEWMA, Max-
MCUSUM, and ELRT statistics corresponding to sam-
ples 1-9 and then generate 6 samples with a sustained
shift in the intercept of the �rst pro�le from �01 =
1:0696 to �01 = 1:4 from sample 10 and compute
the statistics of the proposed control charts. The
proposed control charts are presented in Figures 5 and 6
and ELR control chart is presented in Figure 7. In
all of the control chart schemes, the upper control
limit is chosen to achieve an in-control ARL of 200.
The upper control limits for Max-MEWMA, Max-
MCUSUM, and ELRT control charts are set equal
to 2.96, 5.29, and 4.25, respectively, through simulation
runs. The Max-MEWMA control chart signals in
the three samples after the occurrence of shift (12th
sample). In the Max-MCUSUM, the shift is detected
in the 13th sample and ELRT control chart signals
in the 14th sample. Hence, Max-MEWMA control
chart performs better than Max-MCUSUM and ELRT
control charts in detecting shifts in the intercept of the
�rst pro�le in the real case. In addition, the diagnosing
procedure of the proposed control charts shows that the
process mean is changed.
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Figure 3. Plot of residuals versus values of explanatory
variable for three pro�les in the real-case data.

To investigate the performance of control charts in
detecting shifts in standard deviation, we �rst generate
10 in-control multivariate simple linear pro�les with the
above-mentioned relationships. From the 11th sample,
we generate out-of-control data, where the value of �3
shifts from 1.9227 to 2.1. The control charts based
on the proposed methods and ELRT control chart are
presented in Figures 8-10. The Max-MEWMA control
chart signals in the 5th sample after the occurrence
of shift (15th sample) and ELRT control chart signals
in the 18th sample. The Max-MCUSUM control chart
does not detect shift in the standard deviation based
on the samples investigated. Not that, the diagnosing

Figure 4. Independency of error terms over time for
real-case data.

Figure 5. Max-MEWMA control chart for the calibration
application data under shift from �01 = 1:0696 to
�01 = 1:4 at the 10th sample.
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Figure 6. Max-MCUSUM control chart for the
calibration application data under shift from �01 = 1:0696
to �01 = 1:4 at the 10th sample.

Figure 7. ELRT control chart for the calibration
application data under shift from �01 = 1:0696 to
�01 = 1:4 at the 10th sample.

Figure 8. Max-MEWMA control chart for the calibration
application data under shift from �3 = 1:9227 to �3 = 2:1
at the 11th sample.

procedure of Max-MEWMA control chart shows that
the variation of the process is changed.

8. Conclusions and future research

In this paper, we developed two control charts in-
cluding Max-MEWMA and Max-MCUSUM to simul-
taneously monitor mean vector and covariance matrix
in multivariate multiple linear regression pro�les in
Phase II. The two proposed control charts had also
the potential for diagnosing purpose. The performance

Figure 9. Max-MEWMA control chart for the calibration
application data under shift from �3 = 1:9227 to �3 = 2:1
at the 11th sample.

Figure 10. ELRT control chart for the calibration
application data under shift from �3 = 1:9227 to �3 = 2:1
at the 11th sample.

of each control chart in detecting out-of-control states
was investigated through simulation studies in terms
of ARL and SDRL criteria. Simulation studies showed
that the Max-MEWMA and the Max-MCUSUM con-
trol schemes performed slightly better than the ELRT
control chart in detecting sustained shifts in the inter-
cept and slope of multivariate linear regression pro�les.
Also, in detecting shift in the elements of variance-
covariance matrix, Max-MEWMA control chart was
better than the Max-MCUSUM and ELRT control
charts. We also evaluated the performance of the
control charts for diagnosing purpose. Results showed
that the diagnosing procedure in Max-MEWMA con-
trol chart under small and large shifts in the intercept,
slope, and standard deviation performed satisfactorily.
Furthermore, the diagnosing procedure performance of
the Max-MCUSUM control chart under shifts in inter-
cept, slope, and standard deviation was satisfactory.
Finally, we showed the use of the proposed control
charts in a real calibration case in the automotive
industry. For future research, we recommend develop-
ing a method to diagnose the parameters responsible
for out-of-control signals. Furthermore, developing a
multivariate self-starting control chart for simultaneous
monitoring of mean vector and covariance matrix in
multivariate multiple linear regression pro�les can be a
fruitful area.
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Appendix A

The likelihood ratio for MCUSUM control chart under
multivariate normal distribution and shift in mean
vector is calculated by Eq. (A.1) as shown in Box A.I.

Taking natural logarithms as follows:

log
fb(xk)
fg(xk)

=� 0:5(�̂k � �b)��1
�̂k

(�̂k � �b)0

+0:5(�̂k � �g)��1
�̂k

(�̂k � �g)0; (A.2)

after simplifying, we have:

log
fb(xk)
fg(xk)

=� 0:5�̂k��1
�̂k
�̂0k + 0:5�̂k��1

�̂k
�0b

+ 0:5�b�
�1
�̂k
�̂0k � 0:5�b�

�1
�̂k
�̂0b

+ 0:5�̂k��1
�̂k
�̂0k � 0:5�̂k��1

�̂k
�0g

� 0:5�g�
�1
�̂k
�̂0k + 0:5�g�

�1
�̂k
�̂0g

= + 0:5�̂k��1
�̂k

(�b � �g)0

+ 0:5(�b � �g)��1
�̂k
�̂0k

� 0:5(�b � �g)��1
�̂k

(�b � �g)

= (�b � �g)��1
�̂k
�̂
0
k

� 0:5(�b + �g)�
�1
�̂k

(�b � �g)0; (A.3)

and equivalently we have:

log
fb(xk)
fg(xk)

=(�b � �g)��1
�̂k
�̂
0
k � 0:5(�b + �g)

��1
�̂k

(�b � �g)0: (A.4)
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fb(xk)
fg(xk)

=
(2�)�p=2

�����1
�̂k

����1=2
exp(�0:5(�̂k � �b)��1

�̂k
(�̂k � �b)0)

(2�)�p=2
�����1
�̂k

����1=2
exp(�0:5(�̂k � �g)��1

�̂k
(�̂k � �g)0)
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exp(�0:5(�̂k � �b)��1

�̂k
(�̂k � �b)0)

exp(�0:5(�̂k � �g)��1
�̂k

(�̂k � �g)0) : (A.1)

Box A.I

fb(xk)
fg(xk)

=
(2�)�p=2

���b��̂k ����1=2
exp(�0:5(�̂k � �g)(b��̂k)�1(�̂k � �g)0)

(2�)�p=2
�����̂k ����1=2

exp(�0:5(�̂k � �g)��1
�̂k

(�̂k � �g)0)
: (B.1)

Box B.I

Appendix B

The likelihood ratio for MCUSUM control chart under
multivariate normal distribution and shift in covariance
matrix is obtained by Eq. (B.1) as shown in Box B.I.
After simplifying, we have:
fb(xk)
fg(xk)

=b�1=2 exp[�0:5(�̂k � �g)

��1
�̂k

(�̂k � �g)0(1
b
� 1)]; (B.2)

taking natural logarithms:

log
fb(xk)
fg(xk)

=
�1
2

log b+ 0:5(�̂k � �g)

��1
�̂k

(�̂k � �g)0(1� 1
b

): (B.3)
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